Exploring the primordial Universe with QUBIC

the Q U Bolometric Interferometer for Cosmology

J.-Ch. Hamilton, APC CNRS, IN2P3, Université Paris-Diderot

QUBIC QU Bolometric Interferometer for Cosmology

CMB Physics

Origin

★ Early Universe

- Ionized \Rightarrow opaque to photons
- thermal equilibrium
- ★ T << I3.6 eV
 - \blacksquare Neutral \Rightarrow matter/radiation decoupling
 - CMB emitted. Blackbody at 3000K (z=1000)
 - Now blackbody at 3K

Shape

★ Early Universe radiation dominated

- Matter (Dark + Baryons) cannot collapse efficiently because of radiation
- at Matter/Radiation equality
 - Baryons collapse in Dark Matter perturbations
 - Acoustic oscillations start, coherent w.r.t. scale
- At Matter/Radiation decoupling
 - Oscillations frozen
 - CMB temperature reflects density fluctuations

Planck

IPHC, Strasbourg, 3 octobre 2014 J.-Ch. Hamilton

QUBIC

CMB Physics

Origin

- ★ Early Universe
 - lonized \Rightarrow opaque to photons
 - thermal equilibrium
- ★ T << I3.6 eV
 - $Neutral \Rightarrow matter/radiation decoupling$
 - CMB emitted. Blackbody at 3000K (z=1000)
 - Now blackbody at 3K

Shape

★ Early Universe radiation dominated

- Matter (Dark + Baryons) cannot collapse efficiently because of radiation
- at Matter/Radiation equality
 - Baryons collapse in Dark Matter perturbations
 - Acoustic oscillations start, coherent w.r.t. scale
- At Matter/Radiation decoupling
 - Oscillations frozen
 - CMB temperature reflects density fluctuations

150 Mpc @ z=1000

Adapted from Lineweaver (1998

QUBIC

Influence of the cosmological parameters

Density Field Transfer Function

Take-home message

- Density perturbations evolve from end of inflation to decoupling due to matter-radiation oscillations.
- The <u>transfert function</u> depends upon « simple physics » and cosmological parameters
- Allows to fit both cosmology and primordial spectra

Relating maps to cosmology

Spherical Harmonics Expansion

$$\frac{\Delta T}{T}(\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta,\phi)$$

Angular power spectrum

$$C_{\ell} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} |a_{\ell m}|^2$$

• ℓ is the inverse of an angle $\ell = 200 \leftrightarrow \theta = 1 \text{deg.}$

QUBIC QU Bolometric Interferometer for Cosmology

CMB: Tremendous progress over

1999

2014

Huge success : thousands of independant points fitted with less than 10 parameters and a χ^2 /ndf about 1 Theoretical curve predicted in 1987 [Bond & Efstathiou] without any data. [Also by Zeldovith, Sunyaev et al. in 1972 !!!]

QUBIC

QU Bolometric Interferometer for Cosmology

WMAP

~70 deg²

Planck 143 GHz

Ground based 150 GHz (SPTpol)

13x higher resolution and 60x deeper than WMAF 7x higher resolution and 9x deeper than Planck ~70 deg²

Planck Planck Results: (ESA Mission) ACDM firmly Established

Next (current actually !) step: Inflation Physics through CMB Polarization

QUBIC QU Bolometric Interferometer for Cosmology

CMB Polarization (~10%)

Generated by Thomson scattering

- electrons in quadrupolar motion falling into Dark
 Matter potential wells before decoupling
- Stokes Parameters (linear pol.) $Q = \left\langle |E_x|^2 \right\rangle - \left\langle |E_y|^2 \right\rangle$ $I = \left\langle |E_x|^2 \right\rangle + \left\langle |E_y|^2 \right\rangle$ $U = 2 \left\langle \operatorname{Re}[E_x E_y^*] \right\rangle$

Scalar E and B fields

QUBIC QU Bolometric Interferometer for Cosmology

CMB Spectra

QUBIC QU Bolometric Interferometer for Cosmology

CMB Polarization

Predicted long ago

- ★ electrons/photons scattering before decoupling
- Detection 2001
 - ★ DASI et CBI (interferometers)
 - Later measurements: ★ WMAP, QUAD, BICEP ...
 - Perfect agreement with temperature measurements
 - Correspondance between TT peaks and EE troughs
 - Typical of adiabatic primordial fluctuations (generated by inflation for instance ...)

[QUAD Collaboration: Arxiv:0906.1003]

The smoking-gun for Inflation

QUBIC

QU Bolometric Interferometer for Cosmology

QUBIC QU Bolometric Interferometer for Cosmology

Inflation

- Phase of accelerated expansion in the Early Universe
- Initially invented to solve some issues in Big-Bang theory
 - ★ Horizon
 - ★ Flatness
 - ★ Monopoles

Predicts the shape of the primordial density perturbations

- \star Seeds for Structure formation
- ★ Gaussianity
- Generation of both scalar and tensor perturbations
- \star Nearly scale invariant power spectrum (spectral index slightly lower than I)
- All the models that are fitted to observations (CMB or Large Scale Structure) implicitly assume inflation
 - \star One would feel more confortable checking this detail ...

QUBIC

Scalar and tensor modes - E & B polarization

 $P_s(k) = A_s \left(\frac{k}{k_0}\right)^{n_s}$

Scalar perturbations:

- **Density fluctuations**
 - Temperature
 - **E** polarization \bullet
 - No B polarization \bullet

Tensor perturbations:

- $\Pr_{\mathbf{n}!}(k) = A_t \left(\frac{k}{k_0}\right)$ Specific prediction from inflation!
- = Primordial gravitational waves
 - Temperature
 - **E** polarization
 - **B** Polarization

\Rightarrow detect B-modes is :

- Direct detection of tensor modes
- «smoking gun» for inflation
- Measurement of its energy scale

$\sigma_{tens}^T \leq 30 \mu \mathrm{K}$ $\sigma_{tens}^E \le 1\mu \mathrm{K}$ $\sigma^B_{tens} \le 0.3 \mu \mathrm{K}$

 $\sigma_{scal}^T \simeq 100 \mu \mathrm{K}$

 $\sigma^E_{scal} \simeq 4\mu \mathrm{K}$

$$V^{1/4} = 1.06 \times 10^{16} \text{GeV}$$

 n_t

 $r = \frac{P_t(k_0)}{P_s(k_0)}$

~ ratio between

and B modes

IPHC, Strasbourg, 3 octobre 2014 J.-Ch. Hamilton

What's next? Inflation Physics

Four important quantities :

- ★ A_s : known
- ★ n_s:known
- ★ A_t or r: may have been detected at $r \sim 0.2$?
- \star *n*_t :unknown, requires exquisite B-modes measurement
- Energy scale: $V^{1/4} = 1.06 \times 10^{16} \text{GeV} \left(\frac{r_{\text{CMB}}}{0.01}\right)^{1/4}$
 - Generic prediction of inflation : $r = -8n_t$

coherence test of inflation

- Direct inflaton potential reconstruction (Taylor expansion): $V(\phi) \simeq V|_{\phi_{\text{CMB}}} + V'|_{\phi_{\text{CMB}}} (\phi - \phi_{\text{CMB}}) + \frac{1}{2} V''|_{\phi_{\text{CMB}}} (\phi - \phi_{\text{CMB}})^2 + \frac{1}{3!} V'|_{\phi_{\text{CMB}}} (\phi - \phi_{\text{CMB}})^3$
 - \star A_s related to V'
 - \star n_s related to V"
 - \star running of n_s related to V"
 - \star A_t related to V

inflaton potential shape recovery ! Need accuracy on r Within reach in the next few years !

QUBIC

QU Bolometric Interferometer for Cosmology

Primordial Fluctuations Origin? Inflation Predictions

Flatness, Homogeneity

Nature of the perturbations:

- TT peaks at same scales as EE troughs
- Adiabatic perturbations

Spectral index

- $n_s = 0.9608 \pm 0.0054 \ (7.2\sigma \text{ from } 1)$
- Almost scale invariant spectrum

Gaussianity

No hint for non-Gaussianity (despite impressive efforts)

Tensor perturbations of the metric

BICEP2 detection ? to be confirmed...

QUBIC

QU Bolometric Interferometer for Cosmology

B-modes: Holy Grail for cosmology

Smoking gun for inflation

- T/S ratio:
 - < 0.11 [CMB Panck + WMAP + BAO + SNIa]
 - > 0.01 for simplest inflationary models
 - might be much lower for more complex models

Cosmic strings and other defects

• Produces distinctive B polarization

- [Bevis et al. (2007), Phys.Rev.D76:043005]
- Urrestilla et al. (2008), astro-ph/0803.2059]
- [Pogosian et Wyman (2007), astro-ph/0711.0747]

Superstrings ?

- most (all ?) string inspired inflation theories predict r << 1
- Unique opportunity to falsify string theory ! (?)
 - [Kallosh & Linde (2007), JCAP 0704:017]

CPT symetry testing

- CPT violations may induce cosmological birefringence
- linear polarization rotation : non vanishing TB and EB CMB spectra
 - [Feng et al. (2006), PRL 96, 221302]
 - [Xia et al., (2009), Phys. Lett. B687, 129]
 - [Gluscevic et al., (2012), arXiv:1206.5546v1]

QUBIC

QU Bolometric Interferometer for Cosmology

Inflation

BICEP2

• March 2014:

- ★ « Primordial B-modes discovery »
- ★ Strong significance
- ★ Strong signal r~0.2 (~tension with Planck)

• BICEP2:

- ★ Direct Imager in Antarctica
- ★ 150 GHz, 0.5 deg. resolution
- ★ 512 dual polarization detectors, 3 seasons

Discovery ?

- Experienced and respectable team (DASI, QUAD)
- ★ One single frequency... Dust contamination ?
 - Rumors floating around... Original paper replaced with much less victorious version...
 - Planck XXX article posted last week: the whole BICEP2 signal can be explained by dust...
- Little systematic control allowed by BICEP2 (but OK for r~0.2)
- Result needs to be checked by other teams: Planck, SPTPol, ACTPol, PolarBear, SPIDER, QUBIC
- ★ QUBIC: completely different systematics (less in principle...)

QUBIC

Expected difficulties in the Quest for the Holy Grail

• <u>Sensitivity</u> :

- \star B polarization is at best 10 times weaker than E
- ★ Amplitude could be very small ...
- ★ I year of Planck is ~ S/N=1 for T/S=0.01
- A dedicated space mission might not be for tomorrow.

<u>Foregrounds :</u>

- ★ Observe an ultra-clean region
 - can't be too small as primordial B modes are mainly on large scales
- ★ Need to remove foregrounds accurately (can't just mask)
 - Multiwavelength detectors
- <u>Systematic effects :</u>
 - Instrument induces leakage of T into E and B (and T>>E>>B)
 - Cross-polarization and ground pickup are major issues
- Atmospheric polarization ...
 - Need for accurate polarization modulation

QUBIC

QU Bolometric Interferometer for Cosmology

Possible instruments

Imagers with bolometers:

- \star No doubt they are nice detectors for CMB:
 - wide band
 - low noise
 - Especially true for a satellite (small background)

Interferometers:

- ★ Long history in CMB
 - CMB anisotropies in the late 90s (CAT: 1st detection of subdegrees anisotropies, VSA)
 - CMB polarization Ist detection (DASI, CBI)
- ★ Technology used so far
 - Antennas + HEMTs : higher noise
 - Correlators : hard to scale to large #channels
- ★ Clean systematics:

QUBIC

- No telescope (lower ground-pickup & cross-polarization)
- Angular resolution set by receivers geometry (well known)

Can these two nice devices be combined ? Bolometric Interferometry !

IPHC, Strasbourg, 3 octobre 2014 J.-Ch. Hamilton

The QUBIC Collaboration

APC Paris, France IAS Orsay, France CSNSM Orsay, France IRAP Toulouse, France Maynooth University, Ireland Università di Milano-Bicocca, Italy Università degli studi, Milano, Italy Università La Sapienza, Roma, Italy University of Manchester, UK Richmond University, USA Brown University, USA

E. Battistelli^e, A. Baú^f, D. Bennett¹, L. Bergé^c, J.-Ph. Bernard^b, P. de Bernardis^e, G. Bordier^a, A. Bounab^b, É. Bréelle^a, E.F. Bunn^j, M. Calvo^e, R. Charlassier^a, S. Collin^c, A. Coppolecchia^e, A. Cruciani^e, G. Curran¹, M. de Petris^e, L. Dumoulin^c, A. Gaultⁱ, M. Gervasi^f, A. Ghribi^a, M. Giard^b, C. Giordano^e, Y. Giraud-Héraud^a, M. Gradziel¹, L. Guglielmi^a, J.-Ch. Hamilton^{a,*}, V. Haynes^g, J. Kaplan^a, A. Korotkov^h, J. Landé^b, B. Maffei^g, M. Maiello^m, S. Malu^k, S. Marnieros^c, J. Martino^a, S. Masi^e, A. Murphy¹, F. Nati^e, C. O'Sullivan¹, F. Pajot^d, A. Passerini^f, S. Peterzen^e, F. Piacentini^e, M. Piat^a, L. Piccirillo^g, G. Pisano^g, G. Polenta^{e,n,o}, D. Prêle^a, D. Romano^e, C. Rosset^a, M. Salatino^e, A. Schillaci^e, G. Sironi^f, R. Sordini^e, S. Spinelli^f, A. Tartari^f, P. Timbie¹, G. Tucker^h, L. Vibert^d, F. Voisin^a, R.A. Watson^g, M. Zannoni^f, The QUBIC collaboration

NIKHEF + Leiden joining

arXiv:1010.0645 ~ Astroparticle Physics 34 (2011) 705-71

QUBIC

QU Bolometric Interferometer for Cosmology

QUBIC concept: Quasi optical correlator

fringes successfuly observed in 2009 with MBI-4 [Timbie et al. 2006]

QUBIC QU Bolometric Interferometer for Cosmology

IPHC, Strasbourg, 3 octobre 2014 J.-Ch. Hamilton

Sky

45 cm

QU Bolometric Interferometer for Cosmology

Signal in QUBIC

• Signal on bolometer d_p at frequency ν (HWP modulation) : $R(\vec{d_p}, \nu, t) = S_I(\vec{d_p}, \nu) + \cos \left[4\phi_{\text{HWP}}(t)\right] S_Q(\vec{d_p}, \nu) + \sin \left[4\phi_{\text{HWP}}(t)\right] S_U(\vec{d_p}, \nu)$

where S_X is the «synthesized image» : our observable

- FFT of visibilities in traditional interferometry
- Sky convolved with the «synthetic beam»

 $S_X(\vec{d_p},\nu) = \int X(\vec{n},\nu) B_s^p(\vec{n},\nu) \mathrm{d}\vec{n}$

Synthetic beam formed by the set of baselines

★ (x_i = locations of primary horns, D_f = focal length of the combiner) $B_s^p(\vec{n}) = B_{\text{prim}}(\vec{n}) \int \int B_{\text{sec}}(\vec{d}) \times \left| \sum_i \exp\left[i2\pi \frac{\vec{x}_i}{\lambda} \cdot \left(\frac{d}{D_f} - \vec{n}\right)\right] \right|^2 J(\vec{\nu}) \Theta(\vec{d} - \vec{d}_p) d\nu d\vec{d}$

> QUBIC is an imager where the pupil has been filled with holes in order to filter the sky in Fourier space

> > \Leftrightarrow An imager with the synthesized beam

 \Leftrightarrow An interferometer performing direct synthesis imaging

Map Making ~ as an imager

Scan the sky with synthesized beam
 Az. scans at constant elevation following a single field
 Phi rotation around optical axis
 Reproject data on the sky

 $\hat{T} = \left(A^t \cdot N^{-1} \cdot A\right)^{-1} \cdot A^t \cdot N^{-1} \cdot \vec{d}$

 QUBIC Synthesized beam has multiple peaks

 Usual map making assumes A has a single non zero element in each column

Does not lead to good results

★ Improved method with better beam approximation

- Sparse matrices helps fast convergence of CG
- First results on simulations are promising

[Pierre Chanial @ APC] IPHC, Strasbourg, 3 octobre 2014

J.-Ch. Hamilton

(0, 90)

QU Bolometric Interferometer for Cosmology

QUBIC

« End-to-end » simulations being developed [P. Chanial, M. Stolpovskiy, J. Kaplan, JCH] E & B power

Maps

TOD

spectra

QUBIC QU Bolometric Interferometer for Cosmology

QUBIC Site: Dome C, Antarctica

Great landscape

QUBIC QU Bolometric Interferometer for Cosmology

Dome C: Best site on Earth ?

QUBIC QU Bolometric Interferometer for Cosmology

Detection Chain

• TES + SQUIDs + 4K SiGe ASIC Mux

- ★ CSNSM: Stefanos Marnieros
- ★ IEF: Bruno Bélier
- \star APC: Michel Piat
- ★ IRAP: Ludovic Montier

• 2 arrays of 992 NbSi TES

- ★ CSNSM/IEF + C. Perbost, A. Cammillieri, A. Ghribi
- ★ Each array : 4x248 elements
- ★ 300 mK bath (³He-⁴He evaporation cooler)
- ★ 3 mm size
- ★ <u>Measured NEP ~ 4.10⁻¹⁷ W.Hz^{-1/2}</u>
- ★ time constant ~ 10 ms

• 4K Multiplexed Readout

- ★ F.Voisin & D. Prêle
- ★ SQUIDs pre-amplifier+mux
 - 32:1 multiplexing
- ★ 4K SiGe ASIC (amp+mux) - 4:1 multiplexing
- ★ 128 channels / ASIC
- ★ Low noise: ~200 pV.Hz^{-1/2}
- ★ low power: ~ few mW

Half focal plane

IPHC, Strasbourg, 3 octobre 2014 J.-Ch. Hamilton

QUBIC

Cryo-mechanical Architecture for 1/4 focal plane [C. Chapron]

Assembled June 24th 2014

QUBIC QU Bolometric Interferometer for Cosmology

Production et tests des matrices de TES (C. Perbost, D. Cammillieri, A. Ghribi, D. Prêle)

Tests à chauds

Test électrique à température ambiante en cours de procédé : mesure de résistance des lignes pour détecter les circuits ouverts et les court-circuits

Horns [animated by A.Tartari]

- Designed by Manchester (B. Maffei / 97 GHz Horn development & tests G. Pisano)
 - ★ Clover-like profiled corrugated horns
 - ★ I50GHz, I4 deg. FWHM, I.2 cm diam. (close to diffraction limit)
 - ★ Excellent beam/Cross Pol. perfs
 - ★ Usual fabrication:
 - Electroforming
 - Expensive (800\$ / horn)
- Platelets fabrication investigated at APC and Milano (M. Bersanelli)
 - ★ 291 thin Aluminium plates
 - ★ Holes using chemical etching
 - + <100€ / horn
 - ★ Excellent performances !!

QUBIC

QU Bolometric Interferometer for Cosmology

QUBIC Cryostat

Designed in Roma

★ P. de Bernardis / S. Masi

• 45 cm window

★ Stack (~20 cm) of zotefoam layers

Large dimensions

- ★ Weight: ~650 kg
- ★ Height: I.8m
- ★ Diameter: 1.6m

Ist stage: 4K: Pulse-Tube

 Filters, horns, switches, HWP, Ist mirror

 2nd stage: 300 mK: ³He-⁴He evaporation cooler

★ 2nd mirror, polarizing grid, detectors

QUBIC QU Bolometric Interferometer for Cosmology

Switches

[N. Bleurvacq, G. Bordier, A. Tartari]

QUBIC

QU Bolometric Interferometer for Cosmology

Systematics: Self-Calibration

Unique possibility to handle systematic errors

- Use horn array redundancy to calibrate systematics
 - In a perfect instrument redundant baselines should see the same signal
 - Differences due to systematics
 - Allow to fit systematics with an external source on the field
 - use switches and artificial source to map all baselines' fringes
- Unique specificity of Bolometric Interferometry ! [Bigot-Sazy et al., A&A 2012, arXiv:1209.4905]
- Example: exact horns locations (figure exagerated !!)

IPHC, Strasbourg, 3 octobre 2014 J.-Ch. Hamilton

Self-Calibration results

[Bigot-Sazy et al., A&A 2012, arXiv:1209.4905]

QUBIC QU Bolometric Interferometer for Cosmology

Expected upper limit if r=0

QU Bolometric Interferometer for Cosmology

QUBIC Timeline

• First Module (150 and 220 GHz)

- ★ Elements construction phase has started
- ★ Construction, Integration and tests at APC, Paris : 1st semester 2015
- ★ Transportation to Dome C: mid-2016
- ★ First light on site: End 2016
- ★ Data Taking: 2017-2018
 - 4.4 μK.arcmin @ 150 GHz
 - 7.7 μK.arcmin @ 220 GHz
 - r < 0.05 @ 95% C.L. with foreground contamination control

Future modules (100 GHz, 150 GHz, 220 GHz)

- \star Depend on results with first module
- ★ Start design studies in 2016
- ★ 3 frequencies for a clean foreground control
- ★ Target : r < 0.01 @ 95% C.L.</p>
- ★ A great opportunity to test MKIDs technologies (think about M4 ESA mission)

QUBIC

Conclusions

QUBIC is a novel instrumental concept

- **\star** High sensitivity (r < 0.05 with 1st module)
- \star High control of instrumental systematics
- ★ Possibility to run at two frequencies 150 and 220 GHz
- ★ Operations to start in late 2016 at Dome C, Antarctica
- QUBIC is in a very good position to check / challenge the BICEP2 result - and to detect (likely to be) lower B-modes
 - \star High sensitivity
 - \star Optimized for large scale B-modes
 - ★ 220 GHz would allow for controlling Galactic dust contamination
 - No other ground-based competitors seem to have plans for the « golden » 220 GHz channel (usually target 100 and 150 GHz)

QUBIC QU Bolometric Interferometer for Cosmology

