A Light Singlet in Gauge Mediation

Robert Ziegler (LPTHE)

based on work with B. Allanach, M. Badziak, C. Hugonie (to appear)

Introduction

The Higgs weighs 125 GeV

Why is the Higgs so light ???

Supersymmetry!

Why is the Higgs so heavy?

MSSM

 $m_h|_{\text{tree}} \leq M_Z$

need large loop corrections

Beyond MSSM

new tree-level contributions:

F-terms / D-terms / Mixing

Mixing in the NMSSM

Add singlet to MSSM to solve mu-problem

$$W_{\rm NMSSM} = \lambda S H_u H_d - \frac{\kappa}{3} S^3$$

Strongest constraints come from LEP

$$\sin \theta \lesssim 0.5$$
 fo

$$\sin \theta \lesssim 0.5$$
 | for $m_s \sim (90 \div 100) \, \mathrm{GeV}$

Contribution to Higgs mass can be sizable ~ 8 GeV

The NMSSM and Gauge Mediation

Study mixing scenario in simple & predictive framework of SUSY breaking:

Gauge Mediation
$$W_{\rm GM} = X \bar{\Phi}_i \Phi_i$$
messengers

[NMSSM also easiest solution for $\mu - B_{\mu}$ problem!]

Minimal Gauge Mediation does not work: soft singlet mass too small (3-loop)

The DGS Model

Direct couplings singlet-messengers

$$W_{\mathrm{DGS}} = \xi S \, \bar{\Phi}_1 \Phi_2$$
messengers

Give new contribs to NMSSM soft terms

$$A_{\lambda} \sim A_{\kappa} \sim \xi^2 \tilde{m}$$
 $m_S^2 \sim \xi^4 \tilde{m}^2$
$$\tilde{m} \equiv 1/(16\pi^2) \, F/M \approx m_{\tilde{g}}/2$$

Only 4 parameters: λ , \tilde{m} , ξ , M

[correct EWSB fixes κ and $\tan \beta$]

DGS Parameter Space

Only 3 regions with sizable Higgs mass

$$m_h^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + m_{h,\rm mix}^2 + m_{h,\rm loop}^2$$
 bounded by M_Z^2 (perturbativity up $M_{\rm GUT}$)

The Push-Up Region

Want positive mixing contrib: $m_h > m_s$

Higgs Spectrum

Higgs sector fixes 3 from 4 parameters

$$m_s \sim 90 - 100 \, \mathrm{GeV}$$
 $\xi \sim 0.02$ $m_h \sim 122 - 128 \, \mathrm{GeV}$ $\tilde{m} \sim 600 \, \mathrm{GeV}$ $\sin \theta = \max \lesssim 0.5$ $\lambda \sim 0.01$

Determines remaining spectrum

Pseudoscalar $m_{a_1} \sim m_s/3$ Singlino NLSP $m_{\tilde s} \sim m_s$

Only free parameter is messenger scale M determines **Gravitino=LSP** couplings and NNLSP

Two Benchmarks

	\tilde{m} (GeV)	M (GeV)	$\lambda(M_S)$	$\xi_U(M_{ m GUT})$	$\kappa(M_S)$	$\tan \beta$
Point 1	592	8.8×10^{14}	9.1×10^{-3}	3.2×10^{-2}	5.7×10^{-4}	16
Point 2	746	1.4×10^{6}	1.0×10^{-2}	1.2×10^{-2}	7.0×10^{-4}	25
	ı					

	$\mid m_{h_1} \mid$	m_{h_2}	m_{a_1}	$m_{ ilde{N}_1}$	$m_{ ilde{N}_2}$	$m_{ ilde{ au}_1}$	$m_{ ilde{g}}$	$m_{ ilde{u}_R}$	$m_{ ilde{t}_1}$	$m_{ ilde{G}}$
Point 1	94	122	40	104	251	433	1367	1364	1064	20
Point 2	92	122	26	101	321 (283	1720	1787	1631	4×10^{-8}
	Higgs		NLSP	NNLSP		colored sparticles			LSP	
			:		•	,	mGM: > 3 TeV			

In contrast to Minimal Gauge Mediation in MSSM colored sparticles in reach of LHC

due to large mixing contrib to Higgs mass $\Delta m_h \approx 6 \,\mathrm{GeV}$

Phenomenology

SUSY decay chains pass through NNLSP and NLSP

 $c\tau$ depends on M:

displaced/outside detector

 $\downarrow \qquad b\bar{b}$

displaced/prompt

$$\begin{array}{c} \longrightarrow b\bar{b} \\ \tilde{G} \end{array}$$

LSP

Summary

- Re-analyzed DGS model for GMSB + NMSSM: New regions in parameter space with light singlet
- Large mixing with SM-like Higgs gives large contribution to tree-level Higgs mass ~ 6 GeV
- Allows for light colored SUSY spectrum ~ 1-2 TeV in LHC reach, in contrast to mGMSB + MSSM
- Singlino NLSP & Gravitino LSP lead to interesting collider pheno with additional (displaced) final states

Backup

The complete DGS model

$$W = W_{\text{NMSSM}} + W_{\text{GM}} + W_{\text{DGS}}$$

$$W_{\text{NMSSM}} = \lambda S H_u H_d - \frac{\kappa}{3} S^3$$

$$W_{\text{GM}} = X \sum_{i=1,2} \left(\kappa_i^D \bar{\Phi}_i^D \Phi_i^D + \kappa_i^T \bar{\Phi}_i^T \Phi_i^T \right)$$

$$W_{\text{DGS}} = S\left(\xi_D \bar{\Phi}_1^D \Phi_2^D + \xi_T \bar{\Phi}_1^T \Phi_2^T\right)$$

$$\xi = \xi_D(M_{\rm GUT}) = \xi_T(M_{\rm GUT})$$

The complete soft terms in DGS

$$\begin{split} M_i &= 2g_i^2 \tilde{m} \,, \\ m_{\tilde{f}}^2(M) &= 4 \sum_{i=1}^3 C_i(f) \, g_i^4 \tilde{m}^2 \,, \\ A_{\lambda} &= \frac{A_{\kappa}}{3} = -\tilde{m} \left(2\xi_D^2 + 3\xi_T^2 \right) \\ \tilde{m}_S^2 &= \tilde{m}^2 \left[8\xi_D^4 + 15\xi_T^4 + 12\xi_D^2 \xi_T^2 \right] \\ &- \tilde{m}^2 \left[\xi_D^2 \left(\frac{6}{5} g_1^2 + 6g_2^2 \right) + \xi_T^2 \left(\frac{4}{5} g_1^2 + 16g_3^2 \right) \right] \\ &- \tilde{m}^2 \left[4\kappa^2 \left(2\xi_D^2 + 3\xi_T^2 \right) \right] \,, \\ \Delta \tilde{m}_{H_u}^2 &= \Delta \tilde{m}_{H_d}^2 = -\tilde{m}^2 \lambda^2 \left(2\xi_D^2 + 3\xi_T^2 \right) \end{split}$$

Approximate Relations

$$\xi \sim \frac{m_s}{4\sqrt{2}g_3\tilde{m}}$$

$$\lambda \sim \frac{m_h^2 - m_s^2}{4v\tilde{m}} \sin 2\theta$$

$$\frac{m_{a^s}}{m_s} \approx \sqrt{\frac{45\sqrt{8}\xi}{32g_3}}$$

$$m_{\tilde{s}}^2 \approx m_s^2 + \frac{1}{3} m_{a^s}^2$$

$$m_{3/2} = 38 \,\mathrm{eV} \left(\frac{\tilde{m}}{\mathrm{TeV}}\right) \left(\frac{M}{10^6 \,\mathrm{GeV}}\right)$$

$$c\tau_{\tilde{N}_1} \approx 2.4 \,\mathrm{cm} \, \left(\frac{100 \,\mathrm{GeV}}{M_{\tilde{N}_1}}\right)^5 \left(\frac{M}{10^6 \,\mathrm{GeV}}\right)^2 \left(\frac{\tilde{m}}{\mathrm{TeV}}\right)^2$$