On the $\Delta I = 1/2$ rule

Nicolas Garron

DAMTP, Cambridge University,

and Plymouth University

Rencontre de Physique des Particules 2015

Henry Poincare institute

Janurary 15, 2015

- In $K \rightarrow \pi\pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

 $\mathbb{P}[K \to (\pi\pi)_{I=0}] \sim 450 \times \mathbb{P}[K \to (\pi\pi)_{I=2}]$

Similar enhancement observed in different systems

- In $K \rightarrow \pi\pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

- Similar enhancement observed in different systems
- In terms of amplitudes, this gives

$$\omega = rac{A_2}{A_0} \sim rac{\mathrm{Re}A_2}{\mathrm{Re}A_o} \sim 1/22$$

- In $K \rightarrow \pi \pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

- Similar enhancement observed in different systems
- In terms of amplitudes, this gives

$$\omega = rac{A_2}{A_0} \sim rac{{
m Re}A_2}{{
m Re}A_o} \sim 1/22$$

- Perturbative running from the EW scale down to a few GeV gives a factor 1/2
- Very long-standing puzzle, see e.g. Gaillard & Lee '74, Altarelli & Maiani '74

- In $K \rightarrow \pi\pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

- Similar enhancement observed in different systems
- In terms of amplitudes, this gives

$$\omega = rac{A_2}{A_0} \sim rac{{
m Re}A_2}{{
m Re}A_o} \sim 1/22$$

- Perturbative running from the EW scale down to a few GeV gives a factor 1/2
- Very long-standing puzzle, see e.g. Gaillard & Lee '74, Altarelli & Maiani '74
- \blacksquare Is the remaining contribution coming from non-perturbative QCD ? \longrightarrow task for lattice QCD

- In $K \rightarrow \pi \pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

- Similar enhancement observed in different systems
- In terms of amplitudes, this gives

$$\omega = rac{A_2}{A_0} \sim rac{{
m Re}A_2}{{
m Re}A_o} \sim 1/22$$

- Perturbative running from the EW scale down to a few GeV gives a factor 1/2
- Very long-standing puzzle, see e.g. Gaillard & Lee '74, Altarelli & Maiani '74
- Is the remaining contribution coming from non-perturbative QCD ? → task for lattice QCD
- We have already computed A₂, we have a pilot computation of A₀
 - \Rightarrow Can we extract an explanation for this phenomena ?

Computation of $K \rightarrow \pi \pi$ amplitudes

Operator Product expansion

Describe $K \to (\pi \pi)_{I=0,2}$ with an effective Hamiltonian

$$H^{\Delta s=1} = \frac{G_F}{\sqrt{2}} \Big\{ \sum_{i=1}^{10} \left(V_{ud} V_{us}^* z_i(\mu) - V_{td} V_{ts}^* y_i(\mu) \right) Q_i(\mu) \Big\}$$

Short distance effects factorized in the Wilson coefficients y_i , z_i

Long distance effects factorized in the matrix elements

$$\langle \pi \pi | Q_i | K \rangle \longrightarrow$$
 Lattice

See eg [Norman Christ @ Kaon'09] for an overview of different strategies.

and [Lellouch @ Les Houches'09] for an review

Nicolas Garron (DAMTP)

$$Q_1 = (\bar{s}d)_{V-A} (\bar{u}u)_{V-A}$$
 $Q_2 = \text{color mixed}$

4-quark operators

$$\begin{aligned} &Q_7 = \frac{3}{2}(\bar{s}d)_{V-A} \sum_{q=u,d,s} e_q(\bar{q}q)_{V+A} \qquad Q_8 = \text{color mixed} \\ &Q_9 = \frac{3}{2}(\bar{s}d)_{V-A} \sum_{q=u,d,s} e_q(\bar{q}q)_{V-A} \qquad Q_{10} = \text{color mixed} \end{aligned}$$

Nicolas Garron (DAMTP)

On the $\Delta I = 1/2$ rule

4-quark operators

$$\begin{array}{ll} Q_3 = (\bar{s}d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u,d,s} (\bar{q}q)_{\mathrm{V}-\mathrm{A}} & \quad Q_4 = \mathsf{color} \ \mathsf{mixed} \\ \\ Q_5 = (\bar{s}d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u,d,s} (\bar{q}q)_{\mathrm{V}+\mathrm{A}} & \quad Q_6 = \mathsf{color} \ \mathsf{mixed} \end{array}$$

$SU(3)_L \otimes SU(3)_R$ and isospin decomposition

Irrep of $SU(3)_L \otimes SU(3)_R$

$$3 \otimes 3 = 8+1$$

 $\overline{8} \otimes 8 = 27 + \overline{10} + 10 + 8 + 8 + 1$

Decomposition of the 4-quark operators gives

see eg [Claude Bernard @ TASI'89] and [RBC'01]

$SU(3)_L \otimes SU(3)_R$ and isospin decomposition

Irrep of $SU(3)_L \otimes SU(3)_R$

$$\overline{3} \otimes 3 = 8+1$$

$$\overline{8} \otimes 8 = 27 + \overline{10} + 10 + 8 + 8 + 1$$

Only 7 are independent: one (27, 1) four (8, 1), and two (8, 8), \Rightarrow we called them Q'

$$\begin{array}{rcl} (27,1) & Q_1' & = & Q_1'^{(27,1),\Delta l=3/2} + Q_1'^{(27,1),\Delta l=1/2} \\ (8,1) & Q_2' & = & Q_2'^{(8,1),\Delta l=1/2} \\ & Q_3' & = & Q_3'^{(8,1),\Delta l=1/2} \\ & Q_5' & = & Q_5'^{(8,1),\Delta l=1/2} \\ & Q_6' & = & Q_6'^{(8,1),\Delta l=1/2} \\ (8,8) & Q_7' & = & Q_7'^{(8,8),\Delta l=3/2} + Q_7'^{(8,8),\Delta l=1/2} \\ & Q_8' & = & Q_8'^{(8,8),\Delta l=3/2} + Q_8'^{(8,8),\Delta l=1/2} \end{array}$$

$SU(3)_L \otimes SU(3)_R$ and isospin decomposition

Irrep of $SU(3)_L \otimes SU(3)_R$

$$\overline{3} \otimes 3 = 8+1$$

 $\overline{8} \otimes 8 = 27 + \overline{10} + 10 + 8 + 8 + 1$

Only 7 are independent: one (27, 1) four (8, 1), and two (8, 8), \Rightarrow we called them Q'

$$\begin{array}{rcl} (27,1) & Q_1' & = & Q_1'^{(27,1),\Delta I=3/2} + Q_1'^{(27,1),\Delta I=1/2} \\ (8,1) & Q_2' & = & Q_2'^{(8,1),\Delta I=1/2} \\ & Q_3' & = & Q_3'^{(8,1),\Delta I=1/2} \\ & Q_5' & = & Q_5'^{(8,1),\Delta I=1/2} \\ & Q_6' & = & Q_6'^{(8,1),\Delta I=1/2} \\ (8,8) & Q_7' & = & Q_7'^{(8,8),\Delta I=3/2} + Q_7'^{(8,8),\Delta I=1/2} \\ & Q_8' & = & Q_8'^{(8,8),\Delta I=3/2} + Q_8'^{(8,8),\Delta I=1/2} \end{array}$$

Many obstacles:

- Final state with two pions
- Many operators that mix under renormalisation
- Require the evaluation of disconnected graphs

Moreover, using a chiral disctretisation of the Dirac operator is probably unavoidable.

Plus the usual difficulties: light dynamical quarks, large volume, ...

Isospin channels

• Only 3 of these operators contribute to the $\Delta I = 3/2$ channel

- A tree-level operator
- 2 electroweak penguins
- No disconnect graphs contribute to the $\Delta I = 3/2$ channel

 $\Rightarrow A_2$ is much simpler than A_0

Still highly non-trivial, but perfect challenge for lattice QCD with chiral fermions

Lattice computation of A_2 by RBC-UKQCD

Lellouch-Lüscher method Lellouch Lüscher '00 to obtain the physical matrix element from the finite-volume Euclidiean amplitude and the derivative of the phase shift

- Lellouch-Lüscher method Lellouch Lüscher '00 to obtain the physical matrix element from the finite-volume Euclidiean amplitude and the derivative of the phase shift
- Combine
 - Wigner-Eckart theorem (Exact up to isospin symmetry breaking)

$$\langle \pi^{+}(\boldsymbol{p}_{1})\pi^{0}(\boldsymbol{p}_{2})|O_{\Delta I_{Z}=1/2}^{\Delta I=3/2}|K^{+}\rangle = 3/2\langle \pi^{+}(\boldsymbol{p}_{1})\pi^{+}(\boldsymbol{p}_{2})|O_{\Delta I_{Z}=3/2}^{\Delta I=3/2}|K^{+}\rangle$$

and then compute the unphysical process ${\it K}^+
ightarrow \pi^+ \pi^+$

• Use Anti-periodic B.C. to eliminate the unwanted (wrong-kinematic) state Sachrajda & Villadoro '05

- Lellouch-Lüscher method Lellouch Lüscher '00 to obtain the physical matrix element from the finite-volume Euclidiean amplitude and the derivative of the phase shift
- Combine
 - Wigner-Eckart theorem (Exact up to isospin symmetry breaking)

$$\langle \pi^{+}(\boldsymbol{p}_{1})\pi^{0}(\boldsymbol{p}_{2})|O_{\Delta I_{Z}=1/2}^{\Delta I=3/2}|K^{+}\rangle = 3/2\langle \pi^{+}(\boldsymbol{p}_{1})\pi^{+}(\boldsymbol{p}_{2})|O_{\Delta I_{Z}=3/2}^{\Delta I=3/2}|K^{+}\rangle$$

and then compute the unphysical process $K^+ o \pi^+ \pi^+$

- Use Anti-periodic B.C. to eliminate the unwanted (wrong-kinematic) state Sachrajda & Villadoro '05
- Renormalise at low energy $\mu_0 \sim 1.1~{\rm GeV}$ on and run non-perturbatively using finer lattices to $\mu = 3~{\rm GeV}$ and match to $\overline{\rm MS}$ Arthur, Boyle '10, Arthur, Boyle, N.G., Kelly, Lytle '11

$$\lim_{a_1 \to 0} \underbrace{\left[Z(\mu_1, a_1) Z^{-1}(\mu_0, a_1) \right]}_{\text{fine lattice}} \times \underbrace{Z(\mu_0, a_0)}_{\text{coarse lattice}} = Z(\mu_1, a_0)$$

A₂ from RBC-UKQCD

- Very challenging both theoretically and numerically
- Computation performed with state-of-the-art algorithm and large-scale computer resources
- Possible because of various ingenious methods

A2 from RBC-UKQCD

- Very challenging both theoretically and numerically
- Computation performed with state-of-the-art algorithm and large-scale computer resources
- Possible because of various ingenious methods

Blum, Boyle, Christ, N.G., Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12

- **2** + 1 chiral fermions (Domain-Wall on IDSDR $a \sim 0.14$ fm)
- lightest unitary pion mass $\sim 170 \text{ MeV}$ (partially quenched 140 MeV)
- Non-perturbative-renormalization through RI-SMOM schemes

A2 from RBC-UKQCD

- Very challenging both theoretically and numerically
- Computation performed with state-of-the-art algorithm and large-scale computer resources
- Possible because of various ingenious methods

Blum, Boyle, Christ, N.G., Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12

- 2 + 1 chiral fermions (Domain-Wall on IDSDR $a \sim 0.14$ fm)
- lightest unitary pion mass $\sim 170 \text{ MeV}$ (partially quenched 140 MeV)
- Non-perturbative-renormalization through RI-SMOM schemes
- Find $\text{ReA}_2 = 1.381(46)_{\text{stat}}(258)_{\text{syst}}10^{-8}$ GeV, experimental value is 1.479(4) 10^{-8} GeV
- And $ImA_2 = -6.54(46)_{stat}(120)_{syst}$ GeV

A2 from RBC-UKQCD

- Very challenging both theoretically and numerically
- Computation performed with state-of-the-art algorithm and large-scale computer resources
- Possible because of various ingenious methods

Blum, Boyle, Christ, N.G., Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12

- **2** + 1 chiral fermions (Domain-Wall on IDSDR $a \sim 0.14 \text{ fm}$)
- Ightest unitary pion mass $\sim 170 \, {
 m MeV}$ (partially quenched 140 ${
 m MeV}$)
- Non-perturbative-renormalization through RI-SMOM schemes
- Find $\text{ReA}_2 = 1.381(46)_{\text{stat}}(258)_{\text{syst}}10^{-8}$ GeV, experimental value is 1.479(4) 10^{-8} GeV
- And $ImA_2 = -6.54(46)_{stat}(120)_{syst}$ GeV
- Important computation in the field: first realistic computation of a hadronic decay
- 2012 Ken Wilson lattice award

Toward a full computation of $K \rightarrow (\pi \pi)$ and an understanding of the $\Delta I = 1/2$ rule ?

A₀ from RBC-UKQCD

"Pilot" computation of the full process

T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11.

Unphysical:

- "Heavy" pions (lightest $\sim m_{\pi} \sim 300 \text{ MeV}$), small volume
- Non-physical kinematics: pions at rest

A₀ from RBC-UKQCD

"Pilot" computation of the full process

T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11.

Unphysical:

- "Heavy" pions (lightest $\sim m_{\pi} \sim 300 \text{ MeV}$), small volume
- Non-physical kinematics: pions at rest

But "complete":

- Two-pion state
- All the contractions of the 7 fourk-operators are computed
- Renormalisation done non-perturbatively

A₀ from RBC-UKQCD

"Pilot" computation of the full process

T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11.

Unphysical:

- "Heavy" pions (lightest $\sim m_{\pi} \sim 300 \text{ MeV}$), small volume
- Non-physical kinematics: pions at rest

But "complete":

- Two-pion state
- All the contractions of the 7 fourk-operators are computed
- Renormalisation done non-perturbatively

obtain

$$\begin{aligned} \mathrm{Re}\, A_0 &= 3.80(82)\times 10^{-7}\mathrm{GeV} \\ \mathrm{Im}\, A_0 &= -2.5(2.2)\times 10^{-11}\mathrm{GeV} \end{aligned}$$

We combine our physical computation of $\Delta I = 3/2$ part with our non-physical computation of the $\Delta I = 1/2$

	1/ <i>a</i> [GeV]	m_{π} [MeV]	<i>т</i> к [MeV]	Re <i>A</i> 2 [10 ⁻⁸ GeV]	Re <i>A</i> 0 [10 ⁻⁸ GeV]	$\frac{\text{Re}A_0}{\text{Re}A_2}$	kinematics
16 ³ IW	1.73(3)	422(7)	878(15)	4.911(31)	45(10)	9.1(2.1)	threshold
24 ³ IW	1.73(3)	329(6)	662(11)	2.668(14)	32.1(4.6)	12.0(1.7)	threshold
32 ³ ID	1.36(1)	142.9(1.1)	511.3(3.9)	1.38(5)(26)	-	-	physical
Exp	_	135 - 140	494 - 498	1.479(4)	33.2(2)	22.45(6)	

Pattern which could explain the $\Delta I = 1/2$ enhancement

Boyle, Christ, N.G., Goode, Izubuchi, Janowski, Lehner, Liu, Lytle, Sachrajda, Soni, Zhang, PRL'13

Two kinds of contraction for each $\Delta I = 3/2$ operator

 $\mathsf{Contraction}\ \textcircled{1}$

Contraction 2

Two kinds of contraction for each $\Delta I = 3/2$ operator

 $\mathsf{Contraction}\ \textcircled{1}$

Contraction (2)

 $\blacksquare\ {\rm Re}A_2$ is dominated by the tree level operator (EWP \sim 1%)

 $ReA_2 \sim (1) + (2)$

Two kinds of contraction for each $\Delta I = 3/2$ operator

 $\mathsf{Contraction}\ (\underline{1})$

Contraction (2)

ReA2 is dominated by the tree level operator (EWP \sim 1%)

 $ReA_2 \sim (1) + (2)$

• Naive factorisation approach: $2 \sim 1/3$

Two kinds of contraction for each $\Delta I = 3/2$ operator

 $\mathsf{Contraction}\ (\underline{1})$

Contraction (2)

 \blacksquare ReA2 is dominated by the tree level operator (EWP \sim 1%)

 $ReA_2 \sim (1) + (2)$

- Naive factorisation approach: $2 \sim 1/3$
- Our computation: $2 \sim -0.7$

 \Rightarrow large cancellation in ReA₂

 $\operatorname{Re}A_0$ is also dominated by the tree level operators

i	Q_i^{lat} [GeV]	$Q_i^{\overline{ ext{MS-NDR}}}$ [GeV]
1	$8.1(4.6) \ 10^{-8}$	6.6(3.1) 10 ⁻⁸
2	$2.5(0.6) \ 10^{-7}$	$2.6(0.5) \ 10^{-7}$
3	$-0.6(1.0) 10^{-8}$	$5.4(6.7) \ 10^{-10}$
4	-	$2.3(2.1) \ 10^{-9}$
5	$-1.2(0.5) 10^{-9}$	$4.0(2.6) 10^{-10}$
6	$4.7(1.7) \ 10^{-9}$	-7.0(2.4) 10 ⁻⁹
7	$1.5(0.1) \ 10^{-10}$	$6.3(0.5) \ 10^{-11}$
8	$-4.7(0.2) \ 10^{-10}$	$-3.9(0.1) \ 10^{-10}$
9	_	$2.0(0.6) \ 10^{-14}$
10	-	$1.6(0.5) \ 10^{-11}$
ReA ₀	$3.2(0.5) \ 10^{-7}$	$3.2(0.5) \ 10^{-7}$

ReA₀ is also dominated by the tree level operators

i		Q_i^{lat} [GeV]	$Q_i^{\overline{ ext{MS-NDR}}}$ [GeV]
1		$8.1(4.6) \ 10^{-8}$	6.6(3.1) 10 ⁻⁸
2		$2.5(0.6) \ 10^{-7}$	$2.6(0.5) 10^{-7}$
3		$-0.6(1.0) \ 10^{-8}$	5.4(6.7) 10^{-10}
4		-	$2.3(2.1) 10^{-9}$
5		$-1.2(0.5) \ 10^{-9}$	$4.0(2.6) 10^{-10}$
6		$4.7(1.7) \ 10^{-9}$	$-7.0(2.4) 10^{-9}$
7		$1.5(0.1) \ 10^{-10}$	$6.3(0.5) 10^{-11}$
8		$-4.7(0.2) \ 10^{-10}$	$-3.9(0.1) 10^{-10}$
9		_	$2.0(0.6) 10^{-14}$
10		-	$1.6(0.5) \ 10^{-11}$
ReA	0	$3.2(0.5) \ 10^{-7}$	3.2(0.5) 10 ⁻⁷

Dominant contribution to Q_2^{lat} is $\propto (22 - \textcircled{1}) \Rightarrow \text{Enhancement in Re}A_0$

ReA₀ is also dominated by the tree level operators

i	Q_i^{lat} [GeV]	$Q_i^{\text{MS-NDR}}$ [GeV]
1	$8.1(4.6) \ 10^{-8}$	6.6(3.1) 10 ⁻⁸
2	$2.5(0.6) \ 10^{-7}$	$2.6(0.5) \ 10^{-7}$
3	$-0.6(1.0) \ 10^{-8}$	$5.4(6.7) \ 10^{-10}$
4	-	$2.3(2.1) \ 10^{-9}$
5	-1.2(0.5) 10 ⁻⁹	$4.0(2.6) 10^{-10}$
6	$4.7(1.7) \ 10^{-9}$	$-7.0(2.4) 10^{-9}$
7	$1.5(0.1) \ 10^{-10}$	$6.3(0.5) \ 10^{-11}$
8	$-4.7(0.2) \ 10^{-10}$	$-3.9(0.1) \ 10^{-10}$
9	-	$2.0(0.6) \ 10^{-14}$
10	-	$1.6(0.5) \ 10^{-11}$
ReA_0	$3.2(0.5) \ 10^{-7}$	3.2(0.5) 10 ⁻⁷

Dominant contribution to Q_2^{lat} is $\propto (22 - \textcircled{1}) \Rightarrow \text{Enhancement in Re}A_0$

$$\frac{\mathrm{Re}A_0}{\mathrm{Re}A_2} \sim \frac{2(2) - (1)}{(1) + (2)}$$

ReA₀ is also dominated by the tree level operators

i	Q_i^{lat} [GeV]	$Q_i^{\text{MS-NDR}}$ [GeV]
1	$8.1(4.6) \ 10^{-8}$	6.6(3.1) 10 ⁻⁸
2	$2.5(0.6) \ 10^{-7}$	$2.6(0.5) \ 10^{-7}$
3	$-0.6(1.0) \ 10^{-8}$	$5.4(6.7) \ 10^{-10}$
4	-	$2.3(2.1) \ 10^{-9}$
5	-1.2(0.5) 10 ⁻⁹	$4.0(2.6) 10^{-10}$
6	$4.7(1.7) \ 10^{-9}$	-7.0(2.4) 10 ⁻⁹
7	$1.5(0.1) \ 10^{-10}$	$6.3(0.5) \ 10^{-11}$
8	$-4.7(0.2) \ 10^{-10}$	$-3.9(0.1) \ 10^{-10}$
9	-	$2.0(0.6) \ 10^{-14}$
10	-	$1.6(0.5) \ 10^{-11}$
ReA_0	$3.2(0.5) \ 10^{-7}$	3.2(0.5) 10 ⁻⁷

Dominant contribution to $Q_2^{\rm lat}$ is \propto (22 – ①) \Rightarrow Enhancement in ReA₀

$$\frac{\mathrm{Re}A_0}{\mathrm{Re}A_2} \sim \frac{2(2) - (1)}{(1) + (2)}$$

With this unphysical computation (kinematics, masses) we find

$$\frac{\text{Re}A_0}{\text{Re}A_2} = 9.1(2.1) \text{ for } m_K = 878 \text{ MeV } m_\pi = 422 \text{ MeV}$$

$$\frac{\text{Re}A_0}{\text{Re}A_2} = 12.0(1.7) \text{ for } m_K = 662 \text{ MeV } m_\pi = 329 \text{ MeV}$$

Nicolas Garron (DAMTP)

- This sign implies both a cancellation in A_2 and an enhancement in A_0
- Need to be confirmed with physical quark masses and physical kinematics
- Analytic work in that direction Pich & de Rafael '96, Buras
- See also discussion in Lellouch @ Les Houches '09]

Going further: 2014-2015 update

 $\bullet \quad \Delta I = 3/2$

Main limitation on the previous computation : only one coarse lattice spacing IDSDR $32^3 \times 64$, with $a^{-1} \sim 1.37 \text{ GeV} \Rightarrow a \sim 0.14 \text{ fm}$, $L \sim 4.6 \text{ fm}$

Current computation:

two lattice spacing, $n_f = 2 + 1$, large volume at the physical point

New discretisation of the Domain-Wall fermion forumlation: Möbius Brower, Neff, Orginos '12

■ $48^3 \times 96$, with $a^{-1} \sim 1.729 \text{ GeV} \Rightarrow a \sim 0.11 \text{ fm}$, $L \sim 5.5 \text{ fm}$

- $64^3 \times 128$ with $a^{-1} \sim 2.358$ GeV $\Rightarrow a \sim 0.084$ fm, $L \sim 5.4$ fm
- \blacksquare am_{res} $\sim 10^{-4}$

Status: Computation finished, draft in final stage

 $\bullet \ \Delta I = 3/2$

Main limitation on the previous computation : only one coarse lattice spacing IDSDR $32^3 \times 64$, with $a^{-1} \sim 1.37 \text{ GeV} \Rightarrow a \sim 0.14 \text{ fm}$, $L \sim 4.6 \text{ fm}$

Current computation:

two lattice spacing, $n_f = 2 + 1$, large volume at the physical point

New discretisation of the Domain-Wall fermion forumlation: Möbius Brower, Neff, Orginos '12

■ $48^3 \times 96$, with $a^{-1} \sim 1.729 \text{ GeV} \Rightarrow a \sim 0.11 \text{ fm}$, $L \sim 5.5 \text{ fm}$

- $64^3 \times 128$ with $a^{-1} \sim 2.358$ GeV $\Rightarrow a \sim 0.084$ fm, $L \sim 5.4$ fm
- \blacksquare am_{res} $\sim 10^{-4}$

Status: Computation finished, draft in final stage

$\Delta I = 1/2$

Main limitation on the previous computation : non-physical kinematic

New formulation: G-parity boundary conditions

Status: First computation almost finished

Preliminary results, very close to final numbers

see also talk by T.Janowski @ lat'13 Janowski, Sachrajda, Boyle, Christ, Mawhinney, Yin, Zhang, N.G., Lytle

2+1 Domain-Wall fermions

Chiral-Flavour symmetry (almost) exact at finite lattice spacing

2+1 Domain-Wall fermions

Chiral-Flavour symmetry (almost) exact at finite lattice spacing

Finite fith dimension $L_s \rightarrow$ small additive quark mass renormalisation m_{res}

■ 2008: IW $a^{-1} = 1.729(18)$ GeV $\leftrightarrow a \sim 0.1145$ fm, on $24^3 \times 64 \times 16$, ie $L \sim 2.74$ fm

Unitary pion masses $m_{\pi} = 331, 419, (557)$ MeV

2+1 Domain-Wall fermions

Chiral-Flavour symmetry (almost) exact at finite lattice spacing

- 2008: IW $a^{-1} = 1.729(18)$ GeV $\leftrightarrow a \sim 0.1145$ fm, on $24^3 \times 64 \times 16$, ie $L \sim 2.74$ fm Unitary pion masses $m_{\pi} = 331, 419, (557)$ MeV
- 2010: IW $a^{-1} = 2.282(28)$ GeV $\leftrightarrow a \sim 0.0868$ fm, on $32^3 \times 64 \times 16$, ie $L \sim 2.77$ fm Unitary pion masses $m_{\pi} = 290, 345, 394$ MeV

2+1 Domain-Wall fermions

Chiral-Flavour symmetry (almost) exact at finite lattice spacing

- 2008: IW $a^{-1} = 1.729(18)$ GeV $\leftrightarrow a \sim 0.1145$ fm, on $24^3 \times 64 \times 16$, ie $L \sim 2.74$ fm Unitary pion masses $m_{\pi} = 331, 419, (557)$ MeV
- 2010: IW $a^{-1} = 2.282(28)$ GeV $\leftrightarrow a \sim 0.0868$ fm, on $32^3 \times 64 \times 16$, ie $L \sim 2.77$ fm Unitary pion masses $m_{\pi} = 290, 345, 394$ MeV
- 2012: IDSDR $a^{-1} = 1.372(10)$ GeV $\leftrightarrow a \sim 0.144$ fm, on $32^3 \times 64 \times 32$, ie $L \sim 4.62$ fm Unitary pion mass $m_{\pi} = 171$ MeV

2+1 Domain-Wall fermions

Chiral-Flavour symmetry (almost) exact at finite lattice spacing

- 2008: IW $a^{-1} = 1.729(18)$ GeV $\leftrightarrow a \sim 0.1145$ fm, on $24^3 \times 64 \times 16$, ie $L \sim 2.74$ fm Unitary pion masses $m_{\pi} = 331, 419, (557)$ MeV
- 2010: IW $a^{-1} = 2.282(28)$ GeV $\leftrightarrow a \sim 0.0868$ fm, on $32^3 \times 64 \times 16$, ie $L \sim 2.77$ fm Unitary pion masses $m_{\pi} = 290, 345, 394$ MeV
- 2012: IDSDR $a^{-1} = 1.372(10)$ GeV $\leftrightarrow a \sim 0.144$ fm, on $32^3 \times 64 \times 32$, ie $L \sim 4.62$ fm Unitary pion mass $m_{\pi} = 171$ MeV
- 2014: Möbius, Unitary pion mass 139 MeV
 - $a^{-1} = 1.730(4)$ GeV $\leftrightarrow a \sim 0.1145$ fm, on $48^3 \times 96 \times 24$ ie $L \sim 4.62$ fm
 - $a^{-1} = 2.359(7)$ GeV $\leftrightarrow a \sim 0.0839$ fm, on $64^3 \times 128 \times 12$ ie $L \sim 5.475$ fm

- Observe a mechanism which contributes to a large enhancement in A_0/A_2
- Is this enhancement enough, or do we need something else ?
- Clearly, a non-perturbative method is required
- New: Continuum limit of $K \to (\pi \pi)_{I=2}$ at the physical point
- First realistic results of $K \to (\pi \pi)_{I=0}$ (with physical kinematics) should be available in a few months(?), thanks to G-parity boundary conditions
- Other kaon pheno applications: kl₃ or BSM matrix elements Boyle, N.G. Hudspith'12
 - \Rightarrow Provides important tests of the SM and help to understand/constrain BSM theories