Renormalization Group Optimized Perturbation: some applications at zero and finite temperature

Jean-Loïc Kneur (Lab. Charles Coulomb, Montpellier) with André Neveu (T = 0) and Marcus Pinto ($T \neq 0$)

Rencontres Physique des Particules Jan. 2015, IHP, Paris

- 1. Introduction, Motivations
- 2. (Variationally) Optimized Perturbation (OPT)
- 3. Renormalization Group improvement of OPT (RGOPT)
- 4. $F_{\pi}/\Lambda^{QCD}_{\overline{\rm MS}}$ and α_S
- **5.** chiral quark condensate $\langle \bar{q}q \rangle$ (preliminary!)

6. $\lambda \phi^4(T \neq 0)$: Pressure at two-loops (preliminary!)

Summary, Outlook

1. Introduction/Motivations

General goal: get approximations (of reasonable accuracy?) to 'intrinsically nonperturbative' chiral sym. breaking order parameters from unconventional resummation of perturbative expansions

- Very general: relevant both at T = 0 or $T \neq 0$ (also finite density)
- \rightarrow address well-known problem of unstable thermal
- perturbation theory:

(here illustrate for $\lambda \Phi^4$, next goal: real QCD for Quark Gluon Plasma: thermodynamic quantities, comparison with Lattice results).

Chiral Symmetry Breaking (χ **SB) Order parameters**

Usually considered hopeless from standard perturbation:

1. $\langle \bar{q}q \rangle^{1/3}$, F_{π} ,... ~ $\mathcal{O}(\Lambda_{QCD}) \simeq$ 100–300 MeV $\rightarrow \alpha_S$ (a priori) large \rightarrow invalidates pert. expansion

2. $\langle \bar{q}q \rangle$, F_{π} ,... perturbative series $\sim (m_q)^d \sum_{n,p} \alpha_s^n \ln^p(m_q)$ vanish for $m_q \rightarrow 0$ at any pert. order (trivial chiral limit)

3. More sophisticated arguments e.g. (infrared) renormalons (factorially divergent pert. coeff. at large orders)

$$\Rightarrow \simeq \int dp^2 \sum_n (\ln \frac{p^2}{\mu^2})^n \sim n!$$

All seems to tell that χ SB parameters are intrinsically NP

 Optimized pert. (OPT): appear to circumvent at least 1., 2., and may give more clues to pert./NP bridge

$T \neq 0$: perturbative Pressure (QCD or $\lambda \phi^4$)

Know long-standing Pb: poorly convergent and very scale-dependent (ordinary) perturbative expansion

QCD (pure glue) pressure at successive pert. orders bands=scale-dependence $\mu = \pi T - 4\pi T$

2. (Variationally) Optimized Perturbation (OPT)

$$\mathcal{L}_{QCD}(g, m_q) \to \mathcal{L}_{QCD}(\delta g, m(1-\delta)) \ (\alpha_S \equiv g/(4\pi))$$

 $0 < \delta < 1$ interpolates between \mathcal{L}_{free} and massless \mathcal{L}_{int} ; (quark) mass $m_q \rightarrow m$: arbitrary trial parameter

• Take any standard (renormalized) QCD pert. series, expand in δ after:

 $m_q \rightarrow m (1 - \delta); \quad \alpha_S \rightarrow \delta \alpha_S$ then take $\delta \rightarrow 1$ (to recover original massless theory):

BUT a *m*-dependence remains at any finite δ^k -order: fixed typically by optimization (OPT):

 $\frac{\partial}{\partial m}$ (physical quantity) = 0 for $m = m_{opt}(\alpha_S) \neq 0$

Manifestation of *dimensional transmutation*! Expect *flatter* m-dependence at increasing δ orders... But does this 'cheap trick' always work? and why?

Simpler model's support + properties

- •Convergence proof of this procedure for $D = 1 \lambda \phi^4$ oscillator (cancels large pert. order factorial divergences!) Guida et al '95 particular case of 'order-dependent mapping' Seznec+Zinn-Justin '79 (exponentially fast convergence for ground state energy $E_0 = const.\lambda^{1/3}$; good to % level at second δ -order)
- In renormalizable QFT, first order consistent with Hartree-Fock (or large N) approximation
 Also produces factorial damping at large pert. orders ('delay' infrared renormalon behaviour to higher orders)(JLK, Reynaud '2002)

•Flexible, Renormalization-compatible, gauge-invariant: applications also at finite temperature (phase transitions beyond mean field approx. in 2D, 3D models, QCD...)

(many variants, many works)

Expected behaviour (Ideally...)

But not quite what happens.. (except in simple oscillator) Most elaborated calculations (e.g $T \neq 0$) (very) difficult beyond first order: \rightarrow what about convergence?

Main pb at higher order: OPT: $\partial_m(...) = 0$ has multi-solutions (some complex!), how to choose right one??

3. RG improved OPT (RGOPT)

Our main new ingredient (JLK, A. Neveu 2010):

Consider a physical quantity (perturbatively RG invariant), e.g. pole mass M:

in addition to OPT Eq: $\frac{\partial}{\partial m} M^{(k)}(m, g, \delta = 1)|_{m \equiv \tilde{m}} \equiv 0$

Require (δ -modified!) series at order δ^k to satisfy a standard perturbative Renormalization Group (RG) equation:

$$\operatorname{RG}\left(M^{(k)}(m,g,\delta=1)\right) = 0$$

with standard RG operator:

$$\mathsf{RG} \equiv \mu \frac{d}{d\,\mu} = \mu \frac{\partial}{\partial\mu} + \beta(g) \frac{\partial}{\partial g} - \gamma_m(g) \, m \frac{\partial}{\partial m}$$

 $[\beta(g) \equiv -2b_0g^2 - 2b_1g^3 + \cdots, \gamma_m(g) \equiv \gamma_0g + \gamma_1g^2 + \cdots]$

 \rightarrow Combined with OPT, RG Eq. takes a reduced form:

$$\left[\mu\frac{\partial}{\partial\mu} + \beta(g)\frac{\partial}{\partial g}\right]M^{(k)}(m,g,\delta=1) = 0$$

Note: OPT+RG completely fix $m \equiv \tilde{m}$ and $g \equiv \tilde{g}$ (two constraints for two parameters).

• Now $\Lambda_{\overline{\text{MS}}}(g)$ satisfies by def. $\left[\mu \frac{\partial}{\partial \mu} + \beta(g) \frac{\partial}{\partial g}\right] \Lambda_{\overline{\text{MS}}} \equiv 0$ consistently at a given pert. order for $\beta(g)$. Thus equivalent to:

$$\frac{\partial}{\partial m} \left(\frac{M^k(m, g, \delta = 1)}{\Lambda_{\overline{\mathsf{MS}}}(g)} \right) = 0 \; ; \quad \frac{\partial}{\partial g} \left(\frac{M^k(m, g, \delta = 1)}{\Lambda_{\overline{\mathsf{MS}}}(g)} \right) = 0$$

OPT + RG main features

•OPT: (too) much freedom in the interpolating Lagrangian?: $m \rightarrow m (1 - \delta)^a$ in most previous works: linear case a = 1 for 'simplicity'... [exceptions: Bose-Einstein Condensate T_c shift, calculated from $O(2)\lambda\phi^4$, requires $a \neq 1$: gives real solutions +related to critical exponents (Kleinert,Kastening; JLK,Neveu,Pinto '04) •OPT, RG Eqs. are polynomial in $(L \equiv \ln \frac{m}{\mu}, g = 4\pi\alpha_S)$: serious drawback: polynomial Eqs of order $k \rightarrow$ (too) many solutions, and often complex, at increasing δ -orders

•Our *compelling* way out: require solutions to match standard perturbation (i.e. Asympt. Freedom for QCD): $\alpha_S \rightarrow 0, |L| \rightarrow \infty$: $\alpha_S \sim -\frac{1}{2b_0L} + \cdots$

→ at arbitrary RG order, AF-compatible RG + OPT branches *only* appear for a specific universal *a* value: $m \rightarrow m (1 - \delta)^{\frac{\gamma_0}{2b_0}}$; (e.g. $\frac{\gamma_0}{2b_0}^{QCD} (n_f = 3) = \frac{4}{9}$) + Removes spurious solutions incompatible with AF!

Pre-QCD guidance: Gross-Neveu model

•D = 2 O(2N) GN model shares many properties with QCD (asymptotic freedom, (discrete) chiral sym., mass gap,...)

$$\mathcal{L}_{GN} = \bar{\Psi}i \; \partial \!\!\!/ \Psi + rac{g_0}{2N} (\sum_1^N \bar{\Psi}\Psi)^2$$
 (massless)

Standard mass-gap (massless, large *N* approx.): consider $V_{eff}(\sigma), \sigma \sim \overline{\Psi}\Psi$; $\sigma \equiv M = \mu e^{-\frac{2\pi}{g}} \equiv \Lambda_{\overline{MS}}$

•Mass gap known exactly for any N:

 $\frac{M_{exact}(N)}{\Lambda_{\overline{\text{MS}}}} = \frac{(4e)^{\frac{1}{2N-2}}}{\Gamma[1-\frac{1}{2N-2}]}$ (From D = 2 integrability: Bethe Ansatz) Forgacs et al '91

Massive GN model

Now consider *massive* case (still large *N*): $M(m,g) \equiv m(1+g \ln \frac{M}{\mu})^{-1}$: Resummed mass $(g/(2\pi) \rightarrow g)$ $= m(1-g \ln \frac{m}{\mu} + g^2(\ln \frac{m}{\mu} + \ln^2 \frac{m}{\mu}) + \cdots)$ (pert. re-expanded)

• Only fully summed M(m,g) gives right result, upon: -identify $\Lambda \equiv \mu e^{-1/g}$; $\rightarrow M(m,g) = \frac{m}{g \ln \frac{M}{\Lambda}} \equiv \frac{\hat{m}}{\ln \frac{M}{\Lambda}}$; -take reciprocal: $\hat{m}(F \equiv \ln \frac{M}{\Lambda}) = F e^F \Lambda \sim F$ for $\hat{m} \rightarrow 0$; $\rightarrow M(\hat{m} \rightarrow 0) \sim \frac{\hat{m}}{\hat{m}/\Lambda + O(\hat{m}^2)} = \Lambda_{\overline{MS}}$

never seen in standard perturbation: $M_{pert}(m \rightarrow 0) \rightarrow 0!$

•But (RG)OPT gives $M = \Lambda_{\overline{MS}}$ at *first* (and any) δ -order! (at any order, OPT sol.: $\ln \frac{m}{\mu} = -\frac{1}{q}$, RG sol.: g = 1)

•At δ^2 -order (2-loop), RGOPT ~ 1 - 2% from $M_{exact}(anyN)$

4. QCD Application: Pion decay constant F_{π}

Consider $SU(n_f)_L \times SU(n_f)_R \rightarrow SU(n_f)_{L+R}$ for n_f massless quarks. ($n_f = 2, n_f = 3$) Define/calculate pion decay constant F_{π} from

$$i\langle 0|TA^i_{\mu}(p)A^j_{\nu}(0)|0\rangle \equiv \delta^{ij}g_{\mu\nu}F^2_{\pi} + \mathcal{O}(p_{\mu}p_{\nu})$$

where quark axial current: $A^i_{\mu} \equiv \bar{q}\gamma_{\mu}\gamma_5\frac{\tau_i}{2} q$ $F_{\pi} \neq 0$: Chiral symmetry breaking order parameter

Advantage: Perturbative expression known to 3,4 loops (3-loop Chetyrkin et al '95; 4-loop Maier et al '08 '09, +Maier, Marquard private comm.)

(Standard) perturbative available information

$$F_{\pi}^{2}(pert)_{\overline{\text{MS}}} = N_{c} \frac{m^{2}}{2\pi^{2}} \left[-L + \frac{\alpha_{S}}{4\pi} (8L^{2} + \frac{4}{3}L + \frac{1}{6}) + (\frac{\alpha_{S}}{4\pi})^{2} [f_{30}(n_{f})L^{3} + f_{31}(n_{f})L + f_{32}(n_{f})L + f_{33}(n_{f})] + \mathcal{O}(\alpha_{S}^{3}) \right]$$

 $L \equiv \ln \frac{m}{\mu}, n_f = 2(3)$

Note: finite part (after mass + coupling renormalization) not separately RG-inv: (i.e. F_{π}^2 , as defined, mixes with $m^2 1$ operator)

 \rightarrow (extra) renormalization by subtraction of the form: $S(m, \alpha_S) = m^2(s_0/\alpha_S + s_1 + s_2\alpha_S + ...)$ where s_i fixed requiring RG-inv order by order: $s_0 = \frac{3}{16\pi^3(b_0 - \gamma_0)}$, $s_1 = ...$

Same feature for $\langle \bar{q}q \rangle$, related to vacuum energy, needs an extra (additive) renormalization in $\overline{\text{MS}}$ -scheme to be RG consistent.

Warm-up calculation: pure RG approximation

 $\begin{array}{l} \text{neglect non-RG (non-logarithmic) terms:} \\ F_{\pi}^{2}(\text{RG-1},\mathcal{O}(g)) = 3\frac{m^{2}}{2\pi^{2}} \left[-L + \frac{\alpha_{S}}{4\pi}(8L^{2} + \frac{4}{3}L) - (\frac{1}{8\pi(b_{0} - \gamma_{0})\alpha_{S}} - \frac{5}{12}) \right] \\ \rightarrow F_{\pi}^{2}(m \rightarrow m(1 - \delta)^{\gamma_{0}/(2b_{0})}, \alpha_{S} \rightarrow \delta\alpha_{S}, \mathcal{O}(\delta))|_{\delta \rightarrow 1} = \\ 3\frac{m^{2}}{2\pi^{2}} \left[-\frac{102\pi}{841\alpha_{S}} + \frac{169}{348} - \frac{5}{29}L + \frac{\alpha_{S}}{4\pi}(8L^{2} + \frac{4}{3}L) \right] \\ \text{OPT+RG: } \partial_{m}(F_{\pi}^{2}/\Lambda_{\text{MS}}^{2}), \partial_{\alpha_{S}}(F_{\pi}^{2}/\Lambda_{\text{MS}}^{2}) \equiv 0 \text{: have a unique} \end{array}$

AF-compatible real solution: $\tilde{L} \equiv \ln \frac{\tilde{m}}{\mu} = -\frac{\gamma_0}{2b_0}$; $\tilde{\alpha}_S = \frac{\pi}{2}$ $\rightarrow F_{\pi}(\tilde{m}, \tilde{\alpha}_S) = (\frac{5}{8\pi^2})^{1/2} \tilde{m} \simeq 0.25 \Lambda_{\overline{\text{MS}}}$

•Includes higher orders +non-RG terms: \tilde{m}_{opt} remains $\mathcal{O}(\Lambda_{\overline{\text{MS}}})$ (rather than $m \sim 0$): RG-consistent 'mass gap',

And OPT stabilizes $\alpha_S^{opt} \simeq .5$: more perturbative values

Exact F_{π} **RG+OPT** solutions at 4-loops ($\overline{\text{MS}}$)

All branches of RG (thick) and OPT(dashed) solutions $Re[L \equiv \ln \frac{m}{\mu}(g)]$ to the δ -modified 3rd order (4-loop) perturbation ($g = 4\pi\alpha_S$). Unique AF compatible sol.: black dot

 However beyond lowest order, AF-compatibility and reality of solutions appear mutually exclusive...
 But, complex solutions are artefacts of solving exactly the RG and OPT (polynomial in L) Eqs...

Recovering real AF-compatible solutions

Are there *perturbative* 'deformations' consistent with RG?: **Evidently: Renormalization scheme changes (RSC)!** $m \rightarrow m'(1 + B_1g' + B_2g'^2 + \cdots), g \rightarrow g'(1 + A_1g' + A_2g'^2 + \cdots)$

Require *contact* solution (thus closest to MS): $\frac{\partial}{\partial g} \operatorname{RG}(g, L, B_i) \frac{\partial}{\partial L} \operatorname{OPT}(g, L, B_i) - \frac{\partial}{\partial L} \operatorname{RG} \frac{\partial}{\partial g} \operatorname{OPT} \equiv 0$

RSC affects pert. coefficients, but with property: $F_{\pi}^{\overline{MS}}(\overline{m}, g; \overline{f}_{ij}) = F'_{\pi}(m', g'; f'_{ij}(B_i)) + g^{k+1} \text{remnant}(B_i)$ \rightarrow differences *should* decrease with perturbative order! **Results, with theoretical uncertainties** JLK, Neveu 1305.6910 PRD

Beside recovering real solution, RSC offer natural, reasonably convincing uncertainty estimates: non-unique RSC \rightarrow we take differences between those as th. uncertainties

Table 1: Main optimized results at successive orders ($n_f = 3$)

δ^k order	nearest-to- $\overline{\text{MS}}$ RSC \tilde{B}_i	\tilde{L}'	$ ilde{lpha}_S$	$\frac{F_0}{\overline{\Lambda}_{4l}}$ (RSC uncertainties)
δ , RG-2I	$\tilde{B}_2 = 2.38 10^{-4}$	-0.523	0.757	0.27 - 0.34
δ^2 , RG-3l	$\tilde{B}_3 = 3.39 10^{-5}$	-1.368	0.507	0.236 - 0.255
δ^3 , RG-4l	$\tilde{B}_4 = 1.51 10^{-5}$	-1.760	0.374	0.2409 - 0.2546

$$n_f = 2: \frac{F}{\overline{\Lambda}}(\delta^2) = 0.213 - 0.269 \ (\tilde{\alpha}_S = 0.46 - 0.64) \\ \frac{F}{\overline{\Lambda}}(\delta^3) = 0.2224 - 0.2495 \ (\tilde{\alpha}_S = 0.35 - 0.42)$$

•Empirical stability/convergence exhibited, with $-2b_0\tilde{g}\tilde{L} \simeq 1$ i.e. $\tilde{m}_{opt} \simeq \mu e^{-1/(2b_0\tilde{g})}$ (like pure 1rst RG order)

More realistic: explicit symmetry breaking

•Need to "subtract" effect from explicit chiral symmetry breaking from genuine quark masses $m_u, m_d, m_s \neq 0$: Unfortunately relies at this stage on other (mainly Lattice) results:

 $\frac{F_{\pi}}{F} \sim 1.073 \pm 0.015$ [robust, $n_f = 2$ ChPT + Lattice]

 $\frac{F_{\pi}}{F_0} \sim 1.172(3)(43)$ (Lattice MILC collaboration '10 using NNLO ChPT fits)

But quite different values by other collaborations

+ hint of slower convergence of $n_f = 3$ ChPT, e.g. Bernard, Descotes-Genon, Toucan '10

Alternative: implement explicit sym. break. within OPT (to be fully independent of ChPT+lattice results):

 $m \rightarrow m_{u,d,s}^{true} + m(1 - \delta)^{\gamma_0/(2b_0)}$: promising but rather involved RG+OPT Eqs. (no longer polynomial), work in progress...)

Combined results with theoretical uncertainties:

Average different RSC +average δ^2 and δ^3 results: $\overline{\Lambda}_{4-loop}^{n_f=2} \simeq 359^{+38}_{-26} \pm 5 \text{ MeV}$ $\overline{\Lambda}_{4-loop}^{n_f=3} \simeq 317^{+14}_{-7} \pm 13 \text{ MeV}$

To be compared with some recent lattice results, e.g.: •'Schrödinger functional scheme' (ALPHA coll. Della Morte et al '12): $\Lambda_{\overline{MS}}(n_f = 2) = 310 \pm 30 \text{ MeV}$ •Wilson fermions (Göckeler et al '05) $\Lambda_{\overline{MS}}(n_f = 2) = 261 \pm 17(\text{stat}) \pm 26(\text{syst}) \text{ MeV}$ •Twisted fermions (+NP power corrections) (Blossier et al '10): $\Lambda_{\overline{MS}}(n_f = 2) = 330 \pm 23 \pm 22_{-33} \text{ MeV}$ •static potential (Jansen et al '12): $\Lambda_{\overline{MS}}(n_f = 2) = 315 \pm 30 \text{ MeV}$

Extrapolation to α_S **at high (perturbative)** q^2

Use only $\Lambda_{\overline{MS}}^{n_f=3}$ (more perturbative trustable threshold crossings)

•In $\overline{\text{MS}}$ -scheme, no explicit decoupling of large masses: $m_{u,d} \ll m_s \ll \Lambda_{\overline{\text{MS}}} \ll m_{charm} \ll m_{bottom}...$ •need non-trivial decoupling/matching: $\Lambda_{\overline{\text{MS}}}(n_f)$ and 'jumps': standard perturbative extrapolation (3,4-loop with m_c , m_b threshold etc):

$$\alpha_S^{n_f+1}(\mu) = \alpha_S^{n_f}(\mu) \left(1 - \frac{11}{72} (\frac{\alpha_S}{\pi})^2 + (-0.972057 + .0846515n_f) (\frac{\alpha_S}{\pi})^3 \right)$$

 $\rightarrow \overline{\alpha}_S(m_Z) = 0.1174^{+.0010}_{-.0005} \pm .0010 \pm .0005_{evol}$

$$\overline{\alpha}_S^{n_f=3}(m_\tau) = 0.308^{+.007}_{-.004} \pm .007 \pm .002_{evol}$$

Compare to 2013 world average: $\alpha_S(m_Z) = .1185 \pm .0007$

5. Chiral quark condensate $\langle \bar{q}q \rangle$

In a nutshell:

$$\langle \bar{q}q \rangle \equiv -2m \int_0^\infty d\lambda \frac{\rho(\lambda)}{\lambda^2 + m^2}$$

 $\rho(\lambda)$ is the spectral density of the (euclidean) Dirac operator. Banks-Casher relation:

$$\lim_{m\to 0} \langle \bar{q}q \rangle = -\pi\rho(0)$$

Again an intrinsical nonperturbative quantity, vanishing to all orders of ordinary perturbation.

Conversely: $\rho(\lambda) = \frac{1}{2\pi} \left(\langle \bar{q}q \rangle (i\lambda - \epsilon) - \langle \bar{q}q \rangle (i\lambda + \epsilon) \right) |_{\epsilon \to 0}$ i.e. $\rho(\lambda)$ determined by discontinuities of $\langle \bar{q}q \rangle(m)$ across imaginary axis.

Pert. expansion known to 3-loops (Chetyrkin et al) $\rightarrow \ln(m \rightarrow i\lambda)$ discontinuities.

RGOPT 3-loop for $\langle \bar{q}q \rangle$ ($n_f = 2, 3$) (preliminary!)

Real solutions:

$$n_f = 2: \ \tilde{\alpha}_S \simeq 0.43 - 0.48; \ \ln \frac{\tilde{m}}{\mu} \simeq -(0.69 - 0.70) -\frac{\langle \bar{q}q \rangle^{1/3}}{\Lambda_{\overline{\text{MS}}}} (n_f = 2) (\tilde{\mu} \simeq 1 GeV) \simeq 0.79 - 0.80 n_f = 3: \ \tilde{\alpha}_S \simeq 0.44 - 0.47; \ \ln \frac{\tilde{m}}{\mu} \simeq -(0.69 - 0.79) -\frac{\langle \bar{q}q \rangle^{1/3}}{\Lambda_{\overline{\text{MS}}}} (n_f = 3) (\tilde{\mu} \simeq 1 GeV) \simeq 0.78 - 0.79$$

 \rightarrow Appears to have very mild dependence on n_f . However, (see previous) $\Lambda_{\overline{\text{MS}}}(n_f = 2) > \Lambda_{\overline{\text{MS}}}(n_f = 3)$ (with larger $\Lambda_{\overline{\text{MS}}}(n_f = 2)$ uncertainty)

 $\begin{array}{l} \rightarrow - \langle \bar{q}q \rangle^{1/3} (n_f = 2, \mu = 1 GeV) \simeq 284^{+30}_{-20} MeV \\ \rightarrow - \langle \bar{q}q \rangle^{1/3} (n_f = 3, \mu = 1 GeV) \simeq 247^{+20}_{-13} MeV \\ \text{with uncertainties mostly from } \Lambda_{\overline{\text{MS}}} \text{ ones} \end{array}$

6. RGOPT $\lambda \phi^4$ Pressure (JLK + M. Pinto, preliminary!)

 $\lambda \phi^4$ pressure at successive ordinary pert. orders

bands=scale-dependence $\mu = \pi T - 4\pi T$

Many efforts to improve this, motivated by QGP (review e.g. Blaizot et al '03) Screened Pert. (Karsh et al '97, ~ Hard Thermal loop (HTL) resummation (Andersen, Braaten, Strickland) -Functional RG, 2-particle irreducible (2PI) formalism (Blaizot, Iancu, Rebhan '01)

Culprit (in a nutshell): mix up of hard $p \sim T$ and soft $p \sim \lambda T$ modes. Yet thermal 'Debye' screening mass $m_D^2 \lambda T^2$ generated gives IR cutoff, BUT \rightarrow Perturbative expansion in $\sqrt{\lambda}$ ($\sqrt{\alpha_S}$ in QCD) \rightarrow slower convergence Yet most of interesting physics happens at moderate λ values.. But large scale-dependence (increasing with order) remains very odd, specially for HTL RGOPT cures this, essentially by treating thermal mass 'RG consistently'

(NB some qualitative links with Blaizot, Wschebor 1409.4795)

RGOPT($\lambda \phi^4$)

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{m^2}{2} (1-\delta)^2 \frac{\gamma_0}{b_0} \phi^2 - \delta \frac{\lambda}{4!} \phi^4$$

NB $2\gamma_0/b_0 = 1/3$. 2-loop Vacuum energy ($\overline{\text{MS}}$ scheme):

$$(4\pi)^2 \mathcal{F}_0 = \mathcal{E}_0 - \frac{1}{8}m^4 (3 + 2\ln\frac{\mu^2}{m^2}) - \frac{1}{2}J_0(\frac{m}{T})T^4 + \frac{1}{8}\frac{\lambda}{16\pi^2} \left[(\ln\frac{\mu^2}{m^2} + 1)m^2 - J_1(\frac{m}{T})T^2 \right]^2$$

T-dependent part: $J_0(\frac{m}{T}) = \sim \int_0^\infty dp \frac{1}{\sqrt{p^2 + m^2}} \frac{1}{E^{\sqrt{p^2 + m^2}} - 1}$ \mathcal{E}_0 : finite vacuum energy terms: $\mathcal{E}_0(\lambda, m) = -\frac{m^4}{\lambda} \sum_{k \ge 0} s_k \lambda^k$

$$s_0 = \frac{1}{2(b_0 - 4\gamma_0)} = 8\pi^2; \quad s_1 = \frac{(b_1 - 4\gamma_1)}{8\gamma_0 (b_0 - 4\gamma_0)} = -1$$

(NB *T*-independent, determined consistently by requiring RG invariance!) NB: non-trivial OPT solution $\tilde{m}(\lambda, T)$ already at one-loop (not the case for HTLpt).

RGOPT one-loop ($\mathcal{O}(\delta^0)$)

exact OPT solution: $\tilde{m}^2 = \frac{\lambda}{2} \left[b_0 \tilde{m}^2 (\ln \frac{\tilde{m}^2}{\mu^2} - 1) + T^2 J_1(\frac{\tilde{m}}{T}) \right]$ approximate $m/T \leq 1$ OPT Eq. form is simple quadratic (sufficient for all purpose):

$$\left(\frac{1}{b_0 \lambda} + \gamma_E + \ln \frac{\mu}{4\pi T}\right) \left(\frac{m}{T}\right)^2 + 2\pi \frac{m}{T} - 2\frac{\pi^2}{3} = 0$$

$$\frac{\tilde{m}^{(1)}}{T} = \pi \frac{\sqrt{1 + \frac{2}{3}(\frac{1}{b_0\lambda} + L_T)} - 1}{\frac{1}{b_0\lambda} + L_T} \sim \frac{1}{2\sqrt{2}}\sqrt{\lambda} - \pi b_0\lambda + \frac{3}{128\pi^2\sqrt{2}}(3 - 2L_T)\lambda^{3/2} + \cdots \\ L_T \equiv \gamma_E + \ln\frac{\mu}{4\pi T}$$

- explicitly exactly scale-invariant!
- reproduces qualitatively more sophisticated 2PI (first order) results!

RGOPT Pressure: one-loop

 $g(\mu) = (\lambda(\mu)/24)^{1/2}$ with scale-dependence $\mu = \pi T - 4\pi T$

Two-loops

 $g(\mu) = (\lambda(\mu)/24)^{1/2}$ with scale-dependence $\mu = \pi T - 4\pi T$

RGOPT versus standard OPT (HTLPT)

5. Summary and Outlook

•OPT gives a simple procedure to resum perturbative expansions, using only perturbative information.

- •Our RGOPT version includes 2 major differences w.r.t. most previous OPT approaches:
- 1) OPT+ RG minimizations fix optimized \tilde{m} and $\tilde{g} = 4\pi \tilde{\alpha}_S$ 2) Requiring AF-compatible solutions uniquely fixes the basic interpolation $m \to m(1 - \delta)^{\gamma_0/(2b_0)}$: discards spurious solutions and accelerates convergence.

(O(10%)) accuracy at 1-2-loops, empirical stability exhibited at 3-loop)

Straightforward to apply for $T \neq 0$: exhibit remarkable stability + scale independence (sharp contrast with 'standard' OPT ~ HTLpt)

•Outlook: (almost) straightforward application to thermal QCD (start with pure gluon pressure)