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1. Introduction/Motivations

-

General goal: get approximations (of reasonable accuracy?)
to 'intrinsically nonperturbative’ chiral sym. breaking order
parameters from unconventional resummation of perturbative
expansions

Very general: relevant both at 7" = 0 or 7" # 0 (also finite
density)

— address well-known problem of unstable thermal

perturbation theory:
(here illustrate for A®*, next goal: real QCD for Quark Gluon

Plasma: thermodynamic quantities, comparison with Lattice
results).
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Chiral Symmetry Breaking (XSB ) Order parameters

I—Usually considered hopeless from standard perturbation: T

1. (gg)'/3, Fy,.. ~ O(Agep) =~ 100-300 MeV
— ag (a priori) large — invalidates pert. expansion

2. (qq), Fr,.. perturbative series ~ (my)+y,, ,
vanish for m, — 0 at any pert. order (trivial chiral limit)

o InP(mg)

3. More sophisticated arguments e.qg. (infrared)
renormalons (factorially divergent pert. coeff. at large orders)

S
E - == [dp* 7, (In Z_Z)n ~ n!

All seems to tell that XSB parameters are intrinsically NP

L;Optimized pert. (OPT): appear to circumvent at least 1., 2.,J
nd may give more clues to pert./NP bridge



T +# 0: perturbative Pressure (QCD or \¢?)

fKnow long-standing Pb: poorly convergent and very
scale-dependent (ordinary) perturbative expansion

QCD (pure glue) pressure at successive pert. orders

bands=scale-dependence u = 7T’ — 47T



2. (Variationally) Optimized Perturbation (OPT)

-~ Lqeplg,mg) = Loop(0g,m(1 —0)) (as = g/(47)) o

0 < 0 < 1 Interpolates between L¢,.. and massless L;y;;
(quark) mass m, — m: arbitrary trial parameter

e Take any standard (renormalized) QCD pert. series,
expand in ¢ after:

mqg — m (1 —19);, as—0ag
then take o — 1 (to recover original massless theory):

BUT a m-dependence remains at any finite §*-order:
fixed typically by optimization (OPT):
-2 (physical quantity) = 0 for m = mgy(ag) # 0

Manifestation of dimensional transmutation!
Expect flatter m-dependence at increasing ¢ orders...

L But does this 'cheap trick’ always work? and why? J



Simpler model’s support + properties

FConvergence proof of this procedure for D = 1 \¢* oscillatorT
(cancels large pert. order factorial divergences!) Guida et al 95

particular case of 'order-dependent mapping’ seznec+zinn-Justin '79
(exponentially fast convergence for ground state energy
Ey, = const.\Y/3;  good to % level at second §-order)

eIn renormalizable QFT, first order consistent with
Hartree-Fock (or large N) approximation
eAlso produces factorial damping at large pert. orders

(‘'delay’ infrared renormalon behaviour to higher orders)( JLK, Reynaud 2002 )

eFlexible, Renormalization-compatible, gauge-invariant:
applications also at finite temperature (phase transitions
Lbeyond mean field approx. in 2D, 3D models, QCD...) J

(many variants, many works)



Expected behaviour (Ideally...)

Physical quantity

Exact result

2d order (non—perturbative)

b /
LN
/ ~
’ \
/ \
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3rd order  ©tC...
OPT 1st order

O(A)

But not quite what happens.. (except in simple oscillator)
Most elaborated calculations (e.g T # 0) (very) difficult
beyond first order: — what about convergence?

Main pb at higher order: OPT: 0,,(...) = 0 has multi-solutions
L(some complex!), how to choose right one??



3. RG improved OPT (RGOPT)

Our main new ingredient Lk, A. Neveu 2010):

Consider a physical quantity (perturbatively RG invariant),
e.g. pole mass M:

in addition to OPT Eq: 2 M ™) (1m, 9,6 = 1)| = = 0

Require (5-modified!) series at order §* to satisfy a standard
perturbative Renormalization Group (RG) equation:

RG (M(k)(m,g,(S = 1)) =0

with standard RG operator:

d 0 0 0

PR B(9)5- = rmlg)mo

RG = u— 99

L[ﬁ(g) = —2bog* — 21g° + -+, Ym(9) =9 +9° + - ]



f% Combined with OPT, RG Eq. takes a reduced form: T

8 o0
il (k) 1) —

Note: OPT+RG completely fix m = m and g = ¢ (two
constraints for two parameters).

e Now Ays(g) satisfies by def. [F‘a + 5(9) g} Ags =0
consistently at a given pert. order for 3(g).
Thus equivalent to:

o () =0 7 ()




OPT + RG malin features

FOPT: (too) much freedom in the interpolating Lagrangian?:T
m — m (1 —9)°
IN most previous works: linear case a = 1 for 'simplicity’...

[exceptions: Bose-Einstein Condensate T, shift, calculated from O(2)\¢*, requires a # 1:

gives real solutions +related to critical exponents (Kleinert,Kastening; JLK,Neveu,Pinto '04)
*OPT, RG Egs. are polynomial in (L = In ", g = 4mag):

serious drawback: polynomial Egs of order &£ — (too) many
solutions, and often complex, at increasing J-orders

eOur compelling way out: require solutions to match
standard perturbation (i.e. Asympt. Freedom for QCD):

QS%O,‘L’%OOZ agw—ﬁ—l—---

— at arbitrary RG order, AF-compatible RG + OPT
branches only appear for a specific universal a value:

w07 e 2% ==Y |

+ Removes spurious solutions incompatible with AF!



Pre-QCD guidance: Gross-Neveu model

D =2 0(2N) GN model shares many properties with QCD |
(asymptotic freedom, (discrete) chiral sym., mass gap,..)

Loy = Vi §U 4+ 25 T)? (massless)

Standard mass-gap (massless, large N approx.):
consider V. ¢¢(0), o ~ W;

27

oc=M=ype s = Ays
eMass gap known exactly for any /V:

1
Me:cact(N) . (46) 2N =2
- 1

AMS F[l_ 2N —2
(From D = 2 integrability: Bethe Ansatz) Forgacs et al '91
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M assive GN modd

fNow consider massive case (still large N):
M(m, g) = m(1 + gln Z7)~": Resummed mass (g/(27) — g)

=m(l —gn ™ + g*(In 2t + In ")+ ---) (pert. re-expanded)

e Only fully summed M (m, g) gives right result, upon:

-identify A = pe 19, — M(m, g) = glm —lmM;
n HT

-take reciprocal: m(F =In &) = Fel” A ~ F for i — 0;
—M(m = 0) ~ sriomey = Mus

never seen In standard perturbation: A ,(m — 0) — 0!

oBut (RG)OPT gives M = Ay at first (and any) J-order!
(at any order, OPT sol.: In 7} = —é, RGsol:g=1)

L.At 6-order (2-loop), RGOPT ~ 1 — 2% from M, q.:(@anyN)



4. QCD Application: Pion decay constant F;

fConsider SU(ns)r x SU(ns)r — SU(ny)r4r fOr ng
massless quarks. (nf=2,ns = 3)
Define/calculate pion decay constant F; from

i(0|T A% (p) AL (0)]0) = 6 g F7 + O(pupy)

where quark axial current: A%, = ¢v,75% ¢
F, # 0: Chiral symmetry breaking order parameter

Advantage: Perturbative expression known to 3,4 loops
(3-loop Chetyrkin et al '95; 4-loop Maier et al ‘08 '09, +Maier, Marquard private comm.)

OO ©
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(Standard) perturbative available infor mation

f F%(pert)M—S — chm—; [—L — %(81)2 + %L + %) T
+(52)*[fa0(ng)L? + far(ng) L+ faa(ng)L + faz(ng)] + O(a)]

L=1In%, ny=2(3)

Note: finite part (after mass + coupling renormalization) not
separately RG-inv: (i.e. F?, as defined, mixes with m? 1
operator)

— (extra) renormalization by subtraction of the form:
S(m,ag) = m*(sq/as + s1 + seas + ...) where s; fixed

requiring RG-inv order by order: sy = 16W3(g’0_%), S1 = ...

Same feature for (gq), related to vacuum energy, needs an
extra (additive) renormalization in ms-scheme to be RG
onsistent. J



War m-up calculation: pure RG approximation

- neglect non-RG (non-logarithmic) terms: o

m2 (8
F2(RG-1,0(g)) = 3% |~L + $5(8L° + 4L) ~ (grpmtoyas — )

— F2(m — m(1 — §)7/C%) ag — dag, O(6))|s—1 =
m? 1027 169 5 o 4
3% {_841045 + 348 2_9L + 4_53(8L2 + §L)}

OPT+RG: 0,,(F?/A2s), Oas(F7/AZ<) = 0: have a unique

AF-compatible real solution: L= ln% — —277(; , Qg =5
— I (1, as) = (g) "M =~ 0.25Ayg

eIncludes higher orders +non-RG terms: m,,: remains
O(Ays) (rather than m ~ 0): RG-consistent 'mass gap’,

And OPT stabilizes o?* ~ .5: more perturbative values
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Exact I, RG+OPT solutions at 4-loops (ms)

L(9) =Ln(m/ p)
1

perturbative AF

i /g—>0 n>>m )

All branches of RG (thick) and OPT(dashed) solutions Re[L = In %(g)] to the 9-modified
3rd order (4-loop) perturbation (¢ = 4mrag). Unique AF compatible sol.: black dot

eHowever beyond lowest order, AF-compatibility and reality
of solutions appear mutually exclusive...

But, complex solutions are artefacts of solving exactly the J
G and OPT (polynomial in L) Egs...



Recovering real AF-compatible solutions

fAre there perturbative 'deformations’ consistent with RG?:
Evidently: Renormalization scheme changes (RSC)!

m — m/' (14 Big + Bog? +---), g = ¢ (1 + A1g' + Asg”?
Require contact solution (thus closest to MS):

L(9)
0r L(9.B2)

O(8),us: = / -
RSC affects pert. coefficients, but with property:
FYS(im, g T,;) = Fo(m', o f;(B:) + ¢**'remnant(B,)

L% differences should decrease with perturbative order!



Results, with theoretical uncertainties jik, Neveu 1305.6910 PRD

fBeside recovering real solution, RSC offer natural, reasonanyT

convincing uncertainty estimates: non-unique RSC
— we take differences between those as th. uncertainties

Table 1: wmain optimized results at successive orders (n; = 3)

5% order nearest-to-MS RSC B; L &g /sz (RSC uncertainties)
5, RG-2 By =2.381074 —0.523 | 0.757 0.27 — 0.34

62, RG-3l B3 =3.3910° —1.368 | 0.507 0.236 — 0.255

53, RG-4l By =1.5110"° —1.760 | 0.374 0.2409 — 0.2546

ny =2 £(6%) = 0.213 — 0.269 (s = 0.46 — 0.64)
2(8%) = 0.2224 — 0.2495 (@5 = 0.35 — 0.42)

eEmpirical stability/convergence exhibited, with
L 20GL ~ 1 i.€. gy ~ pe”/(209) (like pure 1rst RG order) J



Morerealistic: explicit symmetry breaking

foNeed to "subtract" effect from explicit chiral symmetry T
breaking from genuine quark masses m,,, mg, ms 7% O:

Unfortunately relies at this stage on other (mainly Lattice)
results:

Lz ~ 1.073 £0.015 [robust, ny = 2 ChPT + Lattice]
F7r

" 1.172(3) (43) (Lattice MILC collaboration '10 using NNLO ChPT fits)

But quite different values by other collaborations

+ hint of slower convergence of n; = 3 ChPT, e.g. Bernard, Descotes-Genon, Toucan '10

Alternative: implement explicit sym. break. within OPT (to be
fully independent of ChPT+lattice results):

m — mllse +m(1 — §)7/); promising but rather involved
RG+OPT Eqgs. (no longer polynomial), work in progress...)

- |



Combined results with theoretical uncertainties:

fAverage different RSC +average 6 and §° results: T
n =2
Ayl 00p =2 359755 £ 5 MeV
Ky oy = 17T 4 13 MeV

To be compared with some recent lattice results, e.g.:
o’Schrdodinger functional scheme’ (ALPHA coll. Della Morte et al '12):
Ags(ny = 2) = 310 + 30 MeV

e\Wilson fermions (Gockeler et al '05)

Ays(ng = 2) = 261 £ 17(stat) £ 26(syst) MeV

e Twisted fermions (+NP power corrections) (Blossier et al '10):
AM—S(nf — 2) — 330 £ 23 = 22_33 MeV

eStatic potential (Jansen et al ’12). AM—S(nf = 2) — 315 £+ 30 MeV

- |



Extrapolation to ag at high (perturbative) ¢

ste only Afﬂ_f:3 (more perturbative trustable threshold T
Crossings)

e|ln Ms-scheme, no explicit decoupling of large masses:
My d <Mms K A << Mcharm << Mpottom -
eneed non- tr|V|aI decoupllng/matchlng. AMS(nf) and ’jJumps’:

standard perturbative extrapolation (3,4-loop with m.., my,
threshold etc):
Q5T () = @l () (1 — $5(22)2 4 (—0.972057 4 .0846515n ;) (% )3)

— ag(my) = 0.117415052 4+ .0010 + .0005,,;

ay " (my) = 0.3087997 + 007 + 002440

Compare to 2013 world average: ag(myz) = .1185 4+ .0007

-



5. Chiral quark condensate {gq)

n a nutshell: T

. p(A
——2m/ d)\AQerQ

p(A) is the spectral density of the (euclidean) Dirac operator.
Banks-Casher relation:

N

limm—0(qq) = —mp(0)

Again an intrinsical nonperturbative quantity, vanishing to all orders of ordinary perturbation.
Conversely: p(A) = & ((gg)(iX — €) — (Ga) (iA + €)) [0

l.e. p(A\) determined by dicontinuities of (Gq)(m) across
Imaginary axis.

Pert. expansion known to 3-loops (Chetyrkin et al) — J
L1n(m — ¢\) discontinuities.



RGOPT 3-loop for (gq) (nf = 2, 3) (preliminary!)

fReal solutions:
ny =2 ag ~0.43 —-0.48; In

gt/

—(0.69 — 0.70)
19) 7 (= 2)(fi = 1GeV) =~ 0.79 — 0.80
MS
ny =3 dg~ 044 —047; In™ ~ —(0.69 — 0.79)

<‘jfi/3 (ny = 3)(ji ~ 1GeV) ~ 0.78 — 0.79
s Apspears to have very mild dependence on n;.
However, (see previous) Ays(ny = 2) > Ags(ny = 3) (with
Iarger Ags(ny = 2) uncertainty)

<qq>1/3(nf =2, u=1GeV) ~ 284150 MeV

—<(jq>1/3(nf =3, = 1GeV) ~ 247 0 MeV

with uncertainties mostly from Az ones

-
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Many efforts to improve this, motivated by QGP (review e.g. Blaizot et al '03) Screened Pert.
(Karsh et al '97, ~ Hard Thermal loop (HTL) resummation (Andersen, Braaten, Strickland)
-Functional RG, 2-particle irreducible (2P1) formalism (Blaizot, lancu, Rebhan '01)

6. RGOPT )\gb4 Pressur e (JLK +M. Pinto, preliminary!)
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Ao pressure at successive ordinary pert. orders

bands=scale-dependence y = 7T — 4nT

Culprit (in a nutshell): mix up of hard p ~ T and soft p ~ AT modes.

Yet thermal 'Debye’ screening mass mQD)\TQ generated gives IR cutoff,
BUT — Perturbative expansion in v\ (vag in QCD) — slower convergence

Yet most of interesting physics happens at moderate X values..

B

ut large scale-dependence (increasing with order) remains very odd, specially for HTL
RGOPT cures this, essentially by treating thermal mass 'RG consistently’

(NB some qualitative links with Blaizot, Wschebor 1409.4795)
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RGOPT(\¢%)

1 2 Y0 A
f 525 u¢8“¢—m7<1—5)2”0¢2—5—¢4

NB 270 /bo = 1/3.
2-loop Vacuum energy (MS scheme):

2
(4m)2Fo =& — gm*(3+2In £5) — 2 Jo(2)T*
2

2
e [0 25+ Dm? ()72

1

o0 1
=~V d
) fO p,/p2+m2 2Vp24m2

T-dependent part: Jo(

Eo: finite vacuum energy terms: (A, m) = —mT4 > >0 SkAF
1 by — 4
S0 = = 87‘(‘2; 51 = (b1 1) = —1
2(bo — 470) 870 (bo — 4v0)

(NB T-independent, determined consistently by requiring RG invariance!)

NB: non-trivial OPT solution m (A, T") already at one-loop (not the case for HTLpt).
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RGOPT one-loop (O(4Y))

: - ~ m2 m
exact OPT solution: 7?2 = 5 [b0m2(ln S -1+ T2J1(T)]
approximate m /7" < 1 OPT Eq. form is simple quadratic (sufficient for all purpose):

1
L In My2 o, M 5T g
(bo/\JrfYEJr ) 7)) T 3
a® _ VI3 (s in) -] X — mho\ 3 _ 2L )A3/2
T bo)\—I-LT ~ E VAT AT e 2\/_( —2L7)

Ly =g +In g%

e explicitly exactly scale-invariant!

e reproduces qualitatively more sophisticated 2PI (first order) results!
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RGOPT Pressure: one-loop

P/Po

B pert. 1-loop
B RGOPT 1-loop
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g(p) = (M) /24)1/2 with scale-dependence y = 7T — 47T



Two-loops

W pert 1-loop
pert 2—loop

m RGOPT 1-loop
RGOPT 2-loop

g(p) = (A\()/24)1/2 with scale-dependence y = T — 47T

T 7 L B L e s S
1.00 -

08l

0.94 -

092}

09l

RGOPT versus standard OPT (HTLPT)



5. Summary and Outlook

foOPT gives a simple procedure to resum perturbative T
expansions, using only perturbative information.

eOur RGOPT version includes 2 major differences w.r.t.
most previous OPT approaches:

1) OPT+ RG minimizations fix optimized m and g = 4wag
2) Requiring AF-compatible solutions uniquely fixes the
basic interpolation m — m(1 — §)7/(2%): discards spurious
solutions and accelerates convergence.

(O(10%) accuracy at 1-2-loops, empirical stability exhibited at 3-loop)

Straightforward to apply for 7" = 0: exhibit remarkable
stability + scale independence (sharp contrast with
'standard’ OPT ~ HTLpt)

eOutlook: (almost) straightforward application to thermal
LQCD (start with pure gluon pressure) J
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