Touching the beginning

Filippo Vernizzi IPhT, CEA/Saclay

RPP, January 16, 2015

Only few parameters: $\Omega_{
m b}$, $\Omega_{
m CDM}$, H_0 , au , A_s , n_s

(Slow-roll) Inflation

(Flat) FRW metric:
$$ds^{2} = -dt^{2} + a^{2}(t)d\vec{x}^{2} \qquad H \equiv \frac{\dot{a}}{a} \qquad \text{Hubble rate} \quad \text{(rate of expansion)} \quad \text{(rate of expansion$$

Scalar field:
$$S = \int d^4x \sqrt{-g} \left[\frac{M_p^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right]$$

Slow-roll inflation, almost CC (slowly varying clock):

$$H \simeq \sqrt{\frac{V}{3m_P^2}} \qquad \qquad \epsilon \equiv -\frac{\dot{H}}{H^2} \ll 1$$

(Slow-roll) Inflation

(Flat) FRW metric:
$$ds^{2} = -dt^{2} + a^{2}(t)d\vec{x}^{2} \qquad H \equiv \frac{\dot{a}}{a} \qquad \text{Hubble rate} \quad \text{(rate of expansion)}$$

$$(rate of expansion)$$

$$d(t) \propto a(t)$$

Scalar field:
$$S = \int d^4x \sqrt{-g} \left[\frac{M_p^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right]$$

Slow-roll inflation, almost CC (slowly varying clock):

$$H \simeq \sqrt{\frac{V}{3m_P^2}} \qquad \qquad \epsilon \equiv -\frac{\dot{H}}{H^2} \ll 1$$

Scalar fluctuations

Each Fourier mode behaves as a quantum harmonic oscillator with time dependent spring "constant"

$$S = \int d^4x \,\epsilon \, a^3 \, M_{\rm Pl}^2 \begin{bmatrix} \dot{\zeta}^2 - \frac{1}{a^2} (\partial_i \zeta)^2 \end{bmatrix} \qquad \qquad \phi = \phi(t)$$
$$g_{ij} = a^2(t) e^{2\zeta} \delta_{ij}$$
$$\omega = \frac{k}{a} \simeq k e^{-Ht}$$

Scalar fluctuations

Each Fourier mode behaves as a quantum harmonic oscillator with time dependent spring "constant"

- Inside Hubble radius: vacuum I.C.
- Outside Hubble radius: fluctuations freeze-in

$$\langle (\zeta_k)^2 \rangle = \frac{\hbar}{2k^3} \left. \frac{1}{\epsilon} \frac{H^2}{M_{\rm Pl}^2} \right|_{k=aH}$$

 $\epsilon \equiv -\frac{\dot{H}}{H^2} \ll 1$

$$P_s(k) = A_s k^{-3} (k/k_*)^{n_s - 1}$$

Tensor fluctuations

Each Fourier mode behaves as a quantum harmonic oscillator with time dependent spring "constant"

$$S = \frac{1}{8} \int d^4x \ a^3 M_{\rm Pl}^2 \left[(\dot{h}_{ij})^2 - \frac{1}{a^2} (\partial_k h_{ij})^2 \right] \qquad g_{ij} = a^2(t) (\delta_{ij} + h_{ij}) \ ,$$

$$h_{ii} = 0 = \partial_j h_i^j$$

- Inside Hubble radius: vacuum I.C.
- Outside Hubble radius: fluctuations freeze-in

$$\langle (h_k)^2 \rangle = \frac{8\hbar}{k^3} \left. \frac{H^2}{M_{\rm Pl}^2} \right|_{k=aH}$$

Tensor fluctuations

Each Fourier mode behaves as a quantum harmonic oscillator with time dependent spring "constant"

$$S = \frac{1}{8} \int d^4x \ a^3 M_{\rm Pl}^2 \left[(\dot{h}_{ij})^2 - \frac{1}{a^2} (\partial_k h_{ij})^2 \right] \qquad g_{ij} = a^2(t) (\delta_{ij} + h_{ij}) \ ,$$

$$h_{ii} = 0 = \partial_j h_i^j$$

- Inside Hubble radius: vacuum I.C.
- Outside Hubble radius: fluctuations freeze-in

$$\langle (h_k)^2 \rangle = \frac{8\hbar}{k^3} \left. \frac{H^2}{M_{\rm Pl}^2} \right|_{k=aH}$$

$$\langle (\zeta_k)^2 \rangle = \frac{\hbar}{2k^3} \left. \frac{1}{\epsilon} \frac{H^2}{M_{\rm Pl}^2} \right|_{k=aH}$$

$$Tensor-to-scalar ratio: r = 16\epsilon$$

E & B modes

The era of B-modes

Ade et al 1403.3985

Dust under the carpet

Robust signature

It's easy to play with scalar fluctuations

- Choice of potential $V(\phi) \Rightarrow A_s, n_s 1$
- Speed of propagation c_s

$$S = \int d^4x \,\epsilon \, a^3 \, M_{\rm Pl}^2 \left[\dot{\zeta}^2 - \frac{c_s^2}{a^2} (\partial_i \zeta)^2 \right] \qquad \Rightarrow \qquad \left\langle (\zeta_k)^2 \right\rangle = \frac{\hbar}{2k^3} \left. \frac{1}{c_s \,\epsilon} \frac{H^2}{M_{\rm Pl}^2} \right|_{k=aH}$$

• Multiple scalars

Robust signature

It's easy to play with scalar fluctuations

- Choice of potential $V(\phi) \Rightarrow A_s$, $n_s 1$
- Speed of propagation c_s

$$S = \int d^4x \,\epsilon \, a^3 \, M_{\rm Pl}^2 \left[\dot{\zeta}^2 - \frac{c_s^2}{a^2} (\partial_i \zeta)^2 \right] \qquad \Rightarrow \qquad \left\langle (\zeta_k)^2 \right\rangle = \frac{\hbar}{2k^3} \left. \frac{1}{c_s \,\epsilon} \frac{H^2}{M_{\rm Pl}^2} \right|_{k=aH}$$

• Multiple scalars

It's not easy to play with gravity. Gravity waves directly probe H!

- No potential, only two polarizations
- A graviton speed of propagation ≠ 1 can be set = 1 by a disformal transformation
 Creminelli, Gleyzes, Noreña, FV '14

$$g_{\mu\nu} \mapsto g_{\mu\nu} - (1 - c_T^2) \partial_\mu \phi \partial_\nu \phi / (\partial \phi)^2$$

What can we learn?

 $\langle (h_k)^2 \rangle = \frac{8\hbar}{k^3} \left. \frac{H^2}{M_{\rm Pl}^2} \right|_{k=aH}$ Energy scale of inflation

 $E_{\text{inflation}} = V^{1/4} = 1.8 \times 10^{16} \text{GeV} \times \left(\frac{r}{0.1}\right)^{1/4} \qquad \text{Observable primordial GWs (} r > 0.001 \text{)} \\ require GUT-scale energies}$

What can we learn?

Energy scale of inflation $\langle (h_k)^2 \rangle = \frac{8\hbar}{k^3} \left. \frac{H^2}{M_{\rm Pl}^2} \right|_{k=aH}$

$$E_{\text{inflation}} = V^{1/4} = 1.8 \times 10^{16} \text{GeV} \times \left(\frac{r}{0.1}\right)^{1/4}$$

Observable primordial GWs (*r* > 0.001) require GUT-scale energies

 $1 \cdot 2$

What can we learn?

Energy scale of inflation $\langle (h_k)^2 \rangle = \frac{8\hbar}{k^3} \left. \frac{H^2}{M_{\rm Pl}^2} \right|_{k=aH}$

$$E_{\text{inflation}} = V^{1/4} = 1.8 \times 10^{16} \text{GeV} \times \left(\frac{r}{0.1}\right)^{1/4}$$

Observable primordial GWs (*r* > 0.001) require GUT-scale energies

Planck 2014

Planck 2014

B-modes search is ongoing by many experiments:

Ground based telescopes: ABS, ACTpol, CLASS, Keck Array, Qubic, Quijote, Polarbear, Spud, SPTpol, BICEP3 (>2014);

- Planck satellite mission;
- Future satellite missions: Pixie (NASA), EPIC (NASA), LiteBIRD (KEK), CoRE+ (ESA).

If we do not see GWs?

Non-Gaussianity

Deviation from Gaussianity

Squeezed limit: Maldacena '02 $\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle = \left[-(n_s - 1) + \mathcal{O}\left(\frac{k_1^2}{k_2^2}\right) \right] P(k_1) P(k_2) , \qquad k_1 \ll k_2 \approx k_3$

The long mode redefines the background (rescaling of the momenta):

$$g_{ij}dx^i dx^j = a^2(t)e^{2\zeta_L(\vec{x})}d\vec{x}^2 = a^2(t)d\tilde{\vec{x}}^2 \quad \Longrightarrow \quad \tilde{k} = ke^{-\zeta_L}$$

Squeezed limit: Maldacena '02 $\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle = \left[-(n_s - 1) + \mathcal{O}\left(\frac{k_1^2}{k_2^2}\right) \right] P(k_1) P(k_2) , \qquad k_1 \ll k_2 \approx k_3$

The long mode redefines the background (rescaling of the momenta):

$$g_{ij}dx^i dx^j = a^2(t)e^{2\zeta_L(\vec{x})}d\vec{x}^2 = a^2(t)d\tilde{\vec{x}}^2 \quad \Longrightarrow \quad \tilde{k} = ke^{-\zeta_L}$$

Slow-roll:

$$\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle = \left[-(n_s - 1) + \epsilon \mathcal{O}\left(\frac{k_1^2}{k_2^2}\right) \right] P(k_1) P(k_2) , \qquad k_1 \ll k_2 \approx k_3$$

Slow-roll:

$$\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle = \begin{bmatrix} -(n_s - 1) + \epsilon \mathcal{O}\left(\frac{k_1^2}{k_2^2}\right) \end{bmatrix} P(k_1) P(k_2) , \qquad k_1 \ll k_2 \approx k_3$$

$$f_{\rm NL}^{\rm local} \qquad f_{\rm NL}^{\rm equilateral}$$

- $f_{\rm NL}^{\rm loc} \ll 1$ due to attractor nature of single-field inflation
- $f_{\rm NL}^{\rm eq} \ll 1~$ due to smallness of inflaton self-interactions in slow-roll

Slow-roll:

$$\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle = \begin{bmatrix} -(n_s - 1) + \epsilon \mathcal{O}\left(\frac{k_1^2}{k_2^2}\right) \end{bmatrix} P(k_1) P(k_2) , \qquad k_1 \ll k_2 \approx k_3$$

$$f_{\rm NL}^{\rm local} \qquad f_{\rm NL}^{\rm equilateral}$$

- $f_{\rm NL}^{\rm loc} \ll 1$ due to attractor nature of single-field inflation
- $f_{
 m NL}^{
 m eq} \ll 1\,$ due to smallness of inflaton self-interactions in slow-roll
- $f_{\rm NL}^{\rm loc} \gtrsim 1$: extra fields, local correlation between long and short modes
- $f_{\rm NL}^{\rm eq} \gtrsim 1$: large self-interactions:

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - V(\phi) + \frac{1}{\Lambda^{4}}(\partial_{\mu}\phi\partial^{\mu}\phi)^{2} \qquad f_{\mathrm{NL}}^{\mathrm{eq}} \sim \frac{\dot{\phi}^{2}}{\Lambda^{4}} \sim \frac{1}{c_{s}^{2}}$$
$$\dot{\phi}^{2} \ll \Lambda^{4}$$

Creminelli '03

Constraints

Constraints

 $f_{\rm NL} \sim \mathcal{O}(1)$ Intrinsic nonlinearities in GR and baryon-photon fluid Template computed with second-order Boltzmann codes

Huang and FV '12, '13

Conclusions

- * We entered the B-mode era.
- * Primordial gravity waves predictions extremely robust. Window on the highest energies and probe of early acceleration.
- * Large non-Gaussianity would rule out all single-field slow-roll models. Probe of new early universe physics: multi-field models and self-interactions.
- * Future experiments are very close to targets $f_{\rm NL} \sim \mathcal{O}(1)$.

Measuring the consistency relation (with CMB)

Non-minimal kinetic term

• The inflaton can have non-minimal kinetic term (ex. DBI):

$$S = \int d^4x \sqrt{-g} P(\phi, X) \qquad \qquad X \equiv g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi$$

• Speed of sound of fluctuations:

$$c_s^2 = \frac{P_{,X}}{P_{,X} + 2XP_{,XX}} \ll 1$$

• Enhanced scalar fluctuations: $k^3 \langle (\zeta_k)^2 \rangle = \frac{1}{c_s} \times \frac{1}{2\epsilon} \frac{H^2}{m_P^2}$

Smaller tensor-to-scalar ratio $r = 16 \epsilon c_s \ll 16\epsilon$

$$r = 0.2$$
 \Rightarrow $c_s \sim \frac{10^{-2}}{\epsilon} \sim 10^{-2} N$

• \Rightarrow Models where non-Gaussianity comes from cubic operators enhanced by $1/c_s^2$ for small sound-speed are strongly constrained. (Current constraint from Planck: $c_s^2 \ge 0.02$)

Non-Gaussianity

• Scalar fluctuations around an expanding FRW universe are described by:

$$S_{\pi} = \int a^3 \frac{M_{\rm Pl}^2 |\dot{H}|}{c_s^2} \left[\left(\dot{\pi}^2 - c_s^2 \frac{(\partial_i \pi)^2}{a^2} \right) - (1 - c_s^2) \dot{\pi} \frac{(\partial_i \pi)^2}{a^2} + \left(1 - c_s^2 + \frac{2}{3} c_p \right) \dot{\pi}^3 \right]$$

- One can have $c_p \gg 1$ and $c_s^2 \simeq 1$

Non-Gaussian constraints assuming $c_s > 0.1$ (narrow black) or $c_s > 0.05$ (red+black) compared to Planck constraints on non-Gaussianity (1 and 2σ)

Consistency relation from space

• Testing the consistency relation requires $\sigma(n_T) \sim 0.01$

 $n_T = -\frac{1}{8}r$

Song and Knox '03

FIG. 3: The error on $n_T + r/4.8$ as a function of r. The cosmic variance limit is the solid line in both panels. In the upper panel, we fix $\Delta_P = 3\sqrt{2\mu}K$ arcmin and vary the angular resolution: $\theta_b = 1'$ (long dash), $\theta_b = 3'$ (dash) and $\theta_b = 5'$ (dots). In the lower panel, we fix the angular resolution at $\theta_b = 3'$ and vary the weight per solid angle: $\Delta_P = \sqrt{2\mu}K$ arcmin (dot-dashed), $\Delta_P = 3\sqrt{2\mu}K$ arcmin (long dash), $\Delta_P = 9\sqrt{2\mu}K$ arcmin (dash) and $\Delta_P = 15\sqrt{2\mu}K$ arcmin (dots). The shaded area is excluded by observations of the temperature power spectrum [30].

Consistency relation from the ground

	$\sigma(r)$	$\sigma(n_t)$
f_{sky}	0.25 0.50 0.75	$0.25 \ 0.50 \ 0.75$
$\mathbf{r_{fid}}=0.2$		
$10^4 N_{\rm det}$	$0.030 \ 0.026 \ 0.025$	$0.09 \ 0.08 \ 0.07$
$10^5 N_{\rm det}$	$0.021 \ 0.016 \ 0.014$	$0.07 \ 0.05 \ 0.04$
$10^6 N_{\rm det}$	$0.020 \ 0.015 \ 0.012$	$0.06 \ 0.05 \ 0.04$
${ m r_{fid}}=0.1$		
$10^4 N_{\rm det}$	$0.022 \ 0.020 \ 0.019$	$0.13 \ 0.11 \ 0.11$
$10^5 N_{ m det}$	$0.016 \ 0.012 \ 0.010$	$0.10 \ 0.07 \ 0.06$
$10^6 N_{\rm det}$	$0.015 \ 0.011 \ 0.009$	$0.09 \ 0.07 \ 0.05$
$\mathrm{r_{fid}=0.05}$	a fan en fan en steren en fan en fan fan fan en fan fan en fan en fan fan en fan en fan fan en fan fan en fan f I	a fan de la fan de la de fan de la fan de
$10^4 N_{\rm det}$	$0.016 \ 0.015 \ 0.014$	$0.18 \ 0.16 \ 0.16$
$10^5 N_{\rm det}$	$0.012 \ 0.009 \ 0.007$	$0.14 \ 0.10 \ 0.08$
$10^6 N_{\rm det}$	$0.011 \ 0.008 \ 0.007$	$0.13 \ 0.09 \ 0.08$
$\mathrm{r_{fid}}=0.02$;	
$10^4 N_{\rm det}$	$0.012 \ 0.011 \ 0.011$	$0.31 \ 0.29 \ 0.28$
$10^5 N_{\rm det}$	$0.008 \ 0.006 \ 0.005$	$0.22 \ 0.16 \ 0.14$
$10^6 N_{\rm det}$	$0.008 \ 0.005 \ 0.004$	$0.21 \ 0.15 \ 0.12$

Table IX: 1- σ constraints for r and n_t for various detector count and sky fraction at 4' beam size. Wu et al. arXiv:1402.4108

Resolving BICEP2 vs Planck tension

- If tension with Planck is real, how to interpret it?
 - Foreground
 - Running
 - Magnetic fields
 - Tensor-scalar correlation
 - Suppression of scalar power at large scales (features in the potential, etc.)
 - Anticorrelated isocurvature perturbations
 - Inflaton + curvaton with running
 - Extra sterile neutrinos
 - Strong blue tensor tilt
 - Your model

Models

Focal planes

BICEP1 2006-2008

BICEP2 2010-2012

KECK Array 2011-2016

50 @ 100 GHz 48 @ 150 GHz

512 @ 150 GHz

5 x 512 @ 150 GHz

Results

Systematics

Systematics contamination much smaller than observed excess

Tensor/scalar ratio r

Effect of foregrounds on r

Foreground subtraction tends to reduce the value of r = tensor/scalar ratio After known foreground subtraction: $r = 0.16^{+0.06}_{-0.05}$

Main concern: a single frequency

BICEP2 auto-spectrum compatible with correlating with 100 GHz BICEP1 and Keck-Array. Spectral index consistent with that of CMB, disfavoring synchrotron and dust at ~2.2σ.