On the $\Delta I=1 / 2$ rule

Nicolas Garron

DAMTP, Cambridge University, and Plymouth University

Rencontre de Physique des Particules 2015
Henry Poincare institute
Janurary 15, 2015

Introduction: the $\Delta I=1 / 2$ rule

- In $K \rightarrow \pi \pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

$$
\mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=0}\right] \sim 450 \times \mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=2}\right]
$$

- Similar enhancement observed in different systems

Introduction: the $\Delta I=1 / 2$ rule

- In $K \rightarrow \pi \pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

$$
\mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=0}\right] \sim 450 \times \mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=2}\right]
$$

- Similar enhancement observed in different systems
- In terms of amplitudes, this gives

$$
\omega=\frac{A_{2}}{A_{0}} \sim \frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{o}} \sim 1 / 22
$$

Introduction: the $\Delta I=1 / 2$ rule

- In $K \rightarrow \pi \pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

$$
\mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=0}\right] \sim 450 \times \mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=2}\right]
$$

- Similar enhancement observed in different systems
- In terms of amplitudes, this gives

$$
\omega=\frac{A_{2}}{A_{0}} \sim \frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{o}} \sim 1 / 22
$$

- Perturbative running from the EW scale down to a few GeV gives a factor $1 / 2$
- Very long-standing puzzle, see e.g. Gaillard \& Lee '74, Altarelli \& Maiani ' 74

Introduction: the $\Delta I=1 / 2$ rule

- In $K \rightarrow \pi \pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

$$
\mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=0}\right] \sim 450 \times \mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=2}\right]
$$

- Similar enhancement observed in different systems
- In terms of amplitudes, this gives

$$
\omega=\frac{A_{2}}{A_{0}} \sim \frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{o}} \sim 1 / 22
$$

- Perturbative running from the EW scale down to a few GeV gives a factor $1 / 2$
- Very long-standing puzzle, see e.g. Gaillard \& Lee '74, Altarelli \& Maiani ' 74
- Is the remaining contribution coming from non-perturbative QCD ? \longrightarrow task for lattice QCD

Introduction: the $\Delta I=1 / 2$ rule

- In $K \rightarrow \pi \pi$ decays, the final state can have isospin 0 or 2
- Experimentally we observe that

$$
\mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=0}\right] \sim 450 \times \mathbb{P}\left[K \rightarrow(\pi \pi)_{\mathrm{I}=2}\right]
$$

- Similar enhancement observed in different systems
- In terms of amplitudes, this gives

$$
\omega=\frac{A_{2}}{A_{0}} \sim \frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{o}} \sim 1 / 22
$$

- Perturbative running from the EW scale down to a few GeV gives a factor $1 / 2$
- Very long-standing puzzle, see e.g. Gaillard \& Lee '74, Altarelli \& Maiani ' 74
- Is the remaining contribution coming from non-perturbative QCD ? \longrightarrow task for lattice QCD
- We have already computed A_{2}, we have a pilot computation of A_{0}
\Rightarrow Can we extract an explanation for this phenomena ?

Computation of $K \rightarrow \pi \pi$ amplitudes

Overview of the computation

Operator Product expansion

Describe $K \rightarrow(\pi \pi)_{\mathrm{I}=0,2}$ with an effective Hamiltonian

$$
H^{\Delta s=1}=\frac{G_{F}}{\sqrt{2}}\left\{\sum_{i=1}^{10}\left(V_{u d} V_{u s}^{*} z_{i}(\mu)-V_{t d} V_{t s}^{*} y_{i}(\mu)\right) Q_{i}(\mu)\right\}
$$

Short distance effects factorized in the Wilson coefficients y_{i}, z_{i}
Long distance effects factorized in the matrix elements

$$
\langle\pi \pi| Q_{i}|K\rangle \longrightarrow \text { Lattice }
$$

See eg [Norman Christ @ Kaon'09] for an overview of different strategies.
and [Lellouch @ Les Houches'09] for an review

4-quark operators

Current diagrams

$$
Q_{1}=(\bar{s} d)_{\mathrm{V}-\mathrm{A}}(\bar{u} u)_{\mathrm{V}-\mathrm{A}} \quad Q_{2}=\text { color mixed }
$$

4-quark operators

Electroweak penguins

$$
\begin{array}{ll}
Q_{7}=\frac{3}{2}(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s} e_{q}(\bar{q} q)_{\mathrm{V}+\mathrm{A}} & Q_{8}=\text { color mixed } \\
Q_{9}=\frac{3}{2}(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s} e_{q}(\bar{q} q)_{\mathrm{V}-\mathrm{A}} & Q_{10}=\text { color mixed }
\end{array}
$$

4-quark operators

$$
\begin{array}{rll}
Q_{3} & =(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s}(\bar{q} q)_{\mathrm{V}-\mathrm{A}} & Q_{4}=\text { color mixed } \\
Q_{5} & =(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s}(\bar{q} q)_{\mathrm{V}+\mathrm{A}} & Q_{6}=\text { color mixed }
\end{array}
$$

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

Irrep of $S U(3)_{L} \otimes S U(3)_{R}$

$$
\begin{aligned}
& \overline{3} \otimes 3=8+1 \\
& \overline{8} \otimes 8=27+\overline{10}+10+8+8+1
\end{aligned}
$$

Decomposition of the 4-quark operators gives

$$
\begin{aligned}
Q_{1,2} & =Q_{1,2}^{(27,1), \Delta I=3 / 2}+Q_{1,2}^{(27,1), \Delta I=1 / 2}+Q_{1,2}^{(8,8), \Delta I=1 / 2} \\
Q_{3,4} & =Q_{3,4}^{(8,1), \Delta I=1 / 2} \\
Q_{5,6} & =Q_{5,6}^{(8,1), \Delta I=1 / 2} \\
Q_{7,8} & =Q_{7,8}^{(8,8), \Delta I=3 / 2}+Q_{7,8}^{(8,8), \Delta I=1 / 2} \\
Q_{9,10} & =Q_{9,10}^{(27,1), \Delta I=3 / 2}+Q_{9,10}^{(27,1), \Delta I=1 / 2}+Q_{9,10}^{(8,8), \Delta I=1 / 2}
\end{aligned}
$$

see eg [Claude Bernard @ TASI'89] and [RBC'01]

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

Irrep of $S U(3)_{L} \otimes S U(3)_{R}$

$$
\begin{aligned}
& \overline{3} \otimes 3=8+1 \\
& \overline{8} \otimes 8=27+\overline{10}+10+8+8+1
\end{aligned}
$$

Only 7 are independent: one $(27,1)$ four $(8,1)$, and two $(8,8), \Rightarrow$ we called them Q^{\prime}

$$
\begin{array}{rlrl}
(27,1) & Q_{1}^{\prime} & = & Q_{1}^{\prime(27,1), \Delta l=3 / 2}+Q_{1}^{\prime(27,1), \Delta l=1 / 2} \\
(8,1) & Q_{2}^{\prime} & = & \\
& Q_{3}^{\prime} & = & Q_{2}^{\prime(8,1), \Delta l=1 / 2} \\
Q_{5}^{\prime} & = & Q_{3}^{\prime(8,1), \Delta l=1 / 2} \\
& Q_{6}^{\prime} & = & Q_{5}^{\prime(8,1), \Delta l=1 / 2} \\
& & Q_{6}^{\prime(8,1), \Delta l=1 / 2} \\
(8,8) & Q_{7}^{\prime} & = & Q_{7}^{\prime(8,8), \Delta l=3 / 2}+Q_{7}^{\prime(8,8), \Delta l=1 / 2} \\
& Q_{8}^{\prime} & = & Q_{8}^{\prime(8,8), \Delta l=3 / 2}+Q_{8}^{\prime(8,8), \Delta l=1 / 2}
\end{array}
$$

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

Irrep of $S U(3)_{L} \otimes S U(3)_{R}$

$$
\begin{aligned}
& \overline{3} \otimes 3=8+1 \\
& \overline{8} \otimes 8=27+\overline{10}+10+8+8+1
\end{aligned}
$$

Only 7 are independent: one $(27,1)$ four $(8,1)$, and two $(8,8), \Rightarrow$ we called them Q^{\prime}

$$
\begin{array}{rlrl}
(27,1) & Q_{1}^{\prime} & = & Q_{1}^{\prime(27,1), \Delta l=3 / 2}+Q_{1}^{\prime(27,1), \Delta l=1 / 2} \\
& & \\
(8,1) & Q_{2}^{\prime} & = & \\
& Q_{3}^{\prime} & = & Q_{2}^{\prime(8,1), \Delta l=1 / 2} \\
& Q_{5}^{\prime} & = & Q_{3}^{\prime(8,1), \Delta l=1 / 2} \\
& Q_{6}^{\prime} & = & Q_{5}^{\prime(8,1), \Delta l=1 / 2} \\
& & & Q_{6}^{\prime(8,1), \Delta l=1 / 2} \\
(8,8) & Q_{7}^{\prime} & = & Q_{7}^{\prime(8,8), \Delta l=3 / 2}+Q_{7}^{\prime(8,8), \Delta l=1 / 2} \\
& Q_{8}^{\prime} & = & Q_{8}^{\prime(8,8), \Delta l=3 / 2}+Q_{8}^{\prime(8,8), \Delta l=1 / 2}
\end{array}
$$

A challenge!

Many obstacles:

- Final state with two pions
- Many operators that mix under renormalisation
- Require the evaluation of disconnected graphs

Moreover, using a chiral disctretisation of the Dirac operator is probably unavoidable.

Plus the usual difficulties: light dynamical quarks, large volume, ...

Isospin channels

- Only 3 of these operators contribute to the $\Delta I=3 / 2$ channel
- A tree-level operator
- 2 electroweak penguins
- No disconnect graphs contribute to the $\Delta I=3 / 2$ channel

u \qquad u
$\Rightarrow A_{2}$ is much simpler than A_{0}
Still highly non-trivial, but perfect challenge for lattice QCD with chiral fermions

Lattice computation of A_{2} by RBC-UKQCD

A_{2} from RBC-UKQCD

Overview of the computation

- Lellouch-Lüscher method Lellouch Lüscher '00 to obtain the physical matrix element from the finite-volume Euclidiean amplitude and the derivative of the phase shift

A_{2} from RBC-UKQCD

Overview of the computation

- Lellouch-Lüscher method Lellouch Lüscher ' 00 to obtain the physical matrix element from the finite-volume Euclidiean amplitude and the derivative of the phase shift
- Combine
- Wigner-Eckart theorem (Exact up to isospin symmetry breaking)

$$
\left\langle\pi^{+}\left(p_{1}\right) \pi^{0}\left(p_{2}\right)\right| O_{\Delta I}^{\Delta I=3 / 2}=1 / 2\left|K^{+}\right\rangle=3 / 2\left\langle\pi^{+}\left(p_{1}\right) \pi^{+}\left(p_{2}\right)\right| O_{\Delta I_{Z}=3 / 2}^{\Delta I=3 / 2}\left|K^{+}\right\rangle
$$

and then compute the unphysical process $K^{+} \rightarrow \pi^{+} \pi^{+}$

- Use Anti-periodic B.C. to eliminate the unwanted (wrong-kinematic) state Sachrajda \& Villadoro '05

A_{2} from RBC-UKQCD

Overview of the computation

- Lellouch-Lüscher method Lellouch Lüscher '00 to obtain the physical matrix element from the finite-volume Euclidiean amplitude and the derivative of the phase shift
- Combine
- Wigner-Eckart theorem (Exact up to isospin symmetry breaking)

$$
\left\langle\pi^{+}\left(p_{1}\right) \pi^{0}\left(p_{2}\right)\right| O_{\Delta I_{Z}=1 / 2}^{\Delta I=3 / 2}\left|K^{+}\right\rangle=3 / 2\left\langle\pi^{+}\left(p_{1}\right) \pi^{+}\left(p_{2}\right)\right| O_{\Delta I_{Z}=3 / 2}^{\Delta I=3 / 2}\left|K^{+}\right\rangle
$$

and then compute the unphysical process $\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{+}$

- Use Anti-periodic B.C. to eliminate the unwanted (wrong-kinematic) state Sachrajda \& Villadoro '05
- Renormalise at low energy $\underline{\mu_{0}} \sim 1.1 \mathrm{GeV}$ on and run non-perturbatively using finer lattices to $\mu=3 \mathrm{GeV}$ and match to $\overline{\mathrm{MS}}$ Arthur, Boyle '10, Arthur, Boyle, N.G. , Kelly, Lytle '11

$$
\lim _{a_{1} \rightarrow 0} \underbrace{\left[Z\left(\mu_{1}, a_{1}\right) Z^{-1}\left(\mu_{0}, a_{1}\right)\right]}_{\text {fine lattice }} \times \underbrace{Z\left(\mu_{0}, a_{0}\right)}_{\text {coarse lattice }}=Z\left(\mu_{1}, a_{0}\right)
$$

A_{2} from RBC-UKQCD

- Very challenging both theoretically and numerically
- Computation performed with state-of-the-art algorithm and large-scale computer resources
- Possible because of various ingenious methods

A_{2} from RBC-UKQCD

- Very challenging both theoretically and numerically
- Computation performed with state-of-the-art algorithm and large-scale computer resources
- Possible because of various ingenious methods
- $2+1$ chiral fermions (Domain-Wall on IDSDR a $\sim 0.14 \mathrm{fm}$)
- lightest unitary pion mass $\sim 170 \mathrm{MeV}$ (partially quenched 140 MeV)
- Non-perturbative-renormalization through RI-SMOM schemes

A_{2} from RBC-UKQCD

- Very challenging both theoretically and numerically
- Computation performed with state-of-the-art algorithm and large-scale computer resources
- Possible because of various ingenious methods

Blum, Boyle, Christ, N.G., Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12

- $2+1$ chiral fermions (Domain-Wall on IDSDR $a \sim 0.14 \mathrm{fm}$)
- lightest unitary pion mass $\sim 170 \mathrm{MeV}$ (partially quenched 140 MeV)
- Non-perturbative-renormalization through RI-SMOM schemes
- Find $\operatorname{Re} A_{2}=1.381(46)_{\text {stat }}(258)_{\text {syst }} 10^{-8} \mathrm{GeV}$, experimental value is $1.479(4) 10^{-8} \mathrm{GeV}$
- And $\operatorname{Im} A_{2}=-6.54(46)_{\text {stat }}(120)_{\text {syst }} G e V$

A_{2} from RBC-UKQCD

- Very challenging both theoretically and numerically
- Computation performed with state-of-the-art algorithm and large-scale computer resources
- Possible because of various ingenious methods

Blum, Boyle, Christ, N.G., Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12

- $2+1$ chiral fermions (Domain-Wall on IDSDR a $\sim 0.14 \mathrm{fm}$)
- lightest unitary pion mass $\sim 170 \mathrm{MeV}$ (partially quenched 140 MeV)
- Non-perturbative-renormalization through RI-SMOM schemes
- Find $\operatorname{Re} A_{2}=1.381(46)_{\text {stat }}(258)_{\text {syst }} 10^{-8} \mathrm{GeV}$, experimental value is $1.479(4) 10^{-8} \mathrm{GeV}$
- And $\operatorname{Im} A_{2}=-6.54(46)_{\text {stat }}(120)_{\text {syst }} G e V$
- Important computation in the field: first realistic computation of a hadronic decay
- 2012 Ken Wilson lattice award

Toward a full computation of $K \rightarrow(\pi \pi)$ and an understanding of the $\Delta I=1 / 2$ rule ?

A_{0} from RBC-UKQCD

"Pilot" computation of the full process
T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11.

Unphysical:

■ "Heavy" pions (lightest $\sim m_{\pi} \sim 300 \mathrm{MeV}$), small volume

- Non-physical kinematics: pions at rest

A_{0} from RBC-UKQCD

"Pilot" computation of the full process
T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11.

Unphysical:

■ "Heavy" pions (lightest $\sim m_{\pi} \sim 300 \mathrm{MeV}$), small volume
■ Non-physical kinematics: pions at rest

But "complete":

- Two-pion state
- All the contractions of the 7 fourk-operators are computed
- Renormalisation done non-perturbatively

A_{0} from RBC-UKQCD

"Pilot" computation of the full process
T. Blum, Boyle, Christ, N.G., Goode, Izubuchi, Lehner, Liu, Mawhinney, Sachrajda, Soni, Sturm, Yin, Zhou, PRD'11.

Unphysical:

■ "Heavy" pions (lightest $\sim m_{\pi} \sim 300 \mathrm{MeV}$), small volume
■ Non-physical kinematics: pions at rest

But "complete":

- Two-pion state
- All the contractions of the 7 fourk-operators are computed
- Renormalisation done non-perturbatively
obtain

$$
\begin{aligned}
& \operatorname{Re} A_{0}=3.80(82) \times 10^{-7} \mathrm{GeV} \\
& \operatorname{Im} A_{0}=-2.5(2.2) \times 10^{-11} \mathrm{GeV}
\end{aligned}
$$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

We combine our physical computation of $\Delta I=3 / 2$ part with our non-physical computation of the $\Delta I=1 / 2$

$1 / a$	m_{π}	m_{K}	$\operatorname{Re} A_{2}$	$\operatorname{Re} A_{0}$	$\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}$	kinematics
$[\mathrm{GeV}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$\left[10^{-8} \mathrm{GeV}\right]$	$\left[10^{-8} \mathrm{GeV}\right]$		

16^{3} IW	$1.73(3)$	$422(7)$	$878(15)$	$4.911(31)$	$45(10)$	$9.1(2.1)$	threshold
24^{3} IW	$1.73(3)$	$329(6)$	$662(11)$	$2.668(14)$	$32.1(4.6)$	$12.0(1.7)$	threshold
32^{3} ID	$1.36(1)$	$142.9(1.1)$	$511.3(3.9)$	$1.38(5)(26)$	-	-	physical

Exp - $135-140 \quad 494-498 \quad 1.479(4) \quad 33.2(2) \quad 22.45(6)$

Pattern which could explain the $\Delta I=1 / 2$ enhancement
Boyle, Christ, N.G., Goode, Izubuchi, Janowski, Lehner, Liu, Lytle, Sachrajda, Soni, Zhang, PRL'13

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

Two kinds of contraction for each $\Delta I=3 / 2$ operator

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

Two kinds of contraction for each $\Delta I=3 / 2$ operator

- $\operatorname{Re} A_{2}$ is dominated by the tree level operator (EWP ~1\%)

$$
\operatorname{Re} A_{2} \sim(1)+\text { (2) }
$$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

Two kinds of contraction for each $\Delta I=3 / 2$ operator

- $\operatorname{Re} A_{2}$ is dominated by the tree level operator (EWP ~1\%)

$$
R e A_{2} \sim(1)+(2)
$$

- Naive factorisation approach: (2) $\sim 1 / 3(1)$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

Two kinds of contraction for each $\Delta I=3 / 2$ operator

Contraction (1)

Contraction (2)

- $\operatorname{Re} A_{2}$ is dominated by the tree level operator (EWP ~1\%)

$$
\operatorname{Re} A_{2} \sim(1)+(2)
$$

- Naive factorisation approach: (2) $\sim 1 / 3$ (1)
- Our computation: (2) ~-0.7 (1)
\Rightarrow large cancellation in $\operatorname{Re} A_{2}$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

$\operatorname{Re} A_{0}$ is also dominated by the tree level operators

i	$Q_{i}^{\text {lat }}[\mathrm{GeV}]$	$Q_{i}^{\overline{\mathrm{MS}}-\mathrm{NDR}}[\mathrm{GeV}]$
1	$8.1(4.6) 10^{-8}$	$6.6(3.1) 10^{-8}$
2	$2.5(0.6) 10^{-7}$	$2.6(0.5) 10^{-7}$
3	$-0.6(1.0) 10^{-8}$	$5.4(6.7) 10^{-10}$
4	-	$2.3(2.1) 10^{-9}$
5	$-1.2(0.5) 10^{-9}$	$4.0(2.6) 10^{-10}$
6	$4.7(1.7) 10^{-9}$	$-7.0(2.4) 10^{-9}$
7	$1.5(0.1) 10^{-10}$	$6.3(0.5) 10^{-11}$
8	$-4.7(0.2) 10^{-10}$	$-3.9(0.1) 10^{-10}$
9	-	$2.0(0.6) 10^{-14}$
10	-	$1.6(0.5) 10^{-11}$
$\operatorname{Re} A_{0}$	$3.2(0.5) 10^{-7}$	$3.2(0.5) 10^{-7}$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

$\operatorname{Re} A_{0}$ is also dominated by the tree level operators

i	$Q_{i}^{\text {lat }}[\mathrm{GeV}]$	$Q_{i}^{\overline{\mathrm{MS}}-\mathrm{NDR}}[\mathrm{GeV}]$
1	$8.1(4.6) 10^{-8}$	$6.6(3.1) 10^{-8}$
2	$2.5(0.6) 10^{-7}$	$2.6(0.5) 10^{-7}$
3	$-0.6(1.0) 10^{-8}$	$5.4(6.7) 10^{-10}$
4	-	$2.3(2.1) 10^{-9}$
5	$-1.2(0.5) 10^{-9}$	$4.0(2.6) 10^{-10}$
6	$4.7(1.7) 10^{-9}$	$-7.0(2.4) 10^{-9}$
7	$1.5(0.1) 10^{-10}$	$6.3(0.5) 10^{-11}$
8	$-4.7(0.2) 10^{-10}$	$-3.9(0.1) 10^{-10}$
9	-	$2.0(0.6) 10^{-14}$
10	-	$1.6(0.5) 10^{-11}$
$\operatorname{Re} A_{0}$	$3.2(0.5) 10^{-7}$	$3.2(0.5) 10^{-7}$

Dominant contribution to $Q_{2}^{\text {lat }}$ is \propto (2(2) - (1)) \Rightarrow Enhancement in $\operatorname{Re} A_{0}$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

$\operatorname{Re} A_{0}$ is also dominated by the tree level operators

i	$Q_{i}^{\text {lat }}[\mathrm{GeV}]$	$Q_{i}^{\overline{\text { MS}}-\mathrm{NDR}}[\mathrm{GeV}]$
1	$8.1(4.6) 10^{-8}$	$6.6(3.1) 10^{-8}$
2	$2.5(0.6) 10^{-7}$	$2.6(0.5) 10^{-7}$
3	$-0.6(1.0) 10^{-8}$	$5.4(6.7) 10^{-10}$
4	-	$2.3(2.1) 10^{-9}$
5	$-1.2(0.5) 10^{-9}$	$4.0(2.6) 10^{-10}$
6	$4.7(1.7) 10^{-9}$	$-7.0(2.4) 10^{-9}$
7	$1.5(0.1) 10^{-10}$	$6.3(0.5) 10^{-11}$
8	$-4.7(0.2) 10^{-10}$	$-3.9(0.1) 10^{-10}$
9	-	$2.0(0.6) 10^{-14}$
10	-	$1.6(0.5) 10^{-11}$
$\operatorname{Re} A_{0}$	$3.2(0.5) 10^{-7}$	$3.2(0.5) 10^{-7}$

Dominant contribution to $Q_{2}^{\text {lat }}$ is \propto (2(2) - (1)) \Rightarrow Enhancement in $\operatorname{Re} A_{0}$

$$
\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}} \sim \frac{2(2)-(1)}{(1)+(2)}
$$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

$\operatorname{Re} A_{0}$ is also dominated by the tree level operators

i	$Q_{i}^{\text {lat }}[\mathrm{GeV}]$	$Q_{i}^{\overline{\mathrm{MS}}-\mathrm{NDR}}[\mathrm{GeV}]$
1	$8.1(4.6) 10^{-8}$	$6.6(3.1) 10^{-8}$
2	$2.5(0.6) 10^{-7}$	$2.6(0.5) 10^{-7}$
3	$-0.6(1.0) 10^{-8}$	$5.4(6.7) 10^{-10}$
4	-	$2.3(2.1) 10^{-9}$
5	$-1.2(0.5) 10^{-9}$	$4.0(2.6) 10^{-10}$
6	$4.7(1.7) 10^{-9}$	$-7.0(2.4) 10^{-9}$
7	$1.5(0.1) 10^{-10}$	$6.3(0.5) 10^{-11}$
8	$-4.7(0.2) 10^{-10}$	$-3.9(0.1) 10^{-10}$
9	-	$2.0(0.6) 10^{-14}$
10	-	$1.6(0.5) 10^{-11}$
$\operatorname{Re} A_{0}$	$3.2(0.5) 10^{-7}$	$3.2(0.5) 10^{-7}$

Dominant contribution to $Q_{2}^{\text {lat }}$ is \propto (2(2) - (1)) \Rightarrow Enhancement in $\operatorname{Re} A_{0}$

$$
\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}} \sim \frac{2(2)-(1)}{(1)+(2)}
$$

With this unphysical computation (kinematics, masses) we find

$$
\begin{aligned}
& \frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}=9.1(2.1) \text { for } m_{K}=878 \mathrm{MeV} m_{\pi}=422 \mathrm{MeV} \\
& \frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}=12.0(1.7) \text { for } m_{K}=662 \mathrm{MeV} m_{\pi}=329 \mathrm{MeV}
\end{aligned}
$$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

- This sign implies both a cancellation in A_{2} and an enhancement in A_{0}
- Need to be confirmed with physical quark masses and physical kinematics
- Analytic work in that direction Pich \& de Rafael '96, Buras

■ See also discussion in Lellouch @ Les Houches '09]

Going further: 2014-2015 update

Lattice 2014 update

- $\Delta I=3 / 2$

Main limitation on the previous computation : only one coarse lattice spacing IDSDR $32^{3} \times 64$, with $a^{-1} \sim 1.37 \mathrm{GeV} \Rightarrow a \sim 0.14 \mathrm{fm}, L \sim 4.6 \mathrm{fm}$

Current computation:
two lattice spacing, $n_{f}=2+1$, large volume at the physical point
New discretisation of the Domain-Wall fermion forumlation: Möbius Brower, Neff, Orginos '12
■ $48^{3} \times 96$, with $a^{-1} \sim 1.729 \mathrm{GeV} \Rightarrow a \sim 0.11 \mathrm{fm}, L \sim 5.5 \mathrm{fm}$
■ $64^{3} \times 128$ with $a^{-1} \sim 2.358 \mathrm{GeV} \Rightarrow a \sim 0.084 \mathrm{fm}, L \sim 5.4 \mathrm{fm}$

- am $_{\text {res }} \sim 10^{-4}$

Status: Computation finished, draft in final stage

Lattice 2014 update

- $\Delta I=3 / 2$

Main limitation on the previous computation : only one coarse lattice spacing
IDSDR $32^{3} \times 64$, with $a^{-1} \sim 1.37 \mathrm{GeV} \Rightarrow a \sim 0.14 \mathrm{fm}, L \sim 4.6 \mathrm{fm}$
Current computation:
two lattice spacing, $n_{f}=2+1$, large volume at the physical point
New discretisation of the Domain-Wall fermion forumlation: Möbius Brower, Neff, Orginos '12
■ $48^{3} \times 96$, with $a^{-1} \sim 1.729 \mathrm{GeV} \Rightarrow a \sim 0.11 \mathrm{fm}, L \sim 5.5 \mathrm{fm}$
■ $64^{3} \times 128$ with $a^{-1} \sim 2.358 \mathrm{GeV} \Rightarrow a \sim 0.084 \mathrm{fm}, L \sim 5.4 \mathrm{fm}$
■ am $_{\text {res }} \sim 10^{-4}$
Status: Computation finished, draft in final stage

- $\Delta I=1 / 2$

Main limitation on the previous computation : non-physical kinematic
New formulation: G-parity boundary conditions
Status: First computation almost finished

$K \rightarrow(\pi \pi)_{I=2}$ Lattice 2014 update

> 2012 Blum, Boyle, Christ, N.G.,Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12 $\operatorname{Re} A_{2}=1.381(46)_{\text {stat }}(258)_{\text {syst }} 10^{-8} \mathrm{GeV} \quad \operatorname{Im} A_{2}=-6.54(46)_{\text {stat }}(120)_{\text {syst }} 10^{-13} \mathrm{GeV}$

2014 RBC-UKQCD Work in progress, draft in final stage

Preliminary results, very close to final numbers
see also talk by T.Janowski @ lat'13 Janowski, Sachrajda, Boyle, Christ, Mawhinney, Yin, Zhang, N.G., Lytle

RBC-UKQCD setup - History- Present

$2+1$ Domain-Wall fermions

Chiral-Flavour symmetry (almost) exact at finite lattice spacing
Finite fith dimension $L_{s} \rightarrow$ small additive quark mass renormalisation $m_{\text {res }}$

RBC-UKQCD setup - History- Present

$2+1$ Domain-Wall fermions

Chiral-Flavour symmetry (almost) exact at finite lattice spacing
Finite fith dimension $L_{s} \rightarrow$ small additive quark mass renormalisation $m_{\text {res }}$

- 2008: IW $a^{-1}=1.729(18) \mathrm{GeV} \leftrightarrow a \sim 0.1145 \mathrm{fm}$, on $24^{3} \times 64 \times 16$, ie $L \sim 2.74 \mathrm{fm}$ Unitary pion masses $m_{\pi}=331,419$, (557) MeV

RBC-UKQCD setup - History- Present

$2+1$ Domain-Wall fermions
Chiral-Flavour symmetry (almost) exact at finite lattice spacing
Finite fith dimension $L_{s} \rightarrow$ small additive quark mass renormalisation $m_{r e s}$

- 2008: IW $a^{-1}=1.729(18) \mathrm{GeV} \leftrightarrow a \sim 0.1145 \mathrm{fm}$, on $24^{3} \times 64 \times 16$, ie $L \sim 2.74 \mathrm{fm}$ Unitary pion masses $m_{\pi}=331,419$, (557) MeV
- 2010: $\mathrm{IW} a^{-1}=2.282(28) \mathrm{GeV} \leftrightarrow a \sim 0.0868 \mathrm{fm}$, on $32^{3} \times 64 \times 16$, ie $L \sim 2.77 \mathrm{fm}$ Unitary pion masses $m_{\pi}=290,345,394 \mathrm{MeV}$

RBC-UKQCD setup - History- Present

$2+1$ Domain-Wall fermions
Chiral-Flavour symmetry (almost) exact at finite lattice spacing
Finite fith dimension $L_{s} \rightarrow$ small additive quark mass renormalisation $m_{\text {res }}$

- 2008: IW $a^{-1}=1.729(18) \mathrm{GeV} \leftrightarrow a \sim 0.1145 \mathrm{fm}$, on $24^{3} \times 64 \times 16$, ie $L \sim 2.74 \mathrm{fm}$ Unitary pion masses $m_{\pi}=331,419$, (557) MeV
- 2010: IW $a^{-1}=2.282(28) \mathrm{GeV} \leftrightarrow a \sim 0.0868 \mathrm{fm}$, on $32^{3} \times 64 \times 16$, ie $L \sim 2.77 \mathrm{fm}$ Unitary pion masses $m_{\pi}=290,345,394 \mathrm{MeV}$
- 2012: $\operatorname{IDSDR} a^{-1}=1.372(10) \mathrm{GeV} \leftrightarrow a \sim 0.144 \mathrm{fm}$, on $32^{3} \times 64 \times 32$, ie $L \sim 4.62 \mathrm{fm}$ Unitary pion mass $m_{\pi}=171 \mathrm{MeV}$

RBC-UKQCD setup - History- Present

$2+1$ Domain-Wall fermions
Chiral-Flavour symmetry (almost) exact at finite lattice spacing
Finite fith dimension $L_{s} \rightarrow$ small additive quark mass renormalisation $m_{r e s}$

- 2008: IW $a^{-1}=1.729(18) \mathrm{GeV} \leftrightarrow a \sim 0.1145 \mathrm{fm}$, on $24^{3} \times 64 \times 16$, ie $L \sim 2.74 \mathrm{fm}$ Unitary pion masses $m_{\pi}=331,419$, (557) MeV
- 2010: $\mathrm{IW} a^{-1}=2.282(28) \mathrm{GeV} \leftrightarrow a \sim 0.0868 \mathrm{fm}$, on $32^{3} \times 64 \times 16$, ie $L \sim 2.77 \mathrm{fm}$ Unitary pion masses $m_{\pi}=290,345,394 \mathrm{MeV}$
- 2012: IDSDR $a^{-1}=1.372(10) \mathrm{GeV} \leftrightarrow a \sim 0.144 \mathrm{fm}$, on $32^{3} \times 64 \times 32$, ie $L \sim 4.62 \mathrm{fm}$ Unitary pion mass $m_{\pi}=171 \mathrm{MeV}$
- 2014: Möbius, Unitary pion mass 139 MeV
- $a^{-1}=1.730(4) \mathrm{GeV} \leftrightarrow a \sim 0.1145 \mathrm{fm}$, on $48^{3} \times 96 \times 24$ ie $L \sim 4.62 \mathrm{fm}$
- $a^{-1}=2.359(7) \mathrm{GeV} \leftrightarrow a \sim 0.0839 \mathrm{fm}$, on $64^{3} \times 128 \times 12$ ie $L \sim 5.475 \mathrm{fm}$

Conclusions

- Observe a mechanism which contributes to a large enhancement in A_{0} / A_{2}
- Is this enhancement enough, or do we need something else ?
- Clearly, a non-perturbative method is required
- New: Continuum limit of $K \rightarrow(\pi \pi)_{I=2}$ at the physical point
- First realistic results of $K \rightarrow(\pi \pi)_{I=0}$ (with physical kinematics) should be available in a few months(?), thanks to G-parity boundary conditions
- Other kaon pheno applications: $k l_{3}$ or BSM matrix elements Boyle, N.G. Hudspith'12
\Rightarrow Provides important tests of the SM and help to understand/constrain BSM theories

