LFV lepton decays in the inverse seesaw: SUSY and non-SUSY contributions

PRD90 (2014) 013008 and JHEP11 (2014) 0481

Cédric Weiland

in collaboration with A. Abada, M. E. Krauss, W. Porod, F. Staub and A. Vicente

Instituto de Física Teórica, Universidad Autónoma de Madrid/CSIC, Spain

RPP 2015 Institut Henri Poincaré, January 15th, 2015

Neutrino masses and lepton flavour violation

- $P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}} \neq 0$ only if $\Delta m_{kj}^2 = m_k^2 m_j^2$ and $U_{\nu} \neq \mathbb{1}$
- SM: no *ν* mass term, lepton flavour is conserved
 ⇒ need new Physics, e.g. seesaw mechanism
- Neutrino oscillations ⇒ neutral lepton flavour violation. Why not charged lepton flavour violation (cLFV) ?
- cLFV arises from higher order processes: negligible in the SM
- If observed:
 - Evidence of New Physics
 - Might probe the origin of lepton mixing
 - Might probe the origin of new physics

Supersymmetric seesaw models

- The SM doesn't only lack neutrino masses, e.g. the hierarchy problem
- No ν_R in the MSSM \Rightarrow Massless neutrinos \rightarrow Implement a seesaw mechanism
- Seesaw mechanism: Consider new fields at this scale ($\sim M_R$) and Majorana mass terms \Rightarrow Generate m_{ν} in a renormalizable way
- Unique dimension 5 operator for all seesaw mechanisms
 → Violates lepton number L ⇒ Majorana neutrinos

$$\delta \mathcal{L}^{d=5} = \frac{1}{2} c_{ij} \frac{\bar{L}_i \tilde{H} \tilde{H}^T L_j^C}{\Lambda} + \text{h.c.}$$

- To distinguish the several seesaw mechanisms, either
 - Directly produce the heavy states (LHC, future collider)
 - Look for dimension ≥ 6 operators effects $\rightarrow cLFV$

The inverse seesaw mechanism

• Inverse seesaw \Rightarrow Consider fermionic gauge singlets ν_{Ri} (L = +1) and X_i (L = -1) [Mohapatra and Valle, 1986]

$$\mathcal{L}_{inverse} = -Y_{\nu}^{ij}\overline{L_i}\tilde{H}\nu_{Rj} - M_R^{ij}\overline{\nu_{Ri}^C}X_j - \frac{1}{2}\mu_X^{ij}\overline{X_i^C}X_j + \text{h.c.}$$

with
$$m_D = Y_{\nu} v, M^{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M_R \\ 0 & M_R^T & \mu_X \end{pmatrix}$$

$$\begin{split} m_{\nu} &\approx \quad \frac{m_D^2 \mu_X}{m_D^2 + M_R^2} \\ m_{N_1,N_2} &\approx \quad \mp \sqrt{m_D^2 + M_R^2} + \frac{M_R^2 \mu_X}{2(m_D^2 + M_R^2)} \end{split}$$

2 scales: μ_X and M_R

・ロット (雪) (日) (日)

Motivations

The supersymmetric inverse seesaw model

- MSSM extended by singlet chiral superfields \hat{N}_i and \hat{X}_i with L = -1 and L = +1
- Superpotential:

$$\mathcal{W} = Y_d \hat{Q} \hat{H}_d \hat{D} + Y_u \hat{Q} \hat{H}_u \hat{U} + Y_e \hat{L} \hat{H}_d \hat{E} - \mu \hat{H}_d \hat{H}_u + Y_\nu \hat{L} \hat{H}_u \hat{N} + M_R \hat{N} \hat{X} + \frac{1}{2} \mu_X \hat{X} \hat{X}$$

- New couplings, e.g. $A_{Y_{\nu}}Y_{\nu}\widetilde{L}\widetilde{N}H_{u}$ + h.c.
- Work with a flavour-blind mechanism for SUSY breaking, CMSSM-like boundary conditions
- Right-handed sneutrino mass:

$$M_{\tilde{N}}^2 = m_{\tilde{N}}^2 + M_R^2 + Y_{\nu}^{\dagger} Y_{\nu} v_u^2 \sim (1 \text{TeV})^2$$

 \Rightarrow Large Yukawa couplings with a TeV new Physics scale

э

cLFV in supersymmetric seesaw models

• Typically in SUSY, cLFV appears through RGE-induced slepton mixing $(\Delta m_{\tilde{L}}^2)_{ij}$

[Borzumati and Masiero, 1986, Hisano et al., 1996, Hisano and Nomura, 1999] $\Rightarrow (\Delta m_{\tilde{t}}^2)_{ij} \propto (Y_{\nu}^{\dagger} Y_{\nu})_{ij} \ln \frac{M_{GUT}}{M_{\nu}}$

- Contribute to all cLFV observables
 → Dominant in most of the SUSY seesaw models
- Type I seesaw ($Y_{\nu} \sim 1, M_R \sim 10^{14} \text{GeV}$) $\rightarrow (\Delta m_{\tilde{L}}^2)_{ij} \propto 5$
- Inverse seesaw $(Y_{\nu} \sim 1, M_R \sim 1 \text{ TeV}) \rightarrow (\Delta m_{\tilde{L}}^2)_{ij} \propto 30$ \rightarrow one-loop \tilde{N} -mediated processes are no longer suppressed [Deppisch and Valle, 2005, Hirsch et al., 2010, Abada et al., 2012, Ilakovac et al., 2012, Krauss et al., 2013]

Similar enhancement in non-SUSY contributions

[Ilakovac and Pilaftsis, 1995, Deppisch et al., 2006, Forero et al., 2011, Alonso et al., 2013, Dinh et al., 2012]

Diagrams

 In the Feynman-'t Hooft gauge, including both SUSY and non-SUSY: More than 100 classes of diagrams

- γ, Z, h_i, A_i -penguins and boxes
- Formulas computed using the FlavorKit interface
- Checked against the literature when possible
- Numerics done with SARAH/Spheno using 2 loops RGEs
- Enhancement from: - $\mathcal{O}(1) Y_{\nu}$ couplings -TeV scale ν_R, \widetilde{N}

(日)

・ロット 御マ キョマ キョン

Radiative cLFV decays

$$\tan \beta = 10, \, \operatorname{sign}(\mu) = +, \, \mu_X = 10^{-5} \text{GeV} \,\mathbb{1}, \, B_{\mu_X} = 100 \mu_X, \, B_{M_R} = 100 M_R$$

- Reach the current upper limit: $Br(\mu \rightarrow e\gamma) < 5.7 \times 10^{-13}$ [MEG, 2013] Expected sensitivity: 6×10^{-14} [MEG upgrade]
- Dominant contribution from the lightest scale (M_R or M_{SUSY})

э

3-body cLFV decays

$$m_0 = M_{1/2} = 1$$
TeV, $A_0 = -1.5$ TeV

 $M_{SUSY} = m_0 = M_{1/2} = -A_0$

- Saturate current UL: $Br(\mu \rightarrow eee) < 1.0 \times 10^{-12}$ [SINDRUM, 1988] Expected sensitivity: $10^{-15} - 10^{-16}$ [Mu3e proposal]
- Dominant non-SUSY contribution: boxes and Z-penguins
- Dominant SUSY contribution: γ-penguins
- Higgs-penguins sub-dominant, except at $\tan \beta \ge 50$ ($\tan^6 \beta$ enhanced)

(日)

э

Neutrinoless $\mu - e \operatorname{conversion}$

- Saturate current UL: $CR(\mu e, Au) < 7.0 \times 10^{-13}$ [SINDRUM II, 2006] Expected sensitivity: 10^{-14} [DeeMe], $10^{-17} 10^{-18}$ [Mu2e, COMET/PRISM]
- Dips: partial cancellation between up quark and down quark contributions
- Otherwise similar to $\mu \rightarrow eee$

(日)

Finding the dominant contribution

• LFV τ decays: factor 100 sensitivity improvement in Belle II

 Ratios: sensitive to the dominant contribution (SUSY or non-SUSY)

- First complete calculation with both SUSY and non-SUSY contributions
- At low M_R / high M_{SUSY}: dominant contributions from non-SUSY boxes and Z-penguins
- At low M_{SUSY} / high M_R: dominant contributions from SUSY γ-penguins
- All observables can already be used to constrain the parameter space
- Most promising observable: -short-term: $\mu \rightarrow e\gamma$ -mid-term: $\mu \rightarrow 3e$ -long-term: $\mu - e$ conversion
- Use ratios of τ decays to find the dominant contribution

S

SUSY ISS

cLFV in the SUSY ISS

Numerical result

Conclusion

Backup slides

Modified Casas-Ibarra parameters and neutrino input

Casas-Ibarra parametrization adapted to the inverse seesaw:

$$Y_{\nu} = \frac{\sqrt{2}}{v_u} V^{\dagger} D_{\sqrt{X}} R D_{\sqrt{m_{\nu}}} U_{\text{PMNS}}^{\dagger}$$

• Input parameters: $M_R = 2$ TeV, $\mu_X = 10^{-5}$ GeV, $m_{\nu_1} = 10^{-4}$ eV, *R* matrix

• Neutrino oscillation best-fit values [Forero et al., 2014]:

$$\Delta m_{21}^2 = 7.60 \cdot 10^{-5} \text{ eV}^2, \quad \mathbf{m}_{31}^2 = 2.48 \cdot 10^{-3} \text{ eV}^2,$$

$$\sin^2 \theta_{12} = 0.323, \quad \sin^2 \theta_{23} = 0.467, \quad \sin^2 \theta_{13} = 0.0234$$

э

・ ロ ト ・ 雪 ト ・ 目 ト ・

イロト イ理ト イヨト イヨト

Impact of active-sterile neutrino misalignment

- Shaded areas: Expected sensitivities of future experiments
- $R \neq 1$ impacts relative size of Br
- Large enhancement of cLFV τ decays

(日)

Comparison of cLFV decays

- $\mu \rightarrow e\gamma$: largest Br and the lowest current UL (5.7 × 10⁻¹³) \rightarrow Most constraining observable today
- $\mu \rightarrow 3e$: best mid-term sensitivity (~ 10⁻¹⁵) \rightarrow Should be the most constraining by 2016.
- μ − e conversion: best long-term sensitivity (down to 10⁻¹⁸)
 → Should be the most constraining around 2020.

3-body cLFV decays

- Contributions with similar behaviours for both μ and τ decays
- $R = 1, \theta_{13} \ll \theta_{12}, \theta_{23}$ \rightarrow Similar Br for $\tau \rightarrow \mu, \mu \rightarrow e$ transitions, much smaller for $\tau \rightarrow e$
- Strong suppression of $Br(\tau \to e\mu^+e^-)$ and $Br(\tau \to \mu e^+\mu^-)$: 2 LFV vertices are needed

э

Motivations	SUSY ISS	cLFV in the SUSY ISS	Conclusion

