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• �/H4 � 1: ⌧ ⌧ H�1 and the transition takes place very
rapidly everywhere. Bubbles can percolate, i.e. regions of the
new vacuum of di↵erent bubbles join together and form a
uniform infinite region. However, in this case there is no time
for inflation.

• �/H4 ⌧ 1: ⌧ � H�1 and bubble nucleation is very rare
within a Hubble time. Inflation can take place during many
e-folds. However, in this case bubbles cannot find each other
and percolate.

Old inflation takes place for �/H4 ⌧ 1. However, as recognized
by Guth in his paper, the randomness of bubble formation leads to
unacceptably large inhomogeneity in the post inflationary Universe.
Indeed, once supercooled, the Universe has to be reheated through
release of the latent heat of the phase transition. In his paper it is
implicitly assume that all the latent heat of the bubble is concen-
trated in the walls and that thermalization takes place only when
bubbles undertake many collisions of the walls. As the bubbles do
not meet, this does not happen and the Universe cannot thermalize.

1.3 Slow-roll inflation
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The very profound idea of slow-roll (SR) inflation is to replace
the vacuum energy by a scalar field with a very gentle potential.
In such a way the spacetime is approximately dS but inflation has
a clock, and can eventually end when the vacuum energy becomes
too small.

Scalar field: Let us consider a canonical (minimally coupled)
scalar field with actionIn the action (1.45) we have intro-

duced M
Pl

⌘ (8⇡G)�
1
2 . Note that

this is not the real Planck mass be-
cause here there is no ~, as every-
thing is classical.

S =

Z
d4x

p�g


M2

Pl

2
R � 1

2
gµ⌫@µ�@⌫� � V (�)

�
. (1.45)

The stress-energy tensor is given by varying the action with respect
to the metricTo derive Tµ⌫ you must use �

p
�g =

� 1

2

p
�g gµ⌫�gµ⌫ .

18

H '

s
V

3m2
P

Slow-roll inflation, almost CC (slowly varying clock):

(Slow-roll) Inflation

✏ ⌘ � Ḣ
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Consider a scalar field minimally coupled to gravity

In a flat FRW background, we have:

Friedmann

Klein-Gordon

Continuity

slow-roll

Scalar Field Dynamics



Scalar fluctuations
Each Fourier mode behaves as a quantum harmonic oscillator with time dependent spring “constant”
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Tensor fluctuations
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E & B modes
Linear polarization: spin-2 field 

Q±iU (Q,U are Stokes parameters, V=0)

E < 0

B < 0 B > 0

E > 0

Density perts. 
&  

gravity waves 

Gravity waves 

Equivalently: E (scalar) & B (pseudoscalar)
(Seljak ’97; Kamionkowski et al. ’97; Seljak, Zaldarriaga ’97)	




B-mode Power Spectrum

BICEP2
BICEP1 Boomerang

CAPMAP

CBI

DASIQUAD
QUIET−Q
QUIET−W

WMAP

Multipole

lens
ing

The era of B-modes

 Amazing recent improvement in 
experimental sensitivity

 Start probing theoretically motivated 
region

�P ⇠ 5 µK arcmin

�P ⇠ 45 µK arcmin(vs                                       for Planck)

Ade et al 1403.3985

r = 0.20+0.07
�0.05

Presumed signal



Dust under the carpet
 Signal is there but we have to deal with foregrounds

 BICEP2 has only 1 frequency (vs 5 in WMAP or 9 in 
Planck)!

Planck extrapolated from 353 GHz 

[1409.5738 - XXX Planck intermediate results]

 BICEP2 is compatible with being only dust!

Planck Collaboration: Dust polarization at high latitudes

Fig. 9: Planck 353 GHz DBB

` angular power spectrum computed on MB2 defined in Sect. 6.1 and extrapolated to 150 GHz (box
centres). The shaded boxes represent the ±1� uncertainties: blue for the statistical uncertainties from noise; and red adding in
quadrature the uncertainty from the extrapolation to 150 GHz. The Planck 2013 best-fit ⇤CDMDBB

` CMB model based on temper-
ature anisotropies, with a tensor amplitude fixed at r = 0.2, is overplotted as a black line.

Appendix D.1 confirms that the result does not depend on the
method of computing the power spectrum.

This power spectrum is extrapolated to 150 GHz as in
Sect. 6.2, with an extrapolation uncertainty estimated from the
inferred dispersion of �d. Our final estimate of the DBB

` spec-
trum is presented in Fig. 9, together with its 1� error budget.
For the first bin, `= 40–120, the expected level of dust polarized
DBB

` , as extrapolated to 150 GHz, is 1.32⇥ 10�2 µK2
CMB (Fig. 9).

The statistical error, estimated from Monte Carlo simulations of
inhomogeneous Planck noise (presented in Appendix A for this
particular binning), is ± 0.29⇥10�2 µK2

CMB, so that the dustDBB

`
spectrum is statistically detected at 4.5� in this broad ` bin.

In order to assess the potential contribution from systemat-
ics, we have computed the dust DBB

` spectrum on MB2 on dif-
ferent subsets of the data and performed null tests, which are
presented in Appendix D.3. In this lowest bin of `, we do not ob-
serve any departure from what is allowed by noise. Nevertheless,
we stress that below the noise level our cross-spectra could be
subject to a positive or negative bias due to systematic e↵ects.
For example, if instead of taking the DetSets cross-spectra (as
we have done throughout this paper) we take the mean value
computed from the DetSets, HalfRings, and Years cross-spectra
(presented in Appendix D.3), the statistical significance of our
measurement is decreased from 4.5� to 3.6�.

The uncertainty coming from the MB2 definition (presented
in Appendix D.2) is 0.04 ⇥ 10�2 µK2

CMB for this bin, thus much
less than the statistical error. For this reason, it is not added to
the error budget. However, the spectral extrapolation to 150 GHz
adds an additional uncertainty (+0.28,�0.24) ⇥ 10�2 µK2

CMB to
the estimated power in MB2, added in quadrature in Fig. 9.

The expected value in this lowest-` bin from direct compu-
tation of theDBB

` power spectrum on MB2, as shown in Fig. 9, is
lower than (but consistent with) the statistical expectation from
the analysis of the 352 high Galactic latitude patches presented
in Sects. 5.2 and 6.2. This indicates that MB2 is not one of the
outliers of Fig. 7 and therefore its dust B-mode power is well rep-
resented by its mean dust intensity through the empirical scaling
lawD / hI353i1.9.

These values of the DBB

` amplitude in the ` range of the pri-
mordial recombination bump are of the same magnitude as those
reported by BICEP2 Collaboration (2014b). Our results empha-
size the need for a dedicated joint analysis of the B-mode po-
larization in this region incorporating all pertinent observational
details of the Planck and BICEP2 data sets, which is in progress.

6.4. Frequency dependence

We complement the power spectrum analysis of the 353 GHz
map with Planck data at lower frequencies. As in the analysis
in Sect. 4.5, we compute the frequency dependence of the BB

power measured by Planck at HFI frequencies in the BICEP2
field, using the patch MB2 as defined in Sect. 6.1.

We compute on MB2 the Planck DBB

` auto- and cross-power
spectra from the three Planck HFI bands at 100, 143, 217, and
353 GHz, using the two DetSets with independent noise at each
frequency, resulting in ten angular power spectra (100 ⇥ 100,
100⇥143, 100⇥217, 100⇥353, 143⇥143, 143⇥217, 143⇥353,
217 ⇥ 217, 217 ⇥ 353, and 353 ⇥ 353), constructed by combin-
ing the cross-spectra as presented in Sect. 3.2. We use the same
multipole binning as in Sect. 6.3. To each of these DBB

` spectra,
we fit the amplitude of a power law in ` with a fixed exponent

15



Gravitational!
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Robust signature

• Choice of potential

• Speed of propagation 

  It’s easy to play with scalar fluctuations

• Multiple scalars
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Robust signature

• Choice of potential

• Speed of propagation 

  It’s easy to play with scalar fluctuations

• Multiple scalars

  It’s not easy to play with gravity. Gravity waves directly probe H! 
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• No potential, only two polarizations

• A graviton speed of propagation ≠ 1 can be set = 1 by a disformal transformation
Creminelli, Gleyzes, Noreña, FV ‘14

GWs predictions very robust!



What can we learn?

  Energy scale of inflation h(hk)
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require GUT-scale energies
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Continuity
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Scalar Field Dynamics

Digression: The Lyth Bound

The tensor-to-scalar ratio is

The total field excursion therefore is
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super-Planckian field variations
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require GUT-scale energies
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Ḣ
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Fabio Finelli's talk in Ferrara, December 2014 (preliminary results)

ns = 1� 2✏+
d ln ✏

d ln a
Scale-invariance excluded at 5σ! 
First real evidence of inflation.
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Future constraints
We will measure V,  V' and V''

B-modes search is ongoing by many experiments:
!
• Ground based telescopes: ABS, ACTpol, CLASS, Keck Array, Qubic, Quijote, Polarbear, 

Spud, SPTpol, BICEP3 (>2014); 

• Balloon experiments: EBEX (2012), Lspe (2015), SPIDER, PIPER (2015); 

• Planck satellite mission; 

• Future satellite missions: Pixie (NASA), EPIC (NASA), LiteBIRD (KEK), CoRE+ (ESA).

Fabio Finelli's talk in Ferrara, December 2014 (preliminary results)



If we do not see GWs?
Preliminary*2014*results*from*Planck**
George&Efstathiou&on&behalf&of&the&Planck&collabora5on&

Cl contain only ~2000 numbers 
but map contains 106 pixels!



Non-Gaussianity
Preliminary*2014*results*from*Planck**
George&Efstathiou&on&behalf&of&the&Planck&collabora5on&

Three-point function
Deviation from Gaussianity
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The long mode redefines the background (rescaling of the momenta):



Single-field predictions
  Slow-roll:
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Single-field predictions
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Single-field predictions
  Slow-roll:
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NL

f equilateral
NL

•                     due to attractor nature of single-field inflation

                   : extra fields, local correlation between long and short modesf loc

NL

& 1

                   : large self-interactions: f eq
NL & 1

f eq
NL ⌧ 1

f loc

NL

⌧ 1

Can we rule out slow-roll?

Single-field slow-roll is very gaussian 
!

!

This is essentially slow-roll if  
!

Implies that                        (or              ) 
!

Essence of have a weakly coupled description 
	 (at all energy scales) 
!

Creminelli Creminelli ‘03f eq
NL ⇠ �̇2

⇤4
⇠ 1

c2s

•                     due to smallness of inflaton self-interactions in slow-roll



excluded by Planck

Constraints
  Current constraints:

New)bispectrum)constraints)using)full)
mission)data)including)polariza;on))

Planck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG

Fig. 4. Note these are Nominal Mission results only ...
Comparison between the bispectrum reconstruction in the three
alternative basis representations plotted in the signal-dominated
regime with `lmax < 1500. Upper plot is nmax = 301 hybrid
Fourier basis ??, middle is nmax = 601 hybrid polynomial and
the lower is the nmax = 501 sinlog basis. Ten evenly spaced
contours have been plotted ranging from negative (blue) to posi-
tive (red). Although the reconstructions have independent bases
with di↵erent resolutions, the bispectrum signal exhibits qualita-
tively similar features, including the apparent banding or oscil-
lations varying in the quantity ˜̀ = (`1 + `2 + `3)/2. Note that the
sin-log basis has variable resolution which is higher for ˜̀ small.

Table 9. Results for the fNL parameters of the primordial lo-
cal, equilateral, and orthogonal shapes, determined by the KSW
estimator from the SMICA foreground-cleaned map. Both inde-
pendent single-shape results and results with the ISW-lensing
bias subtracted are reported; error bars are 68% CL . The final
reported results of the paper are shown in bold face.

fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 9.5 ± 5.6 1.8 ± 5.6
Equilateral . . . . . �10 ± 69 �9.2 ± 69
Orthogonal . . . . . �43 ± 33 �20 ± 33
SMICA (T+E)

Local . . . . . . . . . 6.5 ± 5.1 0.71 ± 5.1
Equilateral . . . . . �8.9 ± 44 �9.5 ± 44
Orthogonal . . . . . �35 ± 22 �25 ± 22

8. Other non-Gaussianity Shapes for fNL

This section will present limits on fNL for other shapes:

8.1. Isocurvature non-Gaussianity

We now show the results obtained for a study of the isocurvature
NG in the Planck 2014 Smica map using the binned bispectrum
estimator. As explained in Sec. 2.4, we only investigate isocurva-
ture NG of the local type, and in addition always consider only
one isocurvature mode (either cold dark matter, neutrino den-
sity, or neutrino velocity isocurvature) in addition to the adia-
batic mode. In that case there are 6 di↵erent fNL parameters: a
purely adiabatic one (a,aa, which correponds to the result from
Sec. 6), a purely isocurvature one (i,ii), and four mixed ones (see
Sec. 2.4 for an explanation of the notation).

The results are given in Table 10.7 Looking at these results
we see no clear signs of any isocurvature NG. There are a few
values that deviate from zero by up to about 2.5�, but such a
small deviation, in particular when it is not present in both T
and T+E, cannot be considered a detection. We do see that many
constraints are tightened considerably when including polariza-
tion, by up to the predicted factor of about six for the cold dark
matter a,ii, i,ai, and i,ii modes in the joint analysis.

8.2. Feature models

An interesting class of scale-dependent bispectra is given by lin-
ear oscillations of the shape given in Eq. (11) known as the fea-
ture model. In [Planck 2013 NG] we performed an initial search
for such models by means of the modal expansion. This search
was limited to kc > 0.01 by the native resolution of our im-
plementation of the modal estimator (using 600 modes). With
the improved resolution of the modal estimator (now using 2000
modes) we are able to achieve convergence over a broader range
up to kc = 0.02. We perform a frequency scan of 500 sampling

7 Compared to definitions in the literature based on ⇣ and S (see
e.g. Langlois & van Tent (2012)), here we adopt definitions based on
�adi = 3⇣/5 and �iso = S/5, in order to make the link with the stan-
dard adiabatic result more direct. Conversion factors to obtain results
based on ⇣ and S are 6/5, 2/5, 2/15, 18/5, 6/5, and 2/5, for the six modes
respectively.
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we see no clear signs of any isocurvature NG. There are a few
values that deviate from zero by up to about 2.5�, but such a
small deviation, in particular when it is not present in both T
and T+E, cannot be considered a detection. We do see that many
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fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 9.5 ± 5.6 1.8 ± 5.6
Equilateral . . . . . �10 ± 69 �9.2 ± 69
Orthogonal . . . . . �43 ± 33 �20 ± 33
SMICA (T+E)

Local . . . . . . . . . 6.5 ± 5.1 0.71 ± 5.1
Equilateral . . . . . �8.9 ± 44 �9.5 ± 44
Orthogonal . . . . . �35 ± 22 �25 ± 22

8. Other non-Gaussianity Shapes for fNL

This section will present limits on fNL for other shapes:

8.1. Isocurvature non-Gaussianity
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batic mode. In that case there are 6 di↵erent fNL parameters: a
purely adiabatic one (a,aa, which correponds to the result from
Sec. 6), a purely isocurvature one (i,ii), and four mixed ones (see
Sec. 2.4 for an explanation of the notation).

The results are given in Table 10.7 Looking at these results
we see no clear signs of any isocurvature NG. There are a few
values that deviate from zero by up to about 2.5�, but such a
small deviation, in particular when it is not present in both T
and T+E, cannot be considered a detection. We do see that many
constraints are tightened considerably when including polariza-
tion, by up to the predicted factor of about six for the cold dark
matter a,ii, i,ai, and i,ii modes in the joint analysis.

8.2. Feature models

An interesting class of scale-dependent bispectra is given by lin-
ear oscillations of the shape given in Eq. (11) known as the fea-
ture model. In [Planck 2013 NG] we performed an initial search
for such models by means of the modal expansion. This search
was limited to kc > 0.01 by the native resolution of our im-
plementation of the modal estimator (using 600 modes). With
the improved resolution of the modal estimator (now using 2000
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Conclusions

   We entered the B-mode era.


   Primordial gravity waves predictions extremely robust. Window on the highest 
energies and probe of early acceleration.


   Large non-Gaussianity would rule out all single-field slow-roll models. Probe 
of new early universe physics: multi-field models and self-interactions.


   Future experiments are very close to targets                      .fNL ⇠ O(1)





Backup slides



Lyth bound

• Generically, expected smooth 
potentials over small field excursions

• Observable gravity waves = super-Planckian 
field excursion
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2) Do I loose control of the EFT?

Need a symmetry to protect the potential. Ex:
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Fine-tuning is not an option.  A symmetry becomes compulsory.

Inflationary models with an observable level of gravitational waves have 
super-Planckian field excursions:

while the “generic” effective field theory “expectation” is
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Consider a scalar field minimally coupled to gravity

In a flat FRW background, we have:

Friedmann

Klein-Gordon

Continuity

slow-roll

Scalar Field Dynamics

Digression: The Lyth Bound

The tensor-to-scalar ratio is

The total field excursion therefore is

Digression: The Lyth Bound
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Measuring the consistency relation (with CMB)

Katayama and Komatsu
arXiv:1101.5210  
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Non-minimal kinetic term

S =

Z
d

4
x

p
�gP (�, X)

• The inflaton can have non-minimal kinetic term (ex. DBI):

X ⌘ gµ⌫@µ�@⌫�

• Speed of sound of fluctuations:

• Enhanced scalar fluctuations:

c2s =
P,X
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⌧ 1
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⇥ 1
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r = 16 ✏ cs ⌧ 16✏Smaller tensor-to-scalar ratio

• ⇒ Models where non-Gaussianity comes from cubic operators enhanced by          for 
small sound-speed are strongly constrained. (Current constraint from Planck:                 )

1/c2s

r = 0.2 ) cs ⇠
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Non-Gaussianity
• Scalar fluctuations around an expanding FRW universe are described by:
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II. “NEXT-TO-MINIMAL” MODELS OF INFLATION

The class of models with M̄i = 0 arise from theories with a non-canonical kinetic term P (X) for a scalar field �,

where P is a function and X ⌘ (@�)2. With M̄i = 0, eq. (3) simplifies to
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Z
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where we defined c2s ⌘ M2
PlḢ/(M2

PlḢ�2M4
2 ) and cp = 2M4

3 /(M
2
PlḢ�2M4

2 ), so that cp stays well defined in the limit

M2 ! 0. For reference, the parameter c3 ⌘ �M4
3 /M

4
2 is defined by cp = c3(1� c2s). The tensor-to-scalar ratio in this

model is

r = 16✏cs , (10)

and so r ⇠ 0.2 implies that

cs ⇠ 10�2

✏
. (11)

Since ns � 1 ⇠ ✏ and Planck measured ns � 1 ⇠ .96 [5], one concludes that cs cannot deviate substantially from 1.

The non-Gaussianity induced by the operator ⇡̇(@⇡)2 is proportional to (1� c�2
s ), and therefore cannot be very large.

However, the term 2
3cp⇡̇

3 can still give a sizable contribution to the non-Gaussianity if cp � 1.

Quantum loops in the e↵ective theory generate �M4
3 ⇠ M4

2 /c
2
s [12, 13]. Hence, absent fine-tuning, cs ⌧ 1 generates

cp ⇠ c�2
s � 1. One might expect the converse to hold as well: that cp � 1 generates small cs. However this is not

the case. Up to cubic order there is no diagram that generates ⇡̇(@⇡)2 from ⇡̇3. Therefore, cp � 1 with cs ⇠ 1 is

technically natural [14] [4].

In Fig. 1 we plot the possible values of fNL in the equilateral/orthogonal plane [15] in (9), with the Planck constraints

superimposed [5]. As is evident, r ⇠ 0.2 (and therefore a large speed of sound) puts a very sharp constraint on the

possible shape of non-Gaussianity in this class of models.
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FIG. 1. Constraints on fNL in the “next-to-minimal” model of inflation (9) for large r (11) for the equilateral/orthogonal

plane, assuming cs > 0.1 (narrow black strip) or cs > .05 (wider red strip), with the 1- and 2-� Planck constraints superimposed

(circular blue regions).

Dirac-Born-Infeld inflation: The case of DBI inflation [16] is cp = �3(c2s � 1)2/2c2s. The non-Gaussianity is

fDBI
NL = 105

324 (1� c�2
s ) >⇠ � 30 if cs ' 0.1, from the measurement of tensor modes.

• One can have               and cp � 1 c2s ' 1
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PlḢ�2M4

2 ), so that cp stays well defined in the limit

M2 ! 0. For reference, the parameter c3 ⌘ �M4
3 /M

4
2 is defined by cp = c3(1� c2s). The tensor-to-scalar ratio in this

model is

r = 16✏cs , (10)

and so r ⇠ 0.2 implies that

cs ⇠ 10�2

✏
. (11)

Since ns � 1 ⇠ ✏ and Planck measured ns � 1 ⇠ .96 [5], one concludes that cs cannot deviate substantially from 1.

The non-Gaussianity induced by the operator ⇡̇(@⇡)2 is proportional to (1� c�2
s ), and therefore cannot be very large.

However, the term 2
3cp⇡̇

3 can still give a sizable contribution to the non-Gaussianity if cp � 1.

Quantum loops in the e↵ective theory generate �M4
3 ⇠ M4

2 /c
2
s [12, 13]. Hence, absent fine-tuning, cs ⌧ 1 generates

cp ⇠ c�2
s � 1. One might expect the converse to hold as well: that cp � 1 generates small cs. However this is not

the case. Up to cubic order there is no diagram that generates ⇡̇(@⇡)2 from ⇡̇3. Therefore, cp � 1 with cs ⇠ 1 is

technically natural [14] [4].

In Fig. 1 we plot the possible values of fNL in the equilateral/orthogonal plane [15] in (9), with the Planck constraints

superimposed [5]. As is evident, r ⇠ 0.2 (and therefore a large speed of sound) puts a very sharp constraint on the

possible shape of non-Gaussianity in this class of models.

-200 -100 0 100 200
-150

-100

-50

0

50

100

fNL
eq

fNL
or

FIG. 1. Constraints on fNL in the “next-to-minimal” model of inflation (9) for large r (11) for the equilateral/orthogonal
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Dirac-Born-Infeld inflation: The case of DBI inflation [16] is cp = �3(c2s � 1)2/2c2s. The non-Gaussianity is

fDBI
NL = 105

324 (1� c�2
s ) >⇠ � 30 if cs ' 0.1, from the measurement of tensor modes.

Non-Gaussian constraints assuming cs > 0.1 
(narrow black) or cs > 0.05 (red+black) compared to 
Planck constraints on non-Gaussianity (1 and 2σ)

D’Amico and Kleban, ‘14



Consistency relation from space

Song and Knox ‘03
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FIG. 3: The error on nT +r/4.8 as a function of r. The cosmic
variance limit is the solid line in both panels. In the upper
panel, we fix ∆P = 3

√
2µK ·arcmin and vary the angular reso-

lution: θb = 1′ (long dash), θb = 3′ (dash) and θb = 5′ (dots).
In the lower panel, we fix the angular resolution at θb = 3′

and vary the weight per solid angle: ∆P =
√

2µK · arcmin
(dot-dashed), ∆P = 3

√
2µK · arcmin (long dash), ∆P =

9
√

2µK · arcmin (dash) and ∆P = 15
√

2µK · arcmin (dots).
The shaded area is excluded by observations of the tempera-
ture power spectrum [30].

rections with rl = 1. Only the broken consistency above
this maximal loop corrections will mean the failure of the
single slow-roll scalar field inflation at r > 0.1.

We now consider all the next order corrections in
Eq. 8. The term, 2(A4

T /A4
S) = (r/4.8) × (r/9.6), is al-

ways below the detectable limit with r < 0.71. Also
2(A2

T /A2
S)(1 − nS) = r/4.8(1 − nS) is well below the

detectability limit in case of nS ∼ 1. Even if nS is
much different from 1, we can control this term with
the knowledge of nS from CMB scalar power spectrum.
The future CMB experiment can determine the nS within
σ(nS) = 0.0024 [24]. Thus it is obvious that no other cor-
rection terms is larger than the maximal loop correction
terms, i.e. the solid straight line in Fig. 2 is the maxi-
mum theoretical bound which the correction terms in the
consistency equation can reach.

In the upper panel of Fig. 3 we show the variation
of the angular resolution with fixed ∆P . As the angular
resolution decreases, the ability to clean out the contam-
inating scalar B mode diminishes and the detectability
limit increases. We see that at r > 0.1 cleaning can make
up to a ∼50% decrease in the detectability limit. This is
due to the improved measurement in the l = 20 to 200
range. At r ≃ 0.01 high angular resolution is less impor-

tant, since the dominant source of information is now at
l < 20 which is unaffected by the scalar contamination.

In the lower panel of Fig. 3 we show the variation of
∆P with fixed angular resolution. As ∆P increases, the
noise power becomes larger than the cleaned, and then
even the uncleaned, scalar B mode power. This increased
noise reduces the maximum observable tensor l and adds
significant noise all across the tensor B mode spectrum
rise from l ≃ 20 to l = 100. Thus there is a strong
sensitivity to increases in the noise above our fiducial
value.

The cosmological parameter with the most impact on
the tensor spectrum is τ . Although τ can make a big dif-
ference for the detectability limit of r [23, 24], it has little
impact on the detectability limits for nT + r/4.8. The r
limit is improved by increased τ since the ‘reionization
bump’ at l < 20 has Cl ∝ τ2. In contrast, for accept-
able values of τ , and r >∼ 0.01, the error in nT + r/4.8
is dominated by uncertainties in the tensor power spec-
trum at l > 20. Here the only effect of reionization is a
suppression of power by exp(−2τ).

Our analysis has ignored polarized emission from
galactic and extragalactic sources. Multi–frequency ob-
servations can be used to clean out these signals based
on their distinct spectral shapes. However, residual con-
tamination is unavoidable and will also limit the abil-
ity of observations to study the consistency equation.
As we learn more about polarized foreground emission,
these will likely have a big impact on observing strategies
and forecasted nT +r/4.8 detectability limits below some
value of r. Our forecasts should therefore be viewed as
lower limits.

We now turn our attention to the signature of the short
distance physics; i.e., how well can we detect a non-zero
value of rl ≡ χH2/M2? Fig. 4 shows the narrow window
for the detectability of rl which can be seen at r > 0.1.
As Kaloper et. al. pointed out, we cannot see the new
physics at rl < 0.1, but some M theories with proper
compactification give rl > 0.1 [7].

The window for probing the new physics is very nar-
row at r > 0.1 and rl > 0.1. But it is a clean window
from any next order correction in the slow roll parame-
ters, since the next order corrections in Eq. 8 is beneath
the detectability limit at this window. We conclude it is
possible to probe physics at distances near 1/M as long
as r > 0.1 and M is very close to H .

The dotted line in Fig. 4 is the forecasted constraint
from the uncleaned B mode with the same experiment
(∆P = 3

√
2µK · arcmin & θb = 3′). We get the solid

line by cleaning the scalar B mode with the estimated
lensing potential. If the reduced Planck mass is truly
such a small amount, i.e. rl > 0.1, then even a small
amount of improvement in σ(rl) will be valuable. As
we see in Fig. 4, the lensing potential reconstruction
improves the detectability of rl by about 50%. If we
can detect the tensor power spectrum at r > 0.1, the
uncleaned B mode can probe the tensor power spectrum
well. But we will want the cleaned B mode to probe to
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FIG. 3: The error on nT +r/4.8 as a function of r. The cosmic
variance limit is the solid line in both panels. In the upper
panel, we fix ∆P = 3

√
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In the lower panel, we fix the angular resolution at θb = 3′
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2µK · arcmin
(dot-dashed), ∆P = 3

√
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even the uncleaned, scalar B mode power. This increased
noise reduces the maximum observable tensor l and adds
significant noise all across the tensor B mode spectrum
rise from l ≃ 20 to l = 100. Thus there is a strong
sensitivity to increases in the noise above our fiducial
value.

The cosmological parameter with the most impact on
the tensor spectrum is τ . Although τ can make a big dif-
ference for the detectability limit of r [23, 24], it has little
impact on the detectability limits for nT + r/4.8. The r
limit is improved by increased τ since the ‘reionization
bump’ at l < 20 has Cl ∝ τ2. In contrast, for accept-
able values of τ , and r >∼ 0.01, the error in nT + r/4.8
is dominated by uncertainties in the tensor power spec-
trum at l > 20. Here the only effect of reionization is a
suppression of power by exp(−2τ).

Our analysis has ignored polarized emission from
galactic and extragalactic sources. Multi–frequency ob-
servations can be used to clean out these signals based
on their distinct spectral shapes. However, residual con-
tamination is unavoidable and will also limit the abil-
ity of observations to study the consistency equation.
As we learn more about polarized foreground emission,
these will likely have a big impact on observing strategies
and forecasted nT +r/4.8 detectability limits below some
value of r. Our forecasts should therefore be viewed as
lower limits.

We now turn our attention to the signature of the short
distance physics; i.e., how well can we detect a non-zero
value of rl ≡ χH2/M2? Fig. 4 shows the narrow window
for the detectability of rl which can be seen at r > 0.1.
As Kaloper et. al. pointed out, we cannot see the new
physics at rl < 0.1, but some M theories with proper
compactification give rl > 0.1 [7].

The window for probing the new physics is very nar-
row at r > 0.1 and rl > 0.1. But it is a clean window
from any next order correction in the slow roll parame-
ters, since the next order corrections in Eq. 8 is beneath
the detectability limit at this window. We conclude it is
possible to probe physics at distances near 1/M as long
as r > 0.1 and M is very close to H .

The dotted line in Fig. 4 is the forecasted constraint
from the uncleaned B mode with the same experiment
(∆P = 3
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line by cleaning the scalar B mode with the estimated
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such a small amount, i.e. rl > 0.1, then even a small
amount of improvement in σ(rl) will be valuable. As
we see in Fig. 4, the lensing potential reconstruction
improves the detectability of rl by about 50%. If we
can detect the tensor power spectrum at r > 0.1, the
uncleaned B mode can probe the tensor power spectrum
well. But we will want the cleaned B mode to probe to
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•  Testing the consistency relation requires σ(nT) ~ 0.01
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�(r) �(nt)

fsky 0.25 0.50 0.75 0.25 0.50 0.75

rfid = 0.2

104Ndet 0.030 0.026 0.025 0.09 0.08 0.07

105Ndet 0.021 0.016 0.014 0.07 0.05 0.04

106Ndet 0.020 0.015 0.012 0.06 0.05 0.04

rfid = 0.1

104Ndet 0.022 0.020 0.019 0.13 0.11 0.11

105Ndet 0.016 0.012 0.010 0.10 0.07 0.06

106Ndet 0.015 0.011 0.009 0.09 0.07 0.05

rfid = 0.05

104Ndet 0.016 0.015 0.014 0.18 0.16 0.16

105Ndet 0.012 0.009 0.007 0.14 0.10 0.08

106Ndet 0.011 0.008 0.007 0.13 0.09 0.08

rfid = 0.02

104Ndet 0.012 0.011 0.011 0.31 0.29 0.28

105Ndet 0.008 0.006 0.005 0.22 0.16 0.14

106Ndet 0.008 0.005 0.004 0.21 0.15 0.12

Table IX: 1-� constraints for r and nt for various detector
count and sky fraction at 40 beam size.

creasing beam size improves �(Ne↵) by ⇠10% per
arc-minute; �(Ne↵) is not sample variance limited.

• 15  �(M⌫)  24 [meV] (CMB+BAO):
increasing Ndet from 104 to 105 improves �(M⌫)
by 10-20% (smaller beam gives better improvement
with Ndet), while increasing Ndet from 105 to 106

improves �(M⌫) by 5-15%; decreasing beam size
improves �(M⌫) at percent-levels per arc-minute;
�(M⌫) is sample variance limited.

• 164  DETF-FoM  303 (CMB+BAO+H0):
increasing Ndet from 104 to 105 improves FoM by
more than factor of 2, same for going from 105 to
106; decreasing beam size improves the FoM by a
few % to 10s of % depending on configuration; FoM
is not sample variance limited.

• 0.00588  �(pann)  0.0110 [3⇥10�26 cm3/s/GeV]
(CMB):
increasing Ndet from 104 to 105 improves �(pann)
by about 4%, same for going from 105 to 106;
decreasing beam size improves �(pann) by . 1%;
�(pann) is sample variance limited.

• 0.00074  �(⌦K)  0.0014 (CMB+BAO+H0):
increasing Ndet from 104 to 105 improves �(⌦K) by
about 20%, while increasing Ndet from 105 to 106

improves �(⌦K) by 10-20% (smaller beam gives a
better improvement with Ndet); decreasing beam
size improves �(⌦K) at percent levels per arc-
minute; �(⌦K) is sample variance limited.

• 0.00110  �(ns)  0.00236 (CMB+BAO):
increasing Ndet from 104 to 105 improves �(ns) by
⇠ 5 � 10% (smaller beam gives a better improve-
ment with Ndet), same for going from 105 to 106;
decreasing beam size improves �(ns) at percent lev-
els per arc-minute; �(ns) is sample variance lim-
ited.

• 0.00145  �(↵s)  0.00330 (CMB+BAO):
increasing Ndet from 104 to 105 improves �(↵s)
by 16-20%, and by 13-17% going from 105 to 106

(smaller beam gives a better improvement with
Ndet); decreasing beam size improves �(↵s) at per-
cent levels per arc-minute; �(↵s) is sample variance
limited.

• 0.00009  �(r)  0.00203 for 1% and 10% fore-
ground residual:
�(r) is foreground limited; when foreground is high,
the optimal fsky shifts higher; decreasing beam size
improves �(r) at percent levels per arc-minute (the
slope of this trend with beam increases with lower
sky coverage).

Detailed constraints in specific cases can be read o↵
from tables listed in each section.

Besides learning the approximate ranges of how well
these parameters can be constrained with CMB-S4, we
also learn how the constraints improve as functions of
Ndet, beam size, and fsky:

• For all parameters, except r, increasing fsky always
improve the constraints even though the overall
sensitivity of the experiment decreases.

• For all parameters, except those related to dark-
energy equation of state, going from 105 to 106 de-
tectors yields the same or less percentage improve-
ment on the constraints than going from 104 to
105 detectors. The improvements range from a few
to tens of percent. For M⌫ , the improvement be-
yond 105 detectors is marginal when BAO signal is
added.

• Dependence on beam size is quite mild – constraints
on Ne↵ improves by about 10% per arc-minute de-
crease while for all other parameters it is around a
few % improvement per arc-minute decrease.

We envision CMB-S4 to be a powerful next-generation
ground-based CMB polarization experiment with high-
resolution and high-sensitivity. With CMB-S4, we
showed that most constraints on cosmological parameters
are sample variance limited. Combining these data sets
with space-borne observations will allow access to larger
sky fraction, thus further improving the constraints on
sample variance limited parameters.



Resolving BICEP2 vs Planck tension
• If tension with Planck is real, how to interpret it?

‣ Magnetic fields

‣ Tensor-scalar correlation 

‣ Suppression of scalar power at large scales (features in the potential, etc.)

‣ Anticorrelated isocurvature perturbations

‣ Inflaton + curvaton with running

‣ Foreground

‣ Running

‣ Your model

‣ Strong blue tensor tilt

‣ Extra sterile neutrinos
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Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.

1.00

Planck+WP

Planck+WP+highL

Planck+WP+BAO

Natural Inflation

Power law inflation

Low Scale SSB SUSY

R2 Inflation

V � �2/3

V � �

V � �2

V � �3

N�=50

N�=60

Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N⇤ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = ⇤4 exp
 

�� �
Mpl

!

(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) / t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = ⇤4
 

�

Mpl

!��
(36)

lead to inflation with a(t) / exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ⇡ �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) ⇡ ⇤4
 

1 � �
p

µp + ...

!

, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 ⇡ �4M2

pl/µ
2 + 3r/8 and

r ⇡ 32�2⇤M2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 ⇡ �(2/N)(p � 1)/(p � 2)
when r ⇠ 0. The hill-top potential with p = 3 lies outside the
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joint 95% CL region for Planck+WP+BAO data; the case with
p = 4 is also in tension with Planck+WP+BAO, but allowed
within the joint 95% CL region for N⇤ & 50. For larger values of
r these models provide a better fit to the Planck+WP+BAO data.

A simple symmetry breaking potential

The symmetry-breaking potential (Olive, 1990)

V(�) = ⇤4
 

1 � �
2

µ2

!2

, (38)

can be considered as a self-consistent completion of the hill-top
model with p = 2 (although it has a different limiting large-
field branch for non-zero r). This potential leads to predictions
in agreement with Planck + WP + BAO joint 95% CL contours
for super-Planckian value of µ, i.e. µ & 13 Mpl.

Natural inflation

Another interesting class of potentials is natural inflation
(Freese et al., 1990; Adams et al., 1993), initially motivated by
its origin in symmetry-breaking in an attempt to naturally give
rise to the extremely flat potentials required for inflationary cos-
mology. In natural inflation the effective one-dimensional po-
tential takes the form

V(�) = ⇤4
"

1 + cos
 

�

f

!#

, (39)

where f is a scale which determines the slope of the potential.
Depending on the value of f , the model falls into the large field
( f & 1.5 Mpl) or small field ( f . 1.5 Mpl) classification scheme.
Therefore, ns ⇡ 1 � M2

pl/ f 2 holds for small f and ns ⇡ 1 � 2/N,
r ⇡ 8/N holds for large f , approximating the m2�2 potential in
the latter case (with N⇤ ⇡ (2 f 2/M2

pl) ln[sin(�e/ f )/ sin(�⇤/ f )]).
This model agrees with Planck+WP data for f & 5 Mpl.

Hybrid inflation

In hybrid inflationary models a second field, �, coupled to the
inflaton, undergoes symmetry breaking. The simplest example
of this class is

V(�, �) = ⇤4
 

1 � �
2

µ2

!2

+ U(�) +
g2

2
�2�2 . (40)

For most of their parameter space, these models can be consid-
ered effectively as single field models for the inflaton �. The
second field � is close to the origin during the slow-roll regime
for �, and inflation ends either by breakdown of slow roll for
the inflaton at ✏� ⇡ M2

pl(dU/d�)2/(⇤4 + U(�))2 ⇡ 1 or by the
waterfall transition of �. The simplest models with

U(�) =
m2

2
�2 (41)

are disfavoured for most of the parameter space (Cortês &
Liddle, 2009). Models with m2�2/2 ⇠ ⇤4 are disfavoured due to
a high tensor-to-scalar ratio, and models with U(�) ⌧ ⇤4 predict
a spectral index ns > 1, also disfavoured by the Planck data.

We discuss hybrid inflationary models predicting ns < 1 sep-
arately. As an example, the spontaneously broken SUSY model
(Dvali et al., 1994)

U(�) = ↵h⇤
4 ln

 

�

µ

!

, (42)

predicts ns � 1 ⇡ �(1 + 3↵h/2)/N⇤ and r ⇡ 8↵h/N⇤. For ↵h ⌧ 1
and N⇤ ' 50, ns ' 0.98 is disfavoured by Planck+WP+BAO
data at more than 95% CL. However, more permissive reheating
priors allowing N⇤ < 50 or a non-negligible ↵h give models that
are consistent with the Planck data.

R2 inflation

Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analysed either in the
original (Jordan) frame or in the conformally-related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type
and based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
Z

d4x
p�g

M2
pl

2

 

R +
R2

6M2

!

, (43)

with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981); Starobinsky (1983) and can be summarized
as: ns�1 ⇡ �8(4N⇤+9)/(4N⇤+3) and r ⇡ 192/(4N⇤+3)2. Since r
is suppressed by another 1/N⇤ with respect to the scalar tilt, this
model predicts a tiny amount of gravitational waves. This model
predicts ns = 0.963 for N⇤ = 55 and is fully consistent with the
Planck constraints.

Non-minimally coupled inflaton

A non-minimal coupling of the inflaton to gravity with the action

S =
Z

d4x
p�g

2
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6
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M2
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2

2
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2
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0

⌘2
3

7

7

7

7

7

5

,

(44)
leads to several interesting consequences such as a lowering of
the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (�0 = 0)
agrees with the Planck+WP data for ⇠ , 0. Within the range
50 < N⇤ < 60, this model is within the Planck+WP joint
95% CL region for ⇠ > 0.0019, improving previous bounds
(Okada et al., 2010).

The amplitude of scalar perturbations is proportional to �/⇠2
for ⇠ � 1, and therefore the problem of tiny values for the in-
flaton self-coupling � can be alleviated (Salopek et al., 1989;
Fakir & Unruh, 1990). The regime �0 ⌧ Mpl is allowed and �
could be the Standard Model Higgs as proposed in Bezrukov &
Shaposhnikov (2009). The Higgs case with ⇠ � 1 has the same
predictions as the R2 model in terms of ns and r as a function
of N⇤. The reheating mechanism in the Higgs case can be more
efficient than in R2 case and therefore predicts a slightly larger
ns. This model is fully consistent with Planck constraints.

The case with ⇠ < 0 and |⇠|�2
0/M

2
pl ⇠ 1 was also recently

emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with inflaton � > �0 is
disfavoured by Planck data, whereas the small field case � < �0
is in agreement with the data.
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joint 95% CL region for Planck+WP+BAO data; the case with
p = 4 is also in tension with Planck+WP+BAO, but allowed
within the joint 95% CL region for N⇤ & 50. For larger values of
r these models provide a better fit to the Planck+WP+BAO data.

A simple symmetry breaking potential

The symmetry-breaking potential (Olive, 1990)

V(�) = ⇤4
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can be considered as a self-consistent completion of the hill-top
model with p = 2 (although it has a different limiting large-
field branch for non-zero r). This potential leads to predictions
in agreement with Planck + WP + BAO joint 95% CL contours
for super-Planckian value of µ, i.e. µ & 13 Mpl.

Natural inflation

Another interesting class of potentials is natural inflation
(Freese et al., 1990; Adams et al., 1993), initially motivated by
its origin in symmetry-breaking in an attempt to naturally give
rise to the extremely flat potentials required for inflationary cos-
mology. In natural inflation the effective one-dimensional po-
tential takes the form

V(�) = ⇤4
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1 + cos
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where f is a scale which determines the slope of the potential.
Depending on the value of f , the model falls into the large field
( f & 1.5 Mpl) or small field ( f . 1.5 Mpl) classification scheme.
Therefore, ns ⇡ 1 � M2

pl/ f 2 holds for small f and ns ⇡ 1 � 2/N,
r ⇡ 8/N holds for large f , approximating the m2�2 potential in
the latter case (with N⇤ ⇡ (2 f 2/M2

pl) ln[sin(�e/ f )/ sin(�⇤/ f )]).
This model agrees with Planck+WP data for f & 5 Mpl.

Hybrid inflation

In hybrid inflationary models a second field, �, coupled to the
inflaton, undergoes symmetry breaking. The simplest example
of this class is

V(�, �) = ⇤4
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For most of their parameter space, these models can be consid-
ered effectively as single field models for the inflaton �. The
second field � is close to the origin during the slow-roll regime
for �, and inflation ends either by breakdown of slow roll for
the inflaton at ✏� ⇡ M2

pl(dU/d�)2/(⇤4 + U(�))2 ⇡ 1 or by the
waterfall transition of �. The simplest models with

U(�) =
m2
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�2 (41)

are disfavoured for most of the parameter space (Cortês &
Liddle, 2009). Models with m2�2/2 ⇠ ⇤4 are disfavoured due to
a high tensor-to-scalar ratio, and models with U(�) ⌧ ⇤4 predict
a spectral index ns > 1, also disfavoured by the Planck data.

We discuss hybrid inflationary models predicting ns < 1 sep-
arately. As an example, the spontaneously broken SUSY model
(Dvali et al., 1994)

U(�) = ↵h⇤
4 ln
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predicts ns � 1 ⇡ �(1 + 3↵h/2)/N⇤ and r ⇡ 8↵h/N⇤. For ↵h ⌧ 1
and N⇤ ' 50, ns ' 0.98 is disfavoured by Planck+WP+BAO
data at more than 95% CL. However, more permissive reheating
priors allowing N⇤ < 50 or a non-negligible ↵h give models that
are consistent with the Planck data.

R2 inflation

Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analysed either in the
original (Jordan) frame or in the conformally-related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type
and based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
Z
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with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981); Starobinsky (1983) and can be summarized
as: ns�1 ⇡ �8(4N⇤+9)/(4N⇤+3) and r ⇡ 192/(4N⇤+3)2. Since r
is suppressed by another 1/N⇤ with respect to the scalar tilt, this
model predicts a tiny amount of gravitational waves. This model
predicts ns = 0.963 for N⇤ = 55 and is fully consistent with the
Planck constraints.

Non-minimally coupled inflaton

A non-minimal coupling of the inflaton to gravity with the action

S =
Z
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(44)
leads to several interesting consequences such as a lowering of
the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (�0 = 0)
agrees with the Planck+WP data for ⇠ , 0. Within the range
50 < N⇤ < 60, this model is within the Planck+WP joint
95% CL region for ⇠ > 0.0019, improving previous bounds
(Okada et al., 2010).

The amplitude of scalar perturbations is proportional to �/⇠2
for ⇠ � 1, and therefore the problem of tiny values for the in-
flaton self-coupling � can be alleviated (Salopek et al., 1989;
Fakir & Unruh, 1990). The regime �0 ⌧ Mpl is allowed and �
could be the Standard Model Higgs as proposed in Bezrukov &
Shaposhnikov (2009). The Higgs case with ⇠ � 1 has the same
predictions as the R2 model in terms of ns and r as a function
of N⇤. The reheating mechanism in the Higgs case can be more
efficient than in R2 case and therefore predicts a slightly larger
ns. This model is fully consistent with Planck constraints.

The case with ⇠ < 0 and |⇠|�2
0/M

2
pl ⇠ 1 was also recently

emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with inflaton � > �0 is
disfavoured by Planck data, whereas the small field case � < �0
is in agreement with the data.
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Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.

Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N⇤ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = ⇤4 exp
 

�� �
Mpl

!

(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) / t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = ⇤4
 

�

Mpl

!��
(36)

lead to inflation with a(t) / exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ⇡ �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) ⇡ ⇤4
 

1 � �
p

µp + ...

!

, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 ⇡ �4M2

pl/µ
2 + 3r/8 and

r ⇡ 32�2⇤M2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 ⇡ �(2/N)(p � 1)/(p � 2)
when r ⇠ 0. The hill-top potential with p = 3 lies outside the
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joint 95% CL region for Planck+WP+BAO data; the case with
p = 4 is also in tension with Planck+WP+BAO, but allowed
within the joint 95% CL region for N⇤ & 50. For larger values of
r these models provide a better fit to the Planck+WP+BAO data.

A simple symmetry breaking potential

The symmetry-breaking potential (Olive, 1990)

V(�) = ⇤4
 

1 � �
2

µ2

!2

, (38)

can be considered as a self-consistent completion of the hill-top
model with p = 2 (although it has a different limiting large-
field branch for non-zero r). This potential leads to predictions
in agreement with Planck + WP + BAO joint 95% CL contours
for super-Planckian value of µ, i.e. µ & 13 Mpl.

Natural inflation

Another interesting class of potentials is natural inflation
(Freese et al., 1990; Adams et al., 1993), initially motivated by
its origin in symmetry-breaking in an attempt to naturally give
rise to the extremely flat potentials required for inflationary cos-
mology. In natural inflation the effective one-dimensional po-
tential takes the form

V(�) = ⇤4
"

1 + cos
 

�

f

!#

, (39)

where f is a scale which determines the slope of the potential.
Depending on the value of f , the model falls into the large field
( f & 1.5 Mpl) or small field ( f . 1.5 Mpl) classification scheme.
Therefore, ns ⇡ 1 � M2

pl/ f 2 holds for small f and ns ⇡ 1 � 2/N,
r ⇡ 8/N holds for large f , approximating the m2�2 potential in
the latter case (with N⇤ ⇡ (2 f 2/M2

pl) ln[sin(�e/ f )/ sin(�⇤/ f )]).
This model agrees with Planck+WP data for f & 5 Mpl.

Hybrid inflation

In hybrid inflationary models a second field, �, coupled to the
inflaton, undergoes symmetry breaking. The simplest example
of this class is

V(�, �) = ⇤4
 

1 � �
2

µ2

!2

+ U(�) +
g2

2
�2�2 . (40)

For most of their parameter space, these models can be consid-
ered effectively as single field models for the inflaton �. The
second field � is close to the origin during the slow-roll regime
for �, and inflation ends either by breakdown of slow roll for
the inflaton at ✏� ⇡ M2

pl(dU/d�)2/(⇤4 + U(�))2 ⇡ 1 or by the
waterfall transition of �. The simplest models with

U(�) =
m2

2
�2 (41)

are disfavoured for most of the parameter space (Cortês &
Liddle, 2009). Models with m2�2/2 ⇠ ⇤4 are disfavoured due to
a high tensor-to-scalar ratio, and models with U(�) ⌧ ⇤4 predict
a spectral index ns > 1, also disfavoured by the Planck data.

We discuss hybrid inflationary models predicting ns < 1 sep-
arately. As an example, the spontaneously broken SUSY model
(Dvali et al., 1994)

U(�) = ↵h⇤
4 ln

 

�

µ

!

, (42)

predicts ns � 1 ⇡ �(1 + 3↵h/2)/N⇤ and r ⇡ 8↵h/N⇤. For ↵h ⌧ 1
and N⇤ ' 50, ns ' 0.98 is disfavoured by Planck+WP+BAO
data at more than 95% CL. However, more permissive reheating
priors allowing N⇤ < 50 or a non-negligible ↵h give models that
are consistent with the Planck data.

R2 inflation

Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analysed either in the
original (Jordan) frame or in the conformally-related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type
and based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
Z

d4x
p�g

M2
pl

2

 

R +
R2

6M2

!

, (43)

with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981); Starobinsky (1983) and can be summarized
as: ns�1 ⇡ �8(4N⇤+9)/(4N⇤+3) and r ⇡ 192/(4N⇤+3)2. Since r
is suppressed by another 1/N⇤ with respect to the scalar tilt, this
model predicts a tiny amount of gravitational waves. This model
predicts ns = 0.963 for N⇤ = 55 and is fully consistent with the
Planck constraints.

Non-minimally coupled inflaton

A non-minimal coupling of the inflaton to gravity with the action

S =
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(44)
leads to several interesting consequences such as a lowering of
the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (�0 = 0)
agrees with the Planck+WP data for ⇠ , 0. Within the range
50 < N⇤ < 60, this model is within the Planck+WP joint
95% CL region for ⇠ > 0.0019, improving previous bounds
(Okada et al., 2010).

The amplitude of scalar perturbations is proportional to �/⇠2
for ⇠ � 1, and therefore the problem of tiny values for the in-
flaton self-coupling � can be alleviated (Salopek et al., 1989;
Fakir & Unruh, 1990). The regime �0 ⌧ Mpl is allowed and �
could be the Standard Model Higgs as proposed in Bezrukov &
Shaposhnikov (2009). The Higgs case with ⇠ � 1 has the same
predictions as the R2 model in terms of ns and r as a function
of N⇤. The reheating mechanism in the Higgs case can be more
efficient than in R2 case and therefore predicts a slightly larger
ns. This model is fully consistent with Planck constraints.

The case with ⇠ < 0 and |⇠|�2
0/M

2
pl ⇠ 1 was also recently

emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with inflaton � > �0 is
disfavoured by Planck data, whereas the small field case � < �0
is in agreement with the data.
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HZ HZ + YP HZ + Ne↵ ⇤CDM
105⌦bh2 2296 ± 24 2296 ± 23 2285 ± 23 2205 ± 28
104⌦ch2 1088 ± 13 1158 ± 20 1298 ± 43 1199 ± 27
100 ✓MC 1.04292 ± 0.00054 1.04439 ± 0.00063 1.04052 ± 0.00067 1.04131 ± 0.00063
⌧ 0.125+0.016

�0.014 0.109+0.013
�0.014 0.105+0.014

�0.013 0.089+0.012
�0.014

ln
⇣

1010As

⌘

3.133+0.032
�0.028 3.137+0.027

�0.028 3.143+0.027
�0.026 3.089+0.024

�0.027
ns — — — 0.9603 ± 0.0073
Ne↵ — — 3.98 ± 0.19 —
YP — 0.3194 ± 0.013 — —
�2� ln(Lmax) 27.9 2.2 2.8 0

Table 3. Constraints on cosmological parameters and best-fit �2� ln(L) with respect to the standard ⇤CDM model, using
Planck+WP data, testing the significance of the deviation from the HZ model.

Sampling the power spectrum parameters As, ns, and r is
not the only method for constraining slow roll inflation. Another
possibility is to sample the HFF in the analytic expressions for
the scalar and tensor power spectra (Stewart & Lyth, 1993; Gong
& Stewart, 2001; Leach et al., 2002). In the Appendix, we per-
form a comparison of slow-roll inflationary predictions by sam-
pling the HFF with Planck data, and show that the results ob-
tained in this way agree with those derived by sampling the
power spectrum parameters. This confirms similar studies with
previous data (Hamann et al., 2008c; Finelli et al., 2010).

The spectral index estimated from Planck+WP data is

ns = 0.9603 ± 0.0073. (32)

This tight bound on ns is crucial for constraining inflation. The
Planck constraint on r depends slightly on the pivot scale; we
adopt k⇤ = 0.002 Mpc�1 to quote our result, with r0.002 < 0.12
at 95% CL. This bound improves on the most recent results,
including the WMAP 9-year constraint of r < 0.38 (Hinshaw
et al., 2012a), the WMAP7 + ACT limit of r < 0.28 (Sievers
et al., 2013), and the WMAP7 + SPT limit of r < 0.18 (Story
et al., 2012). The new bound from Planck is consistent with
the limit from temperature anisotropies alone (Knox & Turner,
1994). When a possible tensor component is included, the spec-
tral index from Planck+WP is not significantly changed, with
ns = 0.9624 ± 0.0075.

The Planck constraint on r corresponds to an upper bound
on the energy scale of inflation

V⇤ =
3⇡2As

2
r M4

pl = (1.94 ⇥ 1016 GeV)4 r⇤
0.12

, (33)

at 95% CL. This is equivalent to an upper bound on the Hubble
parameter during inflation of H⇤/Mpl < 3.7 ⇥ 10�5. In terms of
slow-roll parameters, Planck+WP constraints imply ✏V < 0.008
at 95% CL, and ⌘V = �0.010+0.005

�0.011.
The Planck results on ns and r are robust to the addition

of external data sets (see Table 4). When the high-` CMB
ACT+SPT data are added, we obtain ns = 0.9600 ± 0.0072 and
r0.002 < 0.11 at 95% CL. Including the Planck lensing likeli-
hood gives ns = 0.9653 ± 0.0069 and r0.002 < 0.13, and adding
BAO data gives ns = 0.9643 ± 0.0059 and r0.002 < 0.12. These
bounds are robust to the small changes in the polarization likeli-
hood at low multipoles. To test this robustness, instead of using
the WMAP polarization likelihood, we impose a Gaussian prior
⌧ = 0.07 ± 0.013 to take into account small shifts due to un-
certainties in residual foreground contamination or instrument
systematics in the evaluation of ⌧, as performed in Appendix B
of Planck Collaboration XVI (2013). We find at most a reduction
of 8% for the upper bound on r.

It is useful to plot the inflationary potentials in the ns–r plane
using the first two slow-roll parameters evaluated at the pivot
scale k⇤ = 0.002 Mpc�1 (Dodelson et al., 1997). Given our ig-
norance of the details of the epoch of entropy generation, we
assume that the number of e-folds N⇤ to the end of inflation lies
in the interval [50, 60]. This uncertainty is plotted for those po-
tentials predicting an exit from inflation without changing the
potential.

Fig. 1 shows the Planck constraints in the ns � r plane and
indicates the predictions of a number of representative inflation-
ary potentials. The sensitivity of Planck data to high multipoles
removes the degeneracy between ns and r found using WMAP
data. Planck data favour models with a concave potential. As
shown in Fig. 1, most of the joint 95% allowed region lies be-
low the convex potential limit, and concave models with a red
tilt in the range [0.945-0.98] are allowed by Planck at 95% CL.
In the following we consider the status of several illustrative and
commonly discussed inflationary potentials in light of the Planck
observations.

Power law potential and chaotic inflation

The simplest class of inflationary models is characterized by a
single monomial potential of the form

V(�) = �M4
pl

 

�

Mpl

!n

. (34)

This class of potentials includes the simplest chaotic models, in
which inflation starts from large values for the inflaton, � > Mpl.
Inflation ends by violation of the slow-roll regime, and we as-
sume this occurs at ✏V = 1. According to Eqs. 5, 6, and 15,
this class of potentials predicts to lowest order in slow-roll pa-
rameters ns � 1 ⇡ �n(n + 2)M2

pl/�
2⇤, r ⇡ 8n2M2

pl/�
2⇤, �2⇤ ⇡

nM2
pl(4N⇤ + n)/2. The ��4 model lies well outside of the joint

99.7% CL region in the ns � r plane. This result confirms pre-
vious findings from e.g., Hinshaw et al. (2012a) in which this
model is well outside the 95% CL for the WMAP 9-year data
and is further excluded by CMB data at smaller scales.

The model with a quadratic potential, n = 2 (Linde, 1983),
often considered the simplest example for inflation, now lies
outside the joint 95% CL for the Planck+WP+high-` data for
N⇤ . 60 e-folds, as shown in Fig. 1.

A linear potential with n = 1 (McAllister et al., 2010), mo-
tivated by axion monodromy, has ⌘V = 0 and lies within the
95% CL region. Inflation with n = 2/3 (Silverstein & Westphal,
2008), however, also motivated by axion monodromy, now lies
on the boundary of the joint 95% CL region. More permissive

Models
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FIG. 1.— BICEP2 T , Q, U maps. The left column shows the basic signal maps with 0.25� pixelization as output by the reduction pipeline. The right column
shows difference (jackknife) maps made with the first and second halves of the data set. No additional filtering other than that imposed by the instrument beam
(FWHM 0.5�) has been done. Note that the structure seen in the Q&U signal maps is as expected for an E-mode dominated sky.

where the C`’s are ⇤CDM spectra from CAMB22 with cos-
mological parameters taken from Planck Collaboration XVI
(2013), and the n`m are normally distributed complex random
numbers. For CT T

` we use a lensed-⇤CDM spectrum since the
aT
`m from Planck NILC inherently contain lensing. We have

found the noise level in the Planck NILC maps for our region
of observation and multipole range to be low enough that it
can be ignored.

Using the aE
`m we generate Nside=2048 maps using

synfast. We substitute in the aT
`m from Planck 143 GHz

so that the T map more closely resembles the T sky we ex-
pect to see with BICEP2. (This is also the map that is used
in §4.6 to construct deprojection templates.) Additionally, we
add in noise to the T map at the level predicted by the noise
covariance in the Planck 143 GHz map, which allows us to
simulate any deprojection residual due to noise in the Planck
143 GHz map.

5.1.2. Lensing of input maps

Lensing is added to the unlensed-⇤CDM maps using the
LensPix23 software (Lewis 2011). We use this software to
generate lensed versions of the constrained CMB input a`m’s
described in §5.1.1. Input to the lensing operation are deflec-
tion angle spectra that are generated with CAMB as part of the

22http://camb.info/
23http://cosmologist.info/lenspix/

standard computation of ⇤CDM spectra. The lensing oper-
ation is performed before the beam smoothing is applied to
form the final map products. We do not apply lensing to the
143 GHz temperature aT

`m from Planck since these inherently
contain lensing. Our simulations hence approximate lensed
CMB maps ignoring the lensing correlation between T and
E.

5.2. Noise Pseudo Simulations
The previous BICEP1 and QUAD pipelines used a Fourier

based procedure to make simulated noise timestreams, main-
taining correlations between all channels (Pryke et al. 2009).
For the increased channel count in BICEP2 this is computa-
tionally very expensive, so we have switched to an alternate
procedure adapted from van Engelen et al. (2012). We per-
form additional coadds of the real pairmaps randomly flip-
ping the sign of each scanset. The sign-flip sequences are
constructed such that the total weight of positively and neg-
atively weighted maps is equal. We have checked this tech-
nique against the older technique, and against another tech-
nique which constructs map noise covariance matrices, and
have found them all to be equivalent to the relevant level of
accuracy. By default we use the sign flipping technique and
refer to these realizations as “noise pseudo simulations.”

We add the noise maps to the lensed-⇤CDM realizations to
form signal plus noise simulations — hereafter referred to as
lensed-⇤CDM+noise.



0 0.1 0.2 0.3 0.4 0.5 0.6
Tensor−to−scalar ratio

Li
ke

lih
oo

d

Constraints on r=T/S
Tensor/scalar ratio r



Effect of foregrounds on r

0 0.1 0.2 0.3 0.4 0.5 0.6
Tensor−to−scalar ratio

Li
ke

lih
oo

d

Constraints on r=T/S

Foreground subtraction tends to reduce the value of r.Foreground subtraction tends to reduce the value of r = tensor/scalar ratio

r = 0.16+0.06
�0.05After known foreground subtraction:



Main concern: a single frequency

BICEP2 auto-spectrum compatible with correlating with 100 GHz BICEP1 and Keck-
Array. Spectral index consistent with that of CMB, disfavoring synchrotron and dust at 
~2.2σ.
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FIG. 9.— Comparison of the BICEP2 BB auto spectrum and cross spectra
taken between BICEP2 and BICEP1 combined, and BICEP2 and Keck Array
preliminary. (For clarity the cross spectrum points are offset horizontally and
the BICEP2⇥BICEP1 points are omitted at ` > 200.)

In Figure 2 we see a substantial excess of BB power in the
region where an inflationary gravitational wave (IGW) signal
would be expected to peak. We therefore proceed to find the
most likely value of the tensor-to-scalar ratio r using the “di-
rect likelihood” method introduced in B14. We first form ad-
ditional sets of simulations for many values of r by combining
the lensed-⇤CDM and scaled r = 0.2 simulations36. We then
combine the bandpowers of these and the real bandpowers
with s/n weighting where s is the IGW spectrum for a small
value of r and n is the variance of the lensed-⇤CDM+noise
simulations. Arranging the simulation pdf values as rows we
can then read off the likelihood curve for r as the columns at
the observed combined bandpower value.

The result of this process is shown in Figure 10. Defining
the confidence interval as the equal likelihood contour which
contains 68% of the total likelihood we find r = 0.20+0.07

-0.05. This
uncertainty is driven by the sample variance in our patch of
sky, and the likelihood falls off very steeply towards r = 0. The
likelihood ratio between r = 0 and the maximum is 2.9⇥10-11

equivalent to a PTE of 3.3 ⇥ 10-12 or 7.0�. The numbers
quoted above are for bins 1–5 although due to the weight-
ing step they are highly insensitive to this choice. (Absolute
calibration and beam uncertainty are included in these calcu-
lations but have a negligible effect.)

Evaluating our simple �2 statistic between bandpowers 1–
5 and the lensed-⇤CDM+noise+r = 0.2 simulations yields a
value of 1.1, which for 4 degrees of freedom has a PTE of
0.90. The model is therefore a perfectly acceptable fit to the
data.

In Figure 11 we recompute the r constraint subtracting each
of the foreground models shown in Figure 6. For the auto
spectra the range of maximum likelihood r values is 0.12–
0.19, while for the cross it is 0.16–0.21 (random fluctuations
in the cross can cause shifts up as well as down). The prob-
ability that each of these models reflects reality is hard to
assess. Presumably greatest weight should be given to the
DDM2 cross spectrum and we note that in this case the maxi-
mum likelihood value shifts down to r = 0.16+0.06

-0.05 with a like-

36 Hence we assume always nt = 0 making the value of r independent of
the pivot scale.

lihood ratio between r = 0 and maximum of 2.2⇥10-8, equiv-
alent to a PTE of 2.9⇥10-9 or 5.9�. Performing this subtrac-
tion slightly increases �2 (to 1.46) but the fit remains perfectly
acceptable (PTE 0.84).

The dust foreground is expected to have a power law spec-
trum which slopes modestly down / `⇠-0.6 in the usual
l(l + 1)Cl/2⇡ units (Dunkley et al. 2009). In Figure 6 we
see that the DDM2 model appears to do this in both auto and
cross, before the auto spectrum starts to rise again due to noise
in the polarization fraction and angle input maps. We note
that the s/n bandpower weighting scheme described above
weights the first bin very highly. Therefore if we were to
exclude it the difference between the unsubtracted and fore-
ground subtracted model lines in Figure 11 would be much
smaller; i.e. while dust may contribute significantly to our
first bandpower it definitely cannot explain bandpowers two
through five.

Computing an r constraint using the BICEP2⇥BICEP1comb
cross spectrum shown in Figure 9 yields r = 0.19+0.11

-0.08. The
likelihood ratio between r = 0 and the maximum is 2.0⇥10-3

equivalent to a PTE of 4.2⇥10-4 or 3.5�.

11.2. Scaled-lensing + Tensors
Lensing deflections of the CMB photons as they travel from

last scattering re-map the patterns slightly. In temperature this
leads to a slight smoothing of the acoustic peaks, while in po-
larization a small B-mode is introduced with a spectrum sim-
ilar to a smoothed version of the EE spectrum a factor ⇠ 100
lower in power. Using their own and other data Planck Collab-
oration XVI (2013) quote a limit on the amplitude of the lens-
ing effect versus the ⇤CDM expectation of AL = 0.99±0.05.

Figure 12 shows a joint constraint on the tensor-to-scalar
ratio r and the lensing scale factor AL using our BB bandpow-
ers 1–5. As expected there is an anti-correlation — one can
partially explain the low ` excess by scaling up the lensing
signal. However, since the lensing and IGW signals have dif-
ferent spectral shapes the degeneracy is not complete. The
maximum likelihood scaling is ⇡ 1.5. Marginalizing over r
the likelihood ratio between peak and unity is 0.75 indicat-
ing compatibility, while the likelihood ratio between peak and
zero is 0.03, equivalent to a PTE of 7.0⇥ 10-3 or a 2.7� de-
tection of lensing in the BICEP2 BB auto spectrum.

11.3. Compatibility with Temperature Data
If present at last-scattering, tensor modes will add power to

all spectra including T T . For an r value of 0.2 the contribution
to T T at the largest angular scales (` < 10) would be ⇡ 10%
of the level measured by WMAP and Planck. The theoretical
⇤CDM power level expected at these scales is dependent on
several cosmological parameters including the spectral index
of the initial scalar perturbations, ns, and the optical depth to
the last scattering surface, ⌧ . However by combining temper-
ature data taken over a wide range of angular scales indirect
limits on r have been set. Using WMAP+SPT data Story et al.
(2013) quote r < 0.18 (95% confidence) tightening to r < 0.11
when also including measurements of the Hubble constant
and baryon acoustic oscillations (BAO). More recently Planck
Collaboration XVI (2013) quote r < 0.11 using a combination
of Planck, SPT and ACT temperature data, plus WMAP po-
larization (to constrain ⌧ ).

These limits appear to be in moderately strong tension with
interpretation of our B-mode measurements as tensors. Since
we have dispensed with the possibility of significant system-


