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1. Introduction/Motivations

General goal: get approximations (of reasonable accuracy?)
to ’intrinsically nonperturbative’ chiral sym. breaking order
parameters from unconventional resummation of perturbative
expansions
Very general: relevant both at T = 0 or T 6= 0 (also finite
density)
→ address well-known problem of unstable thermal
perturbation theory:
(here illustrate for λΦ4, next goal: real QCD for Quark Gluon
Plasma: thermodynamic quantities, comparison with Lattice
results).
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Chiral Symmetry Breaking (χSB ) Order parameters

Usually considered hopeless from standard perturbation:

1. 〈q̄q〉1/3, Fπ,.. ∼ O(ΛQCD) ≃ 100–300 MeV
→ αS (a priori) large → invalidates pert. expansion

2. 〈q̄q〉, Fπ,.. perturbative series ∼ (mq)d
∑

n,p αn
s lnp(mq)

vanish for mq → 0 at any pert. order (trivial chiral limit)

3. More sophisticated arguments e.g. (infrared)
renormalons (factorially divergent pert. coeff. at large orders)

+

= ...

⇒≃
∫

dp2
∑

n(ln
p2

µ2 )n ∼ n!

All seems to tell that χSB parameters are intrinsically NP

•Optimized pert. (OPT): appear to circumvent at least 1., 2.,
and may give more clues to pert./NP bridge
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T 6= 0: perturbative Pressure (QCD or λφ4)

Know long-standing Pb: poorly convergent and very
scale-dependent (ordinary) perturbative expansion

QCD (pure glue) pressure at successive pert. orders

bands=scale-dependence µ = πT − 4πT
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2. (Variationally) Optimized Perturbation (OPT)

LQCD(g,mq) → LQCD(δ g,m(1− δ)) (αS ≡ g/(4π))

0 < δ < 1 interpolates between Lfree and massless Lint;
(quark) mass mq → m: arbitrary trial parameter

• Take any standard (renormalized) QCD pert. series,
expand in δ after:

mq → m (1− δ); αS → δ αS

then take δ → 1 (to recover original massless theory):

BUT a m-dependence remains at any finite δk-order:
fixed typically by optimization (OPT):

∂
∂m(physical quantity) = 0 for m = mopt(αS) 6= 0

Manifestation of dimensional transmutation!
Expect flatter m-dependence at increasing δ orders...

But does this ’cheap trick’ always work? and why?
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Simpler model’s support + properties

•Convergence proof of this procedure for D = 1 λφ4 oscillator
(cancels large pert. order factorial divergences!) Guida et al ’95

particular case of ’order-dependent mapping’ Seznec+Zinn-Justin ’79

(exponentially fast convergence for ground state energy
E0 = const.λ1/3; good to % level at second δ-order)

•In renormalizable QFT, first order consistent with
Hartree-Fock (or large N ) approximation
•Also produces factorial damping at large pert. orders
(’delay’ infrared renormalon behaviour to higher orders)( JLK, Reynaud ’2002 )

•Flexible, Renormalization-compatible, gauge-invariant:
applications also at finite temperature (phase transitions
beyond mean field approx. in 2D, 3D models, QCD...)

(many variants, many works)
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Expected behaviour (Ideally...)
Physical quantity

OPT 1st order

2d order

3rd order etc...

m0

Exact result
(non−perturbative)

O(Λ )

But not quite what happens.. (except in simple oscillator)
Most elaborated calculations (e.g T 6= 0) (very) difficult
beyond first order: → what about convergence?

Main pb at higher order: OPT: ∂m(...) = 0 has multi-solutions
(some complex!), how to choose right one??
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3. RG improved OPT (RGOPT)

Our main new ingredient (JLK, A. Neveu 2010):

Consider a physical quantity (perturbatively RG invariant),
e.g. pole mass M:
in addition to OPT Eq: ∂

∂ mM (k)(m, g, δ = 1)|m≡m̃ ≡ 0

Require (δ-modified!) series at order δk to satisfy a standard
perturbative Renormalization Group (RG) equation:

RG
(

M (k)(m, g, δ = 1)
)

= 0

with standard RG operator:

RG ≡ µ
d

dµ
= µ

∂

∂µ
+ β(g)

∂

∂g
− γm(g)m

∂

∂m

[β(g) ≡ −2b0g
2 − 2b1g

3 + · · · , γm(g) ≡ γ0g + γ1g
2 + · · · ]
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→ Combined with OPT, RG Eq. takes a reduced form:
[

µ
∂

∂µ
+ β(g)

∂

∂g

]

M (k)(m, g, δ = 1) = 0

Note: OPT+RG completely fix m ≡ m̃ and g ≡ g̃ (two
constraints for two parameters).

• Now ΛMS(g) satisfies by def.
[

µ ∂
∂µ

+ β(g) ∂
∂g

]

ΛMS ≡ 0

consistently at a given pert. order for β(g).
Thus equivalent to:

∂

∂ m

(

Mk(m, g, δ = 1)

ΛMS(g)

)

= 0 ;
∂

∂ g

(

Mk(m, g, δ = 1)

ΛMS(g)

)

= 0
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OPT + RG main features

•OPT: (too) much freedom in the interpolating Lagrangian?:
m → m (1− δ)a

in most previous works: linear case a = 1 for ’simplicity’...
[exceptions: Bose-Einstein Condensate Tc shift, calculated from O(2)λφ4, requires a 6= 1:

gives real solutions +related to critical exponents (Kleinert,Kastening; JLK,Neveu,Pinto ’04)

•OPT, RG Eqs. are polynomial in (L ≡ ln m
µ , g = 4παS):

serious drawback: polynomial Eqs of order k → (too) many
solutions, and often complex, at increasing δ-orders

•Our compelling way out: require solutions to match
standard perturbation (i.e. Asympt. Freedom for QCD):
αS → 0,|L| → ∞: αS ∼ − 1

2b0L
+ · · ·

→ at arbitrary RG order, AF-compatible RG + OPT
branches only appear for a specific universal a value:

m → m (1− δ)
γ0
2b0 ; (e.g. γ0

2b0

QCD
(nf = 3) = 4

9)

+ Removes spurious solutions incompatible with AF! – p. 11



Pre-QCD guidance: Gross-Neveu model

•D = 2 O(2N) GN model shares many properties with QCD
(asymptotic freedom, (discrete) chiral sym., mass gap,..)

LGN = Ψ̄i 6∂Ψ+ g0
2N (

∑N
1 Ψ̄Ψ)2 (massless)

Standard mass-gap (massless, large N approx.):
consider Veff (σ), σ ∼ Ψ̄Ψ;

σ ≡ M = µe−
2π
g ≡ ΛMS

•Mass gap known exactly for any N :
Mexact(N)

ΛMS
= (4e)

1
2N−2

Γ[1− 1
2N−2

]

(From D = 2 integrability: Bethe Ansatz) Forgacs et al ’91
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Massive GN model

Now consider massive case (still large N ):
M(m, g) ≡ m(1 + g ln M

µ )−1: Resummed mass (g/(2π) → g)

= m(1− g ln m
µ + g2(ln m

µ + ln2 m
µ ) + · · · ) (pert. re-expanded)

• Only fully summed M(m, g) gives right result, upon:
-identify Λ ≡ µe−1/g; → M(m, g) = m

g ln M
Λ

≡ m̂
ln M

Λ

;

-take reciprocal: m̂(F ≡ ln M
Λ ) = F eF Λ ∼ F for m̂ → 0;

→M(m̂ → 0) ∼ m̂
m̂/Λ+O(m̂2) = ΛMS

never seen in standard perturbation: Mpert(m → 0) → 0!

•But (RG)OPT gives M = ΛMS at first (and any) δ-order!
(at any order, OPT sol.: ln m

µ = −1
g , RG sol.: g = 1 )

•At δ2-order (2-loop), RGOPT ∼ 1− 2% from Mexact(anyN)
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4. QCD Application: Pion decay constant Fπ

Consider SU(nf )L × SU(nf )R → SU(nf )L+R for nf
massless quarks. ( nf = 2, nf = 3)
Define/calculate pion decay constant Fπ from

i〈0|TAi
µ(p)A

j
ν(0)|0〉 ≡ δijgµνF

2
π +O(pµpν)

where quark axial current: Ai
µ ≡ q̄γµγ5

τi
2 q

Fπ 6= 0: Chiral symmetry breaking order parameter

Advantage: Perturbative expression known to 3,4 loops
(3-loop Chetyrkin et al ’95; 4-loop Maier et al ’08 ’09, +Maier, Marquard private comm.)

x x x x x x

x x x x
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(Standard) perturbative available information

F 2
π (pert)MS = Nc

m2

2π2

[

−L+ αS

4π (8L
2 + 4

3L+ 1
6)

+(αS

4π )
2[f30(nf )L

3 + f31(nf )L+ f32(nf )L+ f33(nf )] +O(α3
S)
]

L ≡ ln m
µ

, nf = 2(3)

Note: finite part (after mass + coupling renormalization) not
separately RG-inv: (i.e. F 2

π , as defined, mixes with m2 1

operator)

→ (extra) renormalization by subtraction of the form:
S(m,αS) = m2(s0/αS + s1 + s2αS + ...) where si fixed
requiring RG-inv order by order: s0 = 3

16π3(b0−γ0)
, s1 = ...

Same feature for 〈q̄q〉, related to vacuum energy, needs an
extra (additive) renormalization in MS-scheme to be RG
consistent.
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Warm-up calculation: pure RG approximation

neglect non-RG (non-logarithmic) terms:
F 2
π (RG-1,O(g)) = 3m2

2π2

[

−L+ αS
4π (8L

2 + 4
3L)− ( 1

8π(b0−γ0)αS
− 5

12)
]

→ F 2
π (m → m(1− δ)γ0/(2b0), αS → δαS,O(δ))|δ→1 =

3m2

2π2

[

− 102π
841αS

+ 169
348

− 5
29
L+ αS

4π
(8L2 + 4

3
L)

]

OPT+RG: ∂m(F 2
π/Λ

2
MS

), ∂αS
(F 2

π/Λ
2
MS

) ≡ 0: have a unique

AF-compatible real solution: L̃ ≡ ln m̃
µ
= − γ0

2b0
; α̃S = π

2

→ Fπ(m̃, α̃S) = ( 5
8π2 )

1/2m̃ ≃ 0.25ΛMS

•Includes higher orders +non-RG terms: m̃opt remains
O(ΛMS) (rather than m ∼ 0): RG-consistent ’mass gap’,

And OPT stabilizes αopt
S ≃ .5: more perturbative values
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Exact Fπ RG+OPT solutions at 4-loops (MS)

-15 -10 -5 5 10 15

-4

-2

2

4

g

L(g)

perturbative AF
+, )(g−>0 µ >> m

=Ln(m/ µ )

All branches of RG (thick) and OPT(dashed) solutions Re[L ≡ ln m
µ
(g)] to the δ-modified

3rd order (4-loop) perturbation (g = 4παS ). Unique AF compatible sol.: black dot

•However beyond lowest order, AF-compatibility and reality
of solutions appear mutually exclusive...
But, complex solutions are artefacts of solving exactly the
RG and OPT (polynomial in L) Eqs...
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Recovering real AF-compatible solutions

Are there perturbative ’deformations’ consistent with RG?:
Evidently: Renormalization scheme changes (RSC)!
m → m′(1 +B1g

′ +B2g
′2 + · · · ), g → g′(1 +A1g

′ +A2g
′2 + · · · )

Require contact solution (thus closest to MS):
∂
∂g

RG(g, L,Bi)
∂
∂L

OPT(g, L,Bi)−
∂
∂L

RG ∂
∂g

OPT ≡ 0

O(δ), MS:

4 6 8 10 12 14 16

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

1.0

g

L(g)

→

8 10 12 14

-1.0

-0.5

0.5

g

L(g,B2)

RSC affects pert. coefficients, but with property:
FMS
π (m, g; f ij) = F ′

π(m
′, g′; f ′

ij(Bi)) + gk+1remnant(Bi)

→ differences should decrease with perturbative order!
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Results, with theoretical uncertainties JLK, Neveu 1305.6910 PRD

Beside recovering real solution, RSC offer natural, reasonably
convincing uncertainty estimates: non-unique RSC
→ we take differences between those as th. uncertainties

Table 1: Main optimized results at successive orders (nf = 3)

δk order nearest-to-MS RSC B̃i L̃′ α̃S
F0

Λ4l
(RSC uncertainties)

δ, RG-2l B̃2 = 2.38 10−4 −0.523 0.757 0.27− 0.34

δ2, RG-3l B̃3 = 3.39 10−5 −1.368 0.507 0.236− 0.255

δ3, RG-4l B̃4 = 1.51 10−5 −1.760 0.374 0.2409− 0.2546

nf = 2: F
Λ
(δ2) = 0.213− 0.269 (α̃S = 0.46− 0.64)
F
Λ
(δ3) = 0.2224− 0.2495 (α̃S = 0.35− 0.42)

•Empirical stability/convergence exhibited, with
−2b0g̃L̃ ≃ 1 i.e. m̃opt ≃ µ e−1/(2b0g̃) (like pure 1rst RG order)
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More realistic: explicit symmetry breaking

•Need to "subtract" effect from explicit chiral symmetry
breaking from genuine quark masses mu,md,ms 6= 0:
Unfortunately relies at this stage on other (mainly Lattice)
results:
Fπ

F ∼ 1.073± 0.015 [robust, nf = 2 ChPT + Lattice]

Fπ

F0
∼ 1.172(3)(43) (Lattice MILC collaboration ’10 using NNLO ChPT fits)

But quite different values by other collaborations

+ hint of slower convergence of nf = 3 ChPT, e.g. Bernard, Descotes-Genon, Toucan ’10

Alternative: implement explicit sym. break. within OPT (to be
fully independent of ChPT+lattice results):
m → mtrue

u,d,s +m(1− δ)γ0/(2b0): promising but rather involved
RG+OPT Eqs. (no longer polynomial), work in progress...)
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Combined results with theoretical uncertainties:

Average different RSC +average δ2 and δ3 results:

Λ
nf=2
4−loop ≃ 359+38

−26 ± 5 MeV

Λ
nf=3
4−loop ≃ 317+14

−7 ± 13 MeV

To be compared with some recent lattice results, e.g.:
•’Schrödinger functional scheme’ (ALPHA coll. Della Morte et al ’12):
ΛMS(nf = 2) = 310± 30 MeV
•Wilson fermions (Göckeler et al ’05)

ΛMS(nf = 2) = 261± 17(stat)± 26(syst) MeV
•Twisted fermions (+NP power corrections) (Blossier et al ’10):
ΛMS(nf = 2) = 330± 23± 22−33 MeV
•static potential (Jansen et al ’12): ΛMS(nf = 2) = 315± 30 MeV
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Extrapolation to αS at high (perturbative) q2

Use only Λ
nf=3

MS
(more perturbative trustable threshold

crossings)

•In MS-scheme, no explicit decoupling of large masses:
mu,d ≪ ms ≪ ΛMS ≪ mcharm ≪ mbottom...

•need non-trivial decoupling/matching: ΛMS(nf ) and ’jumps’:
standard perturbative extrapolation (3,4-loop with mc, mb

threshold etc):
α
nf+1

S (µ) = α
nf

S (µ)
(

1− 11
72

(αS
π

)2 + (−0.972057 + .0846515nf )(
αS
π

)3
)

→ αS(mZ) = 0.1174+.0010
−.0005 ± .0010± .0005evol

α
nf=3
S (mτ ) = 0.308+.007

−.004 ± .007± .002evol

Compare to 2013 world average: αS(mZ) = .1185± .0007
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5. Chiral quark condensate 〈q̄q〉

In a nutshell:

〈q̄q〉 ≡ −2m

∫ ∞

0

dλ
ρ(λ)

λ2 +m2

ρ(λ) is the spectral density of the (euclidean) Dirac operator.
Banks-Casher relation:

limm→0〈q̄q〉 = −πρ(0)

Again an intrinsical nonperturbative quantity, vanishing to all orders of ordinary perturbation.

Conversely: ρ(λ) = 1
2π

(〈q̄q〉(iλ− ǫ)− 〈q̄q〉(iλ+ ǫ)) |ǫ→0

i.e. ρ(λ) determined by dicontinuities of 〈q̄q〉(m) across
imaginary axis.
Pert. expansion known to 3-loops (Chetyrkin et al) →
ln(m → iλ) discontinuities.
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RGOPT 3-loop for 〈q̄q〉 (nf = 2, 3) (preliminary!)

Real solutions:
nf = 2: α̃S ≃ 0.43− 0.48; ln m̃

µ
≃ −(0.69− 0.70)

− 〈q̄q〉1/3
ΛMS

(nf = 2)(µ̃ ≃ 1GeV ) ≃ 0.79− 0.80

nf = 3: α̃S ≃ 0.44− 0.47; ln m̃
µ
≃ −(0.69− 0.79)

− 〈q̄q〉1/3
ΛMS

(nf = 3)(µ̃ ≃ 1GeV ) ≃ 0.78− 0.79

→ Appears to have very mild dependence on nf .
However, (see previous) ΛMS(nf = 2) > ΛMS(nf = 3) (with
larger ΛMS(nf = 2) uncertainty)
→ −〈q̄q〉1/3(nf = 2, µ = 1GeV ) ≃ 284+30

−20MeV

→ −〈q̄q〉1/3(nf = 3, µ = 1GeV ) ≃ 247+20
−13MeV

with uncertainties mostly from ΛMS ones
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6. RGOPT λφ4 Pressure (JLK +M. Pinto, preliminary!)

λφ4 pressure at successive ordinary pert. orders

bands=scale-dependence µ = πT − 4πT

Many efforts to improve this, motivated by QGP (review e.g. Blaizot et al ’03) Screened Pert.
(Karsh et al ’97, ∼ Hard Thermal loop (HTL) resummation (Andersen, Braaten, Strickland)
-Functional RG, 2-particle irreducible (2PI) formalism (Blaizot, Iancu, Rebhan ’01)

Culprit (in a nutshell): mix up of hard p ∼ T and soft p ∼ λT modes.
Yet thermal ’Debye’ screening mass m2

DλT 2 generated gives IR cutoff,
BUT → Perturbative expansion in

√
λ (

√
αS in QCD) → slower convergence

Yet most of interesting physics happens at moderate λ values..
But large scale-dependence (increasing with order) remains very odd, specially for HTL
RGOPT cures this, essentially by treating thermal mass ’RG consistently’

(NB some qualitative links with Blaizot, Wschebor 1409.4795)
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RGOPT(λφ4)

L =
1

2
∂µφ∂

µφ− m2

2
(1− δ)

2
γ0
b0 φ2 − δ

λ

4!
φ4

NB 2γ0/b0 = 1/3.
2-loop Vacuum energy (MS scheme):

(4π)2F0 = E0 − 1
8
m4(3 + 2 ln µ2

m2 )− 1
2
J0(

m
T
)T 4

+ 1
8

λ
16π2

[

(ln µ2

m2 + 1)m2 − J1(
m
T
)T 2

]2

T-dependent part: J0(mT ) =∼
∫∞
0 dp 1√

p2+m2

1

E

√
p2+m2−1

E0: finite vacuum energy terms: E0(λ,m) = −m4

λ

∑

k≥0 skλ
k

s0 =
1

2(b0 − 4γ0)
= 8π2; s1 =

(b1 − 4γ1)

8γ0 (b0 − 4γ0)
= −1

(NB T -independent, determined consistently by requiring RG invariance!)

NB: non-trivial OPT solution m̃(λ, T ) already at one-loop (not the case for HTLpt).
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RGOPT one-loop (O(δ0))

exact OPT solution: m̃2 = λ
2

[

b0m̃2(ln m̃2

µ2 − 1) + T 2J1(
m̃
T
)
]

approximate m/T <∼ 1 OPT Eq. form is simple quadratic (sufficient for all purpose):

(
1

b0 λ
+ γE + ln

µ

4πT
) (

m

T
)2 + 2π

m

T
− 2

π2

3
= 0

m̃(1)

T
= π

√

1+ 2
3
( 1
b0λ

+LT )−1

1
b0λ

+LT
∼ 1

2
√

2

√
λ− πb0λ+ 3

128π2
√

2
(3− 2LT )λ3/2 + · · ·

LT ≡ γE + ln µ
4πT

• explicitly exactly scale-invariant!

• reproduces qualitatively more sophisticated 2PI (first order) results!
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RGOPT Pressure: one-loop

0.2 0.4 0.6 0.8 1.0

0.80

0.85

0.90

0.95

1.00

pert. 1-loop

RGOPT 1-loop

P/P 0

g

g(µ) = (λ(µ)/24)1/2 with scale-dependence µ = πT − 4πT
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Two-loops

0.2 0.4 0.6 0.8 1.0

0.90

0.92

0.94

0.96

0.98

1.00

pert 1-loop

pert 2-loop

RGOPT 1-loop

RGOPT 2-loop

g(µ) = (λ(µ)/24)1/2 with scale-dependence µ = πT − 4πT
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0.90
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0.98

1.00

1.02

RGOPT versus standard OPT (HTLPT)

– p. 29



5. Summary and Outlook

•OPT gives a simple procedure to resum perturbative
expansions, using only perturbative information.

•Our RGOPT version includes 2 major differences w.r.t.
most previous OPT approaches:

1) OPT+ RG minimizations fix optimized m̃ and g̃ = 4πα̃S

2) Requiring AF-compatible solutions uniquely fixes the
basic interpolation m → m(1− δ)γ0/(2b0): discards spurious
solutions and accelerates convergence.
(O(10%) accuracy at 1-2-loops, empirical stability exhibited at 3-loop)

Straightforward to apply for T 6= 0: exhibit remarkable
stability + scale independence (sharp contrast with
’standard’ OPT ∼ HTLpt)

•Outlook: (almost) straightforward application to thermal
QCD (start with pure gluon pressure)
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