

HUA-SHENG SHAO

CERN, PH-TH

IN COLLABORATION WITH JEAN-PHILIPPE LANSBERG PHYS. REV. LETT. 111 (2013) 122001 ARXIV:1410.8822 2015.01.15

J/PSI POLARIZATION PUZZLE: OCTET VS SINGLET CHANNELS?

- Color-Singlet Model solely cannot account for yields and polarization of prompt J/ ψ (as well as $\psi(2S)$, $\Upsilon(nS)$, χ_c etc.) production at the Tevatron and the LHC.
- Color-Octet Mechanism at NLO level in QCD can describe large P_T data ($P_T \gg m$) in a consistent way, especially for the polarization observables [Chao, Ma, HSS, Wang et al., Phys. Rev. Lett '12; HSS, Ma, Wang, Chao, Phys. Rev. Lett '14 ...].
- Heavy quarkonium associated production processes provide more information on how non-perturbative QCD behaves in forming heavy quarkonium from heavy quark pair.

2

Tuesday, January 13, 15

MOTIVATION TO STUDY QUARKONIUM

- The necessity for COM is a longstanding puzzle for heavy quarkonium production.
- Based on LO computations, J/ ψ -pair production was proposed as a probe of COM.
- The CO+CO channels depend on the square of the CO transition probability.
- J/ ψ pair production was then discussed as a way to probe Double-Parton Scatterings at the Tevatron and the LHC.
- It is easy to trigger at the Tevatron and the LHC. In fact, data already exist (from LHCb, D0 and CMS).

Tuesday, January 13, 15

З

IS A LEADING-ORDER CALCULATION

A Lesson:

- In single prompt ψ hadroproduction, it is known that a large P_T -enhancement appears at higher-order in α_s .
- A higher power of α_s can be compensated by a less rapid fall off with P_T . [Campbell, Maltoni, Tramontano (2007); Artoisenet, Lansberg, Maltoni (2007)]

This should happen in J/ ψ -pair production at large momenta !!!

Production of $J/\psi + \eta_c$ versus $J/\psi + J/\psi$ at the LHC: Importance of Real α_s^5 Corrections

Jean-Philippe Lansberg¹ and Hua-Sheng Shao^{2,3}

¹IPNO, Université Paris-Sud, CNRS/IN2P3, F-91406 Orsay, France ²Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China ³PH Department, TH Unit, CERN, CH-1211 Geneva 23, Switzerland (Received 2 August 2013; published 20 September 2013)

- ~ $\alpha_s^4 \left(\frac{m_\psi}{P_\pi^\psi}\right)^8$ For the first time, we calculated the leading- P_T contribution at α_s^5 with HELAC-Onia [HSS, CPC '13].
 - It was nicely confirmed by a complete NLO calculations [Sun, Han, Chao, '14].

Production of $J/\psi + \eta_c$ versus $J/\psi + J/\psi$ at the LHC: Importance of Real α_s^5 Corrections

Jean-Philippe Lansberg¹ and Hua-Sheng Shao^{2,3}

¹IPNO, Université Paris-Sud, CNRS/IN2P3, F-91406 Orsay, France

²Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

³PH Department, TH Unit, CERN, CH-1211 Geneva 23, Switzerland

(Received 2 August 2013; published 20 September 2013)

CERN

PUZZLE IN J/ ψ -PAIR ?

Published for SISSA by 🖄 Springer

RECEIVED: June 2, 2014 ACCEPTED: August 4, 2014 PUBLISHED: September 17, 2014

Measurement of prompt ${\rm J}/\psi$ pair production in pp collisions at $\sqrt{s}=7\,{\rm Tev}$

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

PUZZLE IN J/ ψ -PAIR ?

PUBLISHED FOR SISSA BY 2 SPRINGER

RECEIVED: June 2, 2014 ACCEPTED: August 4, 2014 PUBLISHED: September 17, 2014

Measurement of prompt ${\rm J}/\psi$ pair production in pp collisions at $\sqrt{s}=7\,{\rm Tev}$

 Large discrepancy found with NLO-level Single-Parton
 Scatterings [Sun, Han, Chao, '14].

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

PUZZLE IN J/ ψ -PAIR ?

PUBLISHED FOR SISSA BY D SPRINGER

RECEIVED: June 2, 2014 ACCEPTED: August 4, 2014 PUBLISHED: September 17, 2014

Measurement of prompt J/ψ pair production in pp collisions at $\sqrt{s} = 7$ Tev

 Large discrepancy found with NLO-level Single-Parton Scatterings [Sun, Han, Chao, '14].

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

CERN

Jean-Philippe Lansberg^{*a*}, Hua-Sheng Shao^{*b*,*c*}

^a IPNO, Université Paris-Sud, CNRS/IN2P3, F-91406, Orsay, France Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China ^c PH Department, TH Unit, CERN, CH-1211, Geneva 23, Switzerland

ARXIV:1410.8822

	$\sigma_{\mathrm{exp.}}^{\mathrm{prompt}}$	$\sigma_{\rm SPS}^{\rm LO, direct}$	$\sigma_{\rm SPS}^{\rm NLO, direct}$	$\sigma_{\rm SPS}^{\rm NLO, prompt}$	$\sigma_{ m DPS}^{ m prompt}$
LHCb	18 ± 5.3	$22^{+27.7}_{-13.1}$	$24.3^{+30.6}_{-14.4}$	$46.0^{+58.0}_{-27.3}$	$36.0^{+44.0}_{-12.8}$
D0	SPS: 70 ± 23 DPS: 59 ± 23	28.9 ^{+30.7} -14.5	91 ⁺¹⁷⁷ ₋₅₅	173^{+335}_{-105}	87^{+106}_{-31}
CMS	5.25 ± 0.52	$0.19^{+0.14}_{-0.09}$	$0.82^{+1.18}_{-0.46}$	$1.54^{+2.24}_{-0.87}$	$1.46^{+1.78}_{-0.52}$
ATLAS	N/A	$3.45^{+2.35}_{-1.40}$	$35.5^{+48.9}_{-19.8}$	$67.1^{+92.4}_{-37.6}$	$39.1^{+47.7}_{-13.9}$

TABLE I: $\sigma(pp(\bar{p}) \rightarrow J/\psi + J/\psi + X) \times \mathcal{B}^2_{\mu\mu}$ [Values in unit of pb for LHCb and CMS and fb for D0 and ATLAS. The kinematical cuts are given as supplemental material.]

- DPS and SPS are comparable.
- We use the D0 data to fix the DPS parameter
- CMS and D0 measurements imply significant DPS contributions.

Jean-Philippe Lansberg^{*a*}, Hua-Sheng Shao^{*b,c*}

^a IPNO, Université Paris-Sud, CNRS/IN2P3, F-91406, Orsay, France Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China ^c PH Department, TH Unit, CERN, CH-1211, Geneva 23, Switzerland

• The dominance of $lpha_s^4$ (LO) contributions at low pT (from LHCb data).

- The dominance of $lpha_s^5$ (NLO) contributions at mid and large P_T .
- The dominance of DPS contributions at large Δy and invariant mass M.
- CO contributions as well as $lpha_s^6$ (NNLO) are not important in SPS.

RPP 2015

CERN

Jean-Philippe Lansberg^a, Hua-Sheng Shao^{b,c} ^a IPNO, Université Paris-Sud, CNRS/IN2P3, F-91406, Orsay, France Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China ^c PH Department, TH Unit, CERN, CH-1211, Geneva 23, Switzerland

- The dominance of $lpha_s^5$ (NLO) contributions at mid and large P_T .
- The dominance of DPS contributions at large Δy and invariant mass M.
- CO contributions as well as $lpha_s^6$ (NNLO) are not important in SPS.

Jean-Philippe Lansberg^a, Hua-Sheng Shao^{b,c}

^a IPNO, Université Paris-Sud, CNRS/IN2P3, F-91406, Orsay, France Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China ^c PH Department, TH Unit, CERN, CH-1211, Geneva 23, Switzerland

ARXIV:1410.8822

- Subleading P_T is a good kinematical variable to discriminate CO contribution as well as α_s^6 SPS contribution.
- The fractions of feed-down contributions also provide a way to distinguish SPS and DPS due to their completely different predictions.

CONCLUSIONS

- Prompt J/ ψ -pair production has recently been measured at the LHC and the Tevatron.
- The comparison (without tuning any parameter) between theory and experiment reveals the presence of different production mechanisms in different kinematical regions.
- Both SPS and DPS contributions are important to account for the experimental data.
- We solved the puzzle raised by Sun et al..
- In general, associated-quarkonium production at the LHC provides a good way to probe DPS physics.

CONCLUSIONS

- Prompt J/ ψ -pair production has recently been measured at the LHC and the Tevatron.
- The comparison (without tuning any parameter) between theory and experiment reveals the presence of different production mechanisms in different kinematical regions.
- Both SPS and DPS contributions are important to account for the experimental data.
- We solved the puzzle raised by Sun et al..
- In general, associated-quarkonium production at the LHC provides a good way to probe DPS physics.
 Thank you for your attention !

BACKUP SLIDES

RPP 2015

Tuesday, January 13, 15

HUA-SHENG SHAO

COLOR OCTET CONTRIBUTIONS IN SINGLE PARTON SCATTERINGS

- CERN
- CO+CO channels are nowhere important when P_T < 50 GeV with the CO transition probability extracted from LO [Sharma, Vitev, Phys. Rev. C '13] or NLO [Chao, Ma, HSS, Wang et al., Phys. Rev. Lett. '12; HSS, Han, Ma, Meng et al., '14; Butenschoen, Kniehl, Phys. Rev. Lett. '12; Gong et al., Phys. Rev. Lett. '13] calculations.
- CO+CS channels are suppressed by the small value of CO transition probability compared to the CS one but no P_T enhancement.
- Feeddown contributions from $\psi + \chi_c$ can be ignored because they are absent at α_s^4 in CSM and their CO transition probability is small [HSS, Ma, Wang, Chao, Phys. Rev. Lett. '14]

CALCULATIONS IN HELAC-ONIA All calculations are performed by the general-purposed matrixelement/event generator HELAC-Onia [HSS, CPC '12] with the correct spin-entangled decay.

- SPS is calculated based on the recursion relations implemented in HELAC-Onia.
- DPS is based on the 'pocket' formula

$$\sigma_{\psi\psi}^{\rm DPS} = \frac{1}{2} \frac{\sigma_{\psi} \sigma_{\psi}}{\sigma_{\rm eff}}$$

- $\sigma_{\rm eff} = 5.0 \pm 0.27 \text{ mb}$ is extracted from D0 measurement.
- σ_{ψ} is tuned to the LHC and the Tevatron data in the form of crystal ball function [Kom, Kulesza, Stirling, Phys. Rev. Lett. '11].