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INTRODUCTION



What constitutes a jet?

Jets are collimated bunches of particles produced by hadronization of a
quark or gluon.
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Why are jets important?

I QCD processes are at the heart of modern hadron colliders.
I Most of CMS and ATLAS searches make use of jets.
I The increase in energy and pileup at the LHC is raising the necessity

for a deeper understanding of jet processes.
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Example: background discrimination in Higgs production

Main background to Higgs production via gluon fusion (with W+W− decay)
is tt production.

�⇒ background can be separated with veto on hard jets.
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Jet algorithms and the jet radius

A jet algorithm maps final state particle momenta to jet momenta.

{pi }︸︷︷︸
particles

�⇒ { jk }︸︷︷︸
jets

This requires an external parameter, the jet radius R, which specifies an
angular scale.

The jet radius R defines up to which point separate partons are recombined
into a single jet.

Figure – Gluon emission and emitting quark combined into a single jet.
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Cambridge/Aachen algorithm with incoming hadrons

Basic idea is to invert QCD branching process, clustering pairs which are
closest in metric defined by the divergent structure of the theory

Definition

1. For any pair of particles i , j find the minimum of

∆Ri j � (yi − y j)2 + (φi − φ j)2

2. If the minimum value mini , j (∆R2
i j) > R2 then particle i is removed

from the list and defined as a jet, otherwise i and j are merged.
3. Repeat until no particles are left.

Most algorithms used nowadays at hadron colliders follow this pattern, with
some variations in the distance measure (eg. the anti-kt algorithm).
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Perturbative properties: quark energy , jet energy

Jet properties will be affected by gluon radiation and g → qq̄ splitting.

Average energy difference between hardest final state jet and initial quark,
considering emissions beyond the reach of the jet

〈∆z〉hardestq �
αs

π
CF

(
2 ln 2 − 3

8

)
lnR + O(αs )

This is because emissions outside of the jet reduce the jet energy.

Figure – Gluon emission beyond the reach of the jet.
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How relevant are small-R effects?

In recent years, jet radii have become ever smaller.

Most common choice is R � 0.4, but in substructure tools and heavy ions,
values down to R � 0.2 are used.

We can evaluate numerically how important the effect of perturbative lnR
terms is on the microjet pt .

Taking R � 0.2 we find that

I quark-induced jets have a hardest microjet pt ∼ 5 − 10% smaller than
the original quark,

I gluon-induced jets have a hardest microjet pt ∼ 15 − 25% smaller than
the original gluon.
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Resummation of (αs ln R)n terms

“In the small R limit, new clustering logarithms [. . . ] arise at each order and
cannot currently be resummed.”

— Tackmann, Walsh & Zuberi (arXiv:1206.4312)

How important can contributions from higher orders be, e.g. (αs lnR)n ,
especially at smaller values of R ?

We aim to resum all leading logarithmic (αs lnR)n terms in the limit of small
R for a wide variety of observables.

We will approach this question using generating functionals.
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GENERATING FUNCTIONALS



Evolution variable t

Start with a parton and consider emissions at successively smaller angular
scales.

Use an evolution variable t corresponding to the integral over the collinear
divergence weighted with αs

t �
∫ 1

R2

dθ2

θ2
αs (ptθ)

2π �
1
b0

∞∑
n�1

1
n

(
αs b0
2π ln 1

R2

)n
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R

0.0
0.1
0.2
0.3
0.4

t 50 GeV jet
20 TeV jet

Figure – Plot of t as a function of R down to Rpt � 1GeV for pt � 0.01 − 20 TeV.
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Generating functional

Definition

Q(x , t1 , t2) is the generating functional encoding the parton content one
would observe when resolving a quark with momentum xpt at scale t1 on
an angular scale t2 > t1 (ie. R2 < R1).

Mean number of quark microjets of momentum fraction z produced from a
quark

dnq(z)

dz
�
δQ(1, 0, t2)
δq(z)

�����∀q(z)�1,g(z)�1

We can formulate an evolution equation for the generating functionals

Q(x , 0, t) � Q(x , δt , t)
(
1 − δt

∫
dz pqq (z)

)
+ δt

∫
dz pqq (z)

[
Q(zx , δt , t)G((1 − z)x , δt , t)

]
.

Gluon generating functional G(x , t1 , t2) defined the same way.
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Quark evolution equation

We can rewrite the evolution equation of the quark generating functional in
graphical form, representing a differential equation

Here the blobs represent the generating functionals at a scale t.

The quark and gluon evolution equations allow us to resum observables to
all orders numerically.
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OBSERVABLES



Jet spectrum from microjet fragmentation function

Jet spectrum can be obtained from the partonic spectrum
dσjet
dpt

'
dσi

dpt

∫ 1

0
dz zn−1 f incljet/i (z , t) ≡

dσi

dpt
〈zn−1

〉
incl
i .

Small-R terms are important, around 30 − 50% effect on gluonic inclusive
spectrum (with n � 5).

Convergence is slow: the O(t2) corrections (ie. NNLO) deviate noticeably
from all-orders results below R � 0.3
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Microjet fragmentation function

Solid line: inclusive microjet fragmentation function.

Dashed line: hardest microjet fragmentation function.
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Microjet fragmentation function

Solid line: inclusive microjet fragmentation function.

Dashed line: hardest microjet fragmentation function.
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Microjet fragmentation function

Solid line: inclusive microjet fragmentation function.

Dashed line: hardest microjet fragmentation function.
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Microjet fragmentation function

Solid line: inclusive microjet fragmentation function.

Dashed line: hardest microjet fragmentation function.
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CONCLUSION



Conclusion

I Using generating-functional approach, carried out numerical leading
logarithmic resummation of lnR enhanced-terms in small-R jets.

I Studied inclusive microjet spectrum and identified the spectrum of
hardest microjet emerging from parton fragmentation.

I Small-R effects can be substantial, for example reducing the inclusive
jet spectrum by 30 − 50% for gluon jets for R � 0.4 − 0.2.

I Study of phenomenological implications for Higgs physics and
inclusive jet spectrum are forthcoming.

further reading on arXiv:1411.5182
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BACKUP SLIDES



Evolution equations

We can write the complete evolution equations as differential equations, for
the quark the previous graph corresponds to

Quark

dQ(x , t)
dt

�

∫
dz pqq (z) [Q(zx , t) G((1 − z)x , t) −Q(x , t)] .

In the gluon case we find,

Gluon

dG(x , t)
dt

�

∫
dz pg g (z) [G(zx , t)G((1 − z)x , t) − G(x , t)]

+
∫

dz n f pq g (z) [Q(zx , t)Q((1 − z)x , t) − G(x , t)] .
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Microjet vetoes

Jet veto resummations are a context where all-order small-R corrections
could be important.

Writing the probability of no gluon emissions above a scale pt as

P(no primary-parton veto) � exp
[
−

∫ Q

pt

dkt

kt
ᾱs (kt )2 ln

Q
kt

]
,

one can show that including small-R corrections and applying the veto on
the hardest microjet, we have

U ≡ P(no microjet veto)/P(no primary-parton veto)

� exp
[
− 2ᾱs (pt ) ln

Q
pt

∫ 1

0
dz f hardest(z , t(R, pt )) ln z

]
.

The R-dependent correction generates a series of terms

αm+n
s (Q) lnm (Q/pt ) lnn R.
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Logarithmic moment 〈ln z〉

The logarithmic moment of f hardest is, as seen previously

〈ln z〉hardest ≡
∫ 1

0
dz f hardest(z) ln z .

This seems to have a particularly stable perturbative expansion.
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