QCD in the 21st century

Grégory Soyez

IPhT, CEA Saclay

RPP 2015, IHP, January 15-16

Outline

Tentative plan

- Convince you that there are still things worth studying in QCD in 2015
- Convince you that there are new structures of QCD seen today
- [Tell you a bit about an emerging (sub)field of QCD that I personally find interesting]

Outline

Tentative plan

- Convince you that there are still things worth studying in QCD in 2015
- Convince you that there are new structures of QCD seen today
- [Tell you a bit about an emerging (sub)field of QCD that I personally find interesting]

Disclaimer

This is certainly (i) not exhaustive and (ii) biased

STRONG interactions

[CMS, arXiv:1304.7498]

α_s still measured today

Test SM + gain precision $\alpha_s(M_Z^2) = 0.1185 \pm 0.0006$

QCD means strong interactions

- Non-perturbative at soft scales
- Often slow convergence when perturb

Non-perturbative QCD

Quarks & gluons v. hadrons

We do not see quarks and gluons directly

How quarks and gluons bound into colourless objects still not understood

Importance of non-perturbative QCD

Approaches

- Lattice QCD (examples below)
- Effective field theories (e.g. HQET, χ PT)

Applications today

- mesons/hadrons spectrum
- QCD phase diagram and QGP eq. of state
- Flavour physics (particles decay)
- neutron stars
- Related to many experiments: LHCb, BessIII, Belle2, NA62,...

Challenges

- Work with realistic quarks
- Work with small lattice spacing, large lattivce volume

A few highlights

Examples

- $N_f = 2 + 1 + 1$ dynamical quarks
- Simulations with real pion mass
- precise K/D/B decay
- Isospin & elm effects in $m_n m_p$
- Improving extraction of α_s
- GENCI: large computing resources (2007)

If you want more

See also talks by:

- Cédric Mezrag
- Xiu-Lei Ren
- Laurent Lellouch
- Antoine Gérardin
- Savvas Zafeiropoulos
- Jean-Loic Kneur

[B.Blossier,1405.0005]

Perturbative QCD [QCD at colliders]

Overview of a collisions (here LHC)

hard collision

Needed

- PDFs
- Matrix elements

Overview of a collisions (here LHC)

Needed

PDFs

- Parton shower
- Matrix elements
- Matching matrix-element/parton shower

Overview of a collisions (here LHC)

Needed

PDFs

- Parton shower
- Matrix elements
- Matching matrix-element/parton shower
- Modelisation of non-perturbative effects

Recent progress 1: PDFs

Need for precise determination of the PDFs

- Precision at the LHC often limited by uncertainty on PDFs
- Many groups: MSTW, CT(EQ), NNPDF are probably the main ones
- Now up to NNLO, including more and more effects/observables
- PDF4LHC "working group"

Recent progress 1: PDFs

Need for precise determination of the PDFs

- Precision at the LHC often limited by uncertainty on PDFs
- Many groups: MSTW, CT(EQ), NNPDF are probably the main ones
- Now up to NNLO, including more and more effects/observables
- PDF4LHC "working group"

Beyond PDFs

- GPDs, TMDs
- include extra degrees of freedom
- apply to more exclusive (semi-inclusive) processes

Recent progress 1: PDFs

Need for precise determination of the PDFs

- Precision at the LHC often limited by uncertainty on PDFs
- Many groups: MSTW, CT(EQ), NNPDF are probably the main ones
- Now up to NNLO, including more and more effects/observables
- PDF4LHC "working group"

Beyond PDFs

- GPDs, TMDs
- include extra degrees of freedom
- apply to more exclusive (semi-inclusive) processes

- polarised distributions:
 learn about the proton spin
- nuclear PDFs: learn about cold nuclear effects

Recent progress 2: Matrix element calculations

"Amplitudes" is a huge field of research in QCD

from D.Kosower

Recent progress 2: Matrix element calculations

Today's "phenomenological" status

- NLO calculations automated, NNLO & NLO-EW in progress
- numerically available (MCFM, aMC@NLO, BlackHat, Golem, ...)
- matching LO+LL and NLO+LL

Large effort to develop new techniques

- ullet formal aspects about the structure of amplitudes (e.g. ${\cal N}=4$ SUSY)
- what ultimately made NLO/NNLO calculations doable "quickly"
- deep connections in mathematical physics (structure of gauge theories)

Recent progress 2: Matrix element calculations

The NLO revolution

from D.Kosower

Recent progress 3: when fixed-order is not enough (1/2)

QCD has two divergences

- ullet collinear: parton branching at small angle (heta o 0)
- soft: emission of soft gluons $(E \rightarrow 0 \text{ or } z \rightarrow 0)$

Recent progress 3: when fixed-order is not enough (1/2)

QCD has two divergences

- ullet collinear: parton branching at small angle (heta o 0)
- soft: emission of soft gluons $(E \rightarrow 0 \text{ or } z \rightarrow 0)$

We need final results!

- In the initial state, divergence absorbed in the PDFs.
- In the final state, real-virtual cancellation only infrared-and-collinear-safe observables computable perturbatively

Recent progress 3: when fixed-order is not enough (1/2)

QCD has two divergences

- ullet collinear: parton branching at small angle (heta o 0)
- soft: emission of soft gluons $(E \rightarrow 0 \text{ or } z \rightarrow 0)$

We need final results!

- In the initial state, divergence absorbed in the PDFs.
- In the final state, real-virtual cancellation only infrared-and-collinear-safe observables computable perturbatively

Two main players (fields *per se*, with fundamental progress too)

- Jets: take the whole partonic collinear offspring
 See talk by Frederic Dreyer and later here
- Heavy quark(onia): the heavy mass acts as a cutoff See talks by Roland Katz and Hua-Sheng Shao

Recent progress 3: when fixed-order is not enough (2/2)

Consequence and resummation

- Everytime we have two scales, expect logs between the two scales
- Often $\alpha_s \log(Q^2/\mu^2) \sim 1 \Rightarrow$ resum to all orders in α_s
- Can be seen as a reorganisation of the perturbative series

$$\underbrace{f_0(\alpha_s L)}_{LL} + \underbrace{\alpha_s f_1(\alpha_s L)}_{NLL} + \dots$$

where f_i contains terms at all orders $\alpha_s^n L^n$

Recent progress 3: when fixed-order is not enough (2/2)

Consequence and resummation

- Everytime we have two scales, expect logs between the two scales
- Often $\alpha_s \log(Q^2/\mu^2) \sim 1 \Rightarrow$ resum to all orders in α_s
- Can be seen as a reorganisation of the perturbative series

$$\underbrace{f_0(\alpha_s L)}_{LL} + \underbrace{\alpha_s f_1(\alpha_s L)}_{NLL} + \dots$$

where f_i contains terms at all orders $\alpha_s^n L^n$

Examples

- PDFs
- jet shapes
- jet vetoes (for Higgs!)

Recent progress 3: when fixed-order is not enough (2/2)

Consequence and resummation

- Everytime we have two scales, expect logs between the two scales
- Often $\alpha_s \log(Q^2/\mu^2) \sim 1 \Rightarrow$ resum to all orders in α_s
- Can be seen as a reorganisation of the perturbative series

$$\underbrace{f_0(\alpha_s L)}_{LL} + \underbrace{\alpha_s f_1(\alpha_s L)}_{NLL} + \dots$$

where f_i contains terms at all orders $\alpha_s^n L^n$

Examples

- PDFs
- jet shapes
- jet vetoes (for Higgs!)

Recent progress

- Generic method for NNLL resummation A.Banfi, H.McAslan, P.Monni, G.Zanderighi, 1412.2126
- Effective theory SCET
 Review: T.Becher, A.Broggio, A.Ferroglia, 1410.1892
- Boosted jet observables

Recent development 3: QCD showers & NP effects

Monte-Carlo event generators

Include a bunch of effects

- collinear showering off the matrix element (at LL) [from QCD]
- hadronisation [modelled]
- multiple-parton interactions/soft interactions with the beam remnants (aka UE) [modelled]

Recent progress

- 3 commonly used generators: Pythia (v8), Herwig(++), SHERPA
- matching LO and NLO matrix elements with parton shower

Recent development 4: Heavy-ions, high energy/density

Also a large community in France with many recent contributions

 The QGP behaves like an (almost) perfect liquid plot from M.Luzum

- Better understanding of the proparation through the QGP (medium energy loss)
- Towards a first-principle QCD proof of fast thermalisation
- Many probes of high multiplicity effects in forward physics

see also talks by Elena Petreska and Renaud Boussarie

An emerging field: boosted jets

Boosted jets

Object X decaying to hadrons

single jet

$$R \gtrsim \frac{m}{p_t} \frac{1}{\sqrt{z(1-z)}}$$

Boosted jets

Object X decaying to hadrons

single jet

$$R \gtrsim \frac{m}{p_t} \frac{1}{\sqrt{z(1-z)}}$$

If $p_t \gg m$, reconstructed as a single jet

Boosted jets

Object X decaying to hadrons

single jet

$$R \gtrsim \frac{m}{p_t} \frac{1}{\sqrt{z(1-z)}}$$

If $p_t \gg m$, reconstructed as a single jet

Many applications: Higgs, top, W/Z, ttH,...

Higher \sqrt{s} , higher scales/bounds \Rightarrow increasingly important

What jet do we have here?

• a quark?

- a quark?
- a gluon?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

What jet do we have here?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

Source: ATLAS boosted top candidate

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

Source: ATLAS boosted top candidate

A game changer: a jet is no longer " \sim a QCD parton"

Kicked up in 2008

Discovery potential for $H
ightarrow bar{b}$ at $\sqrt{s}=$ 14 TeV

[J.Butterworth, A.Davison, M.Rubin, G.Salam, 2008]

Validation by LHC-Run I

ATLAS, 2013

- decent agreement between data and Monte-Carlo
- but some differences are observed

In 2014: a greedy community...

[Boost 2013 WG]

W v. q jets: combination of taggers

- Combination methods helps
- details not so obvious and just one p_t!

In 2014: going back to first-principles

[M.Dasgupta, G.Salam, L.Sarem-Schunk, GS]

Towards a first-principle understanding

- understand what works better
- easily vary parameters
- control uncertainties
- devise better methods

Things to keep in mind

QCD is still a very active field of research

- Lattice closer to reality
- Era of precision
 - Amplitude calculations
 - PDF uncertainties
 - Crucial at the LHC
- Boosted jets
- Conceptual progress at high density/energy

more fun around the corner