

RACE RAdiation resistance of cancer CElls using Geant4 DNA

Sept2013 – Sept2015

Plan cancer 2009 2013

Coordinators: L. Maigne, E. Miot-Noirault

Members: F. Degoul, E. Débiton, H. Payno, Y. Perrot, C. Peyrode, E. Roche

How to improve resistant cancer treatments?

Develop specific vectorized NP or molecules melanoma and chondrosarcoma spheroids

Prediction of biological damages

Develop tools for multi-scale approach

Monte Carlo simulation

Cell population modeling

Milestones

CELL POPULATION

Why 3D cell models?

- Human model
- Low sensitivity to ionizing radiation
- Ability to vectorized NP *in vivo* to increase DNA damages

From Hirschhaeuser et al., 2010, J Biotech

3D cell culture

- Selection criteria
 - Clonogenic ability
 - Ability to form multicellular spheroids in methyl-cellulose containing medium

Dissociated Cells

V-shaped microwells
Plastic untreated for culture

Melanoma

SkMel 28

Clonogenicity 17%

Day 6

 \varnothing 570 μm

Cell POPulation modeler

The Cell POPulation modeler

Spheroid & cell characterization

- Cell shape in situ (confocal microscopy or SPIM)
 - Nuclear shape and dimension (DAPI)
 - Cell shape and dimension by cytoplasmic membrane staining (lipophilic fluorochrome)
 - Hypoxia evaluation in situ (Anh. Carb. IX activity)

Growth characterization

- Spheroïd growth kinetic (∅ or volume)
- Doubling time of cells (DNA or protein content)
- Cell cycle analysis after dissociation (FCM)

Data from in-vitro experimentations.

IMARIS data analysis

MULTI-SCALE GEANT4 MONTE CARLO SIMULATION

http://geant4-dna.org

Karamitros et al. 2011 Prog. Nucl. Sci. Tec. 2

> Water radiolysis HO·, H·, H₂O₂·, R-O-O-H·

GEANT4 DNA

Geometry

Realistic cellular models, DNA models

Physics models:

Classical and quantic for water and DNA

Expected in Geant4 version beta June 2014

Experimental validation

Evaluate the damages occured to cell and DNA

Incerti et al. Med. Phys. 2010

Spheroid irradiation

X-RAD 320 system @ PAVIRMA

- Voltage: 5 to 320 kV
- Intensity: 0.1 to 45 mA
- Circular field: radius 14 to 50 cm
- Dose rate up to 13 Gy / min (5kGy max)

Calibration

250 kV RX beam

Monte Carlo modeling

- GATE/Geant4: Livermore models
- 4x10⁹ primaries (<1% uncertainty)
- Metrics: production of secondaries

Energy deposition per cell

- PAVIRMA beam charactheristics
 - Emax 250 keV : photoelectric effect
 - 2mm Al filter
 - Field size: 14.15 cm
 - SSD = 50 cm
 - Beam quality constant over 1 mm
- Energy deposition
 - Geant4 10.0.p01, Livermore models
 - Energy deposition in 10 µm diameter cell
 - Need to add NPposition

Gadolinium NP simulation

- AGulX AC13 nanoparticles
 - 4Si-DTPA
 - ~3.5 nm diam .at pH = 7.4
 - 8.5 kDa
 - 21 TEOS, 18 APTES, 10 DTPA, 10 Gd, fraction in mass of Gd = 12%
 - Optimal energy to get differential effect ~50 keV
- Monte Carlo modeling
 - Geant4.10.00.p01, Livermore + fluo + auger
 - Metrics for preliminary study:
 - Production of charged secondaries
 - Number of photoelectric events in the nanoparticle

1 Hallopal ticle

Secondaries produced by NP

Photoeletric event per primary

Primary	NP Si-DTPA
Gamma 52 keV	1.8x10 ⁻⁵
PAVIRMA	1.3x10 ⁻⁶

Energy of charged secondaries (keV)

GEANT4-DNA

DNA geometry and direct damages

SSB = $85 \pm I /Gy/Gbp$ DSB = $3 \pm I /Gy/Gbp$

- □ To do
 - Expand the nucleosome geometry
 - Include indirect damages

Geant4 advanced example to be provided in the next release (december 2014)

Perspectives

- Production of biological data for radioresistant cells
 - Using or not Gd nanoparticles
 - Morphology of spheroids, survival rates, production of foci
- Develop tools / methodology for a multi-scale modeling
 - Simulation of realistic Gd distribution
 - Calculation of direct DNA damages
 - Tools provided to the scientific community via the Geant4-DNA collaboration
- Correlation of experiments with simulations