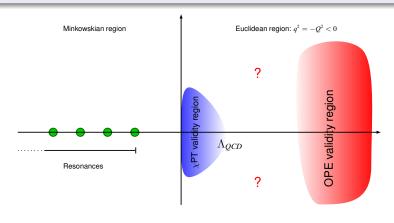
From OPE to Soft-Wall

David Greynat

INFN Sezione di Napoli - Dipartimento di Scienze Fisiche - Universitá di Napoli Federico II


16th January 2015

in collaboration with Luigi Cappiello and Giancarlo D'Ambrosio

Based on a work to be published

16th January – Rencontre de Physique des Particules – Paris

- QCD has well described different regimes: low energy (e.g. χPT), high energy (OPE), Minkowskian sector (resonances)
- Unfortunately the intermediate sector is unknown...
- Because of the existence of Non-Perturbative effects.

From now we assume Large-N_c limit

Several ways to address this issue

Treat the 2 points Green functions as Padé approximants.
 Minimal Hadronic Approximation and related models

```
S. Peris and E. de Rafael, JHEP 9805 (1998)M. Golterman and S. Peris, JHEP 0101 (2001)
```

Resummation of Large-N_c resonances properties.

```
O. Cata, M. Golterman and S. Peris, JHEP 0508, 076 (2005)

E. de Rafael, Indian Academy of Sciences, Vol. 78, N6 June 2012
```

Non-Analytic reconstruction method.

```
D. G. and S. Peris, Phys.Rev. D82 (2010)
```

AdS/CFT correspondence.

- J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)
- S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998)
- A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. D 74, 015005 (2006)

The Maldacena conjecture

4 - dimensional

Non perturbative CFT Large N_c

Green functions

5 - dimensional

Perturbative AdS Classical Theory

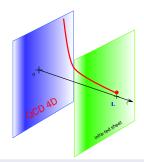
Green functions

Practically...

4 - dimensional

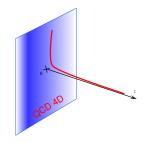
Sources coupled to currents v. a. s. p

5 - dimensional


Fields $\Phi(x,z)$ on a gravitationnal background

Two different models: Hard - Wall and Soft-Wall

Let consider a conformally flat metric in 5D,


$$g_{MN} dx^{M} dx^{N} = w(z)^{2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2} \right)$$

Hard - Wall

$$0 \leqslant z \leqslant L \; , \; \; w(z)^2 = \frac{1}{z^2}$$

Soft - Wall

$$0 \leqslant z \leqslant \infty , \ w(z)^2 = \frac{1}{z^2} e^{-\Phi(z)}$$

Recovered Large N_c QCD Properties

- J. Hirn and V. Sanz, JHEP 0512, 030 (2005)
- L. Da Rold and A. Pomarol, Nucl. Phys. B 721, 79 (2005)
- A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. D 74 (2006)
- ${\tt H.~J.~Kwee}$ and ${\tt R.~F.~Lebed},~{\tt JHEP~0801},~{\tt 027~(2008)}$

	Hard - Wall	Soft - Wall
		$\Phi(z) = \kappa^2 z^2$
Parton Log	YES	YES
OPE	NO	NO
Chiral symmetry breaking	YES / NO	NO
Regge-like Spectrum of resonances	NO	YES

Purpose of this work

We want to modified the dilaton field $\Phi(z)$ such that we obtain:

- The right OPE.
- A chiral symmetry breaking mechanism: axial field and a pion pole (i.e. $F_{\pi} \neq 0$)

Lagrangian

$$S_5 = -rac{1}{4g_5^2} \int\!\! {
m d}^4 x \int_0^\infty\!\! {
m d}z \sqrt{g} \; {
m e}^{\; -\Phi(z)} \; g^{MN} g^{RS} \; {
m Tr} \left[\mathbb{F}_{MR} \, \mathbb{F}_{NS}
ight] \; ,$$

with $g = |\det g_{MN}|$, the field strength $\mathbb{F}_{MN} = \partial_M \mathbb{V}_M - \partial_N \mathbb{V}_M - i [\mathbb{V}_M, \mathbb{V}_N]$ and in order to reproduce the parton log

$$g_5^2 = \frac{12\pi}{N_c} \ .$$

The AdS/CFT correspondence prescribes that the boundary value of the 5D gauge field \mathbb{V}_M as to be identified with the classical source v_μ coupled to the the 4-dimensional vectorial current $J_v^a = : \bar{q} \ \gamma_\mu \, t^a q :$,

$$\lim_{z\to 0} \mathbb{V}^a_{\mu,z}(x,z) = \mathbf{V}^a_{\mu}(x) \ .$$

The 4D-Fourier transform f_V of \mathbb{V}_M satisfies the equation of motion

$$\partial_z^2 f_V + \partial_z \left[\ln w_0(z) \right] \partial_z f_V + q^2 f_V = 0 ,$$

with $w_0(z) \doteq \frac{e^{-\Phi(z)}}{z^2} = \frac{e^{-\kappa^2 z^2}}{z^2}$ and the boundary condition $f_V(-q^2,0) = 1$

Vectorial correlator properties

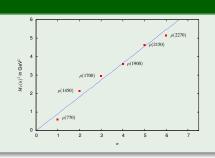
OPE

$$\Pi_{V}(\mathcal{Q}^{2}) \underset{\mathcal{Q}^{2} \rightarrow \infty}{\sim} \frac{F_{V}^{2}}{\mathit{M}^{2}} \ln \left(\frac{\Lambda_{V}^{2}}{\mathcal{Q}^{2}} \right) + \left\langle \mathcal{O}_{2} \right\rangle \frac{1}{\mathcal{Q}^{2}} + \left\langle \mathcal{O}_{4} \right\rangle \frac{1}{\mathcal{Q}^{4}} + \left\langle \mathcal{O}_{6} \right\rangle_{V} \frac{1}{\mathcal{Q}^{6}}$$

where in the large-N_c limit the coefficients of the OPE are given by

$$\begin{cases} \langle \mathcal{O}_2 \rangle = 0 \\ \langle \mathcal{O}_4 \rangle = \frac{1}{12\pi} \alpha_s \langle G^2 \rangle \\ \langle \mathcal{O}_6 \rangle_V = -\frac{28\pi}{9} \alpha_s \langle \bar{\psi}\psi \rangle^2 \end{cases}$$

- Second Weinberg's sum rule -


Regge Resonances spectrum

$$\Pi_V(Q^2) = \sum_{n=0}^{\infty} \frac{F_V(n)^2}{Q^2 + M_V(n)^2}$$

with

$$M_V(n)^2 \sim \sigma n$$
,

 σ is related to the confining string tension.

Connection between the two point Green function and the 5D model

$$Q^{2}\Pi_{V}(Q^{2}) = \frac{1}{g_{5}^{2}} \lim_{z \to 0} w_{0}(z) f_{V}(Q^{2}, z) \partial_{z} f_{V}(Q^{2}, z)$$

Dilaton profile prescription

In order to recover the right OPE of the vectorial correlator, we take in w(z)

$$\Phi(z) \longmapsto \Phi(z) + B(z)$$
 where $B(z) = \sum_{k=1}^{3} \frac{b_{2k}}{2k} z^{2k}$,

We prove that:

$$b_{2k}\longleftrightarrow\langle\mathcal{O}_{2k}\rangle$$

Regge Resonances spectrum

$$Q^{2}\Pi_{V}(Q^{2}) = \sum_{k,n} \mathcal{P}_{k,n} \left(\frac{Q^{2}}{4\kappa^{2}}\right) \psi^{(k)} \left(\frac{Q^{2}}{4\kappa^{2}}\right) ,$$

 $\mathcal{P}_{k,n}$ a polynomial and $\psi^{(k)}$ is the k^{th} derivative of the Digamma ψ function with poles

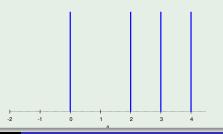
$$\frac{Q^2}{4\kappa^2} = -n$$

(Expected) Axial correlator properties

OPE

$$\Pi_A(Q^2) \underset{Q^2 \to \infty}{\sim} \frac{F_A^2}{M^2} \ln \left(\frac{\Lambda_A^2}{Q^2} \right) + \langle \mathcal{O}_2 \rangle \frac{1}{Q^2} + \langle \mathcal{O}_4 \rangle \frac{1}{Q^4} + \langle \mathcal{O}_6 \rangle_A \frac{1}{Q^6}$$

where in the large-N_c limit the coefficients of the OPE are given by


$$\begin{cases} & \langle \mathcal{O}_2 \rangle = 0 \\ & \langle \mathcal{O}_4 \rangle = \frac{1}{12\pi} \; \alpha_s \; \left\langle G^2 \right\rangle \\ & \langle \mathcal{O}_6 \rangle_A = -\frac{11}{7} \; \left\langle \mathcal{O}_6 \right\rangle_V \end{cases}$$

Axial spectrum

$$\Pi_A(Q^2) = -rac{F_\pi^2}{Q^2} + \sum_{n=0}^\infty rac{F_A(n)^2}{Q^2 + M_A(n)^2}$$

with

$$M_A(n)^2 \sim_{n\to\infty} \sigma n$$

H. J. Kwee and R. F. Lebed, JHEP 0801, 027 (2008)

Problems

- Since axial field obeys to the same dilaton field then it is impossible to have a different OPE from the vectorial correlator.
- We need a mechanism to explain the pion pole and the difference between the axial and the vectorial spectrum.

Solution: extra-scalar field on the bulk $\mathbb X$

$$\begin{split} S_5 &= \int \!\! \mathrm{d}^4 x \int_0^\infty \!\! \mathrm{d}z \sqrt{g} \, \mathrm{e}^{\,-\Phi(z)} \, \operatorname{Tr} \! \left\{ g^{MN} \left(D_M \mathbb{X} \right)^\dagger \left(D_N \mathbb{X} \right) - m^2 \mathbb{X}^2 \right. \\ &\left. - \frac{1}{4 g_5^2} g_{MN} g_{RS} \left(\mathbb{F}_V^{MR} \mathbb{F}_V^{NS} + \mathbb{F}_A^{MR} \mathbb{F}_A^{NS} \right) \right\} \end{split}$$

where we use

$$\begin{split} D^{M}\mathbb{X} &= \partial^{M}\mathbb{X} - i[\mathbb{V}^{M}, \mathbb{X}] - i\{\mathbb{A}^{M}, \mathbb{X}\} \\ \mathbb{F}^{MN}_{V} &= \partial^{M}\mathbb{V}^{N} - \partial^{N}\mathbb{V}^{M} - i[\mathbb{V}^{M}, \mathbb{V}^{N}] - i[\mathbb{A}^{M}, \mathbb{A}^{N}] \\ \mathbb{F}^{MN}_{A} &= \partial^{M}\mathbb{A}^{N} - \partial^{N}\mathbb{A}^{M} - i[\mathbb{V}^{M}, \mathbb{A}^{N}] - i[\mathbb{A}^{M}, \mathbb{V}^{N}] \end{split}$$

H. J. Kwee and R. F. Lebed, JHEP 0801, 027 (2008)

Solution: extra-scalar field on the bulk X

If v(z) is the vacuum expectation value for the scalar field \mathbb{X} ,

$$\mathrm{Tr}|\mathbb{X}|^2 = 2\nu(z)^2$$

The equation of motion for the Fourier transform over the 4D space of the axial field \mathbb{A} , $f_A(-q^2,z)$, becomes

$$\partial_z^2 f_A + \partial_z \left[\ln w(z) \right] \partial_z f_A - Q^2 f_A = \left(\frac{v(z)}{z} \right)^2 f_A$$

where $w(z) = \frac{1}{z} e^{-\Phi(z) - B(z)}$.

Results

We prove that is possible to constrain v(z) such that :

- We recover the right axial OPE *i.e.* $\langle \mathcal{O}_6 \rangle_A = -\frac{11}{7} \langle \mathcal{O}_6 \rangle_V$.
- The axial spectrum is recovered and we have analytically that $F_{\pi} \neq 0$.

Conclusion

- We have shown that it is possible to recover the right OPE for the vectorial field from a modified dilaton profile in the SW model
- We have shown that naturally the Regge behaviour of the spectrum is keep.
- We have shown that by the use of an extra scalar field it is possible to have axial field in SW model with the right OPE and the axial spectrum.
- What about the intermediate region? This method provides an unique way to do the analytic continuation from the OPE to the χ PT and Minkowskian regions.