The MEG experiment and its upgrade

Angela Papa Paul Scherrer Institute on behalf of the MEG collaboration

Clermont-Fd, 24th October 2014

The physics connected to the MEG experiment

• The MEG experiment search for $\mu^+ \rightarrow e^+ \gamma$ decay, which violetes the conservation of the lepton number in the charged lepton sector (cLFV)

Flavour Changing Neutral Currents (FCNC)

- At the tree level
 - flavour is violated in Charged Current interactions (mediated by W[±])
 - flavour is conserved in all Neutral Current interactions (mediated by g, Z^0 and γ)

the are no vertices of the type i.e.:

Flavour Changing Neutral Currents (FCNC)

- At the tree level
 - flavour is violated in Charged Current interactions (mediated by W[±])
 - flavour is conserved in all Neutral Current interactions (mediated by g, Z^0 and γ)

- At the quantum level (quantum loops)
 - in the quark sector, FCNC are induced by charged current loop effects, due to mixing among fermion generations
 - e.g. $K_L^0 \rightarrow \mu \mu$ in the quark section

Flavour Changing Neutral Currents (FCNC)

- At the tree level
 - flavour is violated in Charged Current interactions (mediated by W[±])
 - flavour is conserved in all Neutral Current interactions (mediated by g, Z^0 and γ)

- the are no vertices of the type i.e.
- At the quantum level (quantum loops)
 - in the quark sector, FCNC are induced by charged current loop effects, due to mixing among fermion generations
 - e.g. $K_L^0 \rightarrow \mu \mu$ in the quark section
 - what about lepton sector ?

Lepton Flavour Violation of Charged Leptons (cLFV)

- Lepton flavour is preserved into the SM (''accidental'' symmetry)
 - not related to the theory gauge
 - naturally violated in SM extentions

LFV of neutral leptons confirmed -neutrino oscillations-

LFV of charged leptons not yet observed

Lepton Flavour Violation of Charged Leptons (cLFV)

- Lepton flavour is preserved into the SM (''accidental'' symmetry)
 - not related to the theory gauge
 - naturally violated in SM extentions

LFV of neutral leptons confirmed -neutrino oscillations-

> LFV of charged leptons not yet observed

The $\mu^+ \rightarrow e^+ \, \gamma$ decay as an example

• Taking into account of neutrino oscillations

too small to access experimentally

The $\mu^+ \rightarrow e^+ \gamma$ decay as an example

• Taking into account of neutrino oscillations

too small to access experimentally

- SM well tested and successfull model, low-energy effective theory of a yet-more-fundamental one
- BSM theories such as SU(5) SUSY-GUT and SO(10) SUSY-GUT models predict measureble LFV decay BR

The $\mu^+ \rightarrow e^+ \, \gamma$ decay as an example

 BSM theorie such as SU(5) SUSY-GUT and SO(10) SUSY-GUT models predict measureble LFV decay BR

Null result will turn out in a precise test of established model and will ruled out speculative ones

cLFV signature will be a clear evidence of New Physics

The role of low energy physics in the LHC era

Rare decay searches as a complementary way to unveil BSM physics and explore much higher energy scale w.r.t. what can be done at the high-energy frontiers

Direct/indirect production of BSM particles

The role of low energy physics in the LHC era

Rare decay searches as a complementary way to unveil BSM physics and explore much higher energy scale w.r.t. what can be done at the high-energy frontiers

Direct/indirect production of BSM particles

• Effective field theory approach

$$\mathcal{L}_{eff} = \mathcal{L}_{\mathcal{SM}} + \sum_{d>4} rac{c_n^{(d)}}{\Lambda^{d-4}} \mathcal{O}^{(d)}$$

• L_{eff} is in terms of inverse powers of heavy scale

Favorite place: the Paul Scherrer Institute 1.2 MW PROTON **CYCLOTRON** Switzerland GERMANY FRANC ITALY

- The most intense continuous positive (surface)muon beam at low momentum (28 MeV/c)
 - up to few x 10⁸ muon/s

The MEG experiment

- The MEG experiment aims to search for $\mu^+ \rightarrow e^+ \gamma$ with a sensitivity of ~10⁻¹³ (best upper limit BR($\mu^+ \rightarrow e^+ \gamma$) ≤ 1.2 x 10⁻¹¹ @90 C.L. by MEGA experiment)
- Five observables (E_g, E_e, t_{eg}, θ_{eg} , ϕ_{eg}) to characterize $\mu \rightarrow e^+ \gamma$ events

Eur. Phys. J. C (2013) 73:2365

The MEG experimental set-up

The MEG experiment aims to search for μ⁺ → e⁺ γ with a sensitivity of ~10⁻¹³ (best upper limit BR(μ⁺ → e⁺ γ) ≤ 1.2 x 10⁻¹¹ @90 C.L. by MEGA experiment)

Detector performance and Data sample Analyzed published Resolutions (0)

	Resolutions (o)	
Gamma Energy (%)	1.7(depth>2cm), 2.4	
Gamma Timing (psec)	67	
Gamma Position (mm)	5(u,v), 6(w)	
Gamma Efficiency (%)	63	
Positron Momentum (KeV)	305 (core = 85%)	
Positron Timing (psec)	108	
Positron Angles (mrad)	7.5 (Ф), 10.6 (Ө)	
Positron Efficiency (%)	40	
Gamma-Positron Timing (psec)	127	
Muon decay point (mm)	1.9 (z), 1.3 (y)	

	µ stopped	sensitivity
2009+10	1.75x10 ¹⁴	1.3x10 ⁻¹²
2011	1.85x10 ¹⁴	1.1x10 ⁻¹²
2009+10+11	3.60x10 ¹⁴	7.7x10 ⁻¹³

Physics Analysis Overview and Event Selection

- Five observables (E_g, E_e, t_{eg}, 9_{eg} , ϕ_{eg}) to characterize $\mu \rightarrow e\gamma$ events
- Event selection: Trigger selection (E_g > 45 MeV , $|\Delta t_{eg}| < 10$ ns, $|\Delta \varphi| < 7.5^{\circ}$) + at least 1 reconstructed track
- Blind Analysis (Sideband, Blind box)
- Maximum likelihood to extract Nsig
- CL frequentistic approch

Summary of Results

(**) 90% C.L. upper limit averaged over pseudoexperiments based on null-signal hypothesis with expected rates of RMD and BG

	Best fit	Upper Limit (90% C.L.)	Sensitivity **
2009+10	0.09x10 ⁻¹²	1.3x10 ⁻¹²	1.3x10 ⁻¹²
2011	-0.35x10 ⁻¹²	6.7x10 ⁻¹³	1.1x10 ⁻¹²
2009+10+11	-0.06x10 ⁻¹²	5.7x10 ⁻¹³	7.7x10 ⁻¹³

 $\textbf{B}(\mu^+ \rightarrow e^+ \, \gamma)$ < 5.7x10⁻¹³ (all combined data) *

x4 more stringent than the previous upper limit $(B(\mu^+ \rightarrow e^+ \gamma) < 2.4 \times 10^{-12} - MEG 2009-10)$

x20 more stringent than the MEGA experiment result (B($\mu^+ \rightarrow e^+ \gamma$) < 1.2x10⁻¹¹ -MEGA 2001)

Where we are

 An upgrade of MEG, aiming at a sensitivity improvement of one order of magnitude (down to 5 x 10⁻¹⁴) approved by PSI and funding agencies is ongoing

Current detector: MEG

 An upgrade of MEG, aiming at a sensitivity improvement of one order of magnitude (down to 5 x 10⁻¹⁴) approved by PSI and funding agencies is ongoing

 An upgrade of MEG, aiming at a sensitivity improvement of one order of magnitude (down to 5 x 10⁻¹⁴) approved by PSI and funding agencies

 An upgrade of MEG, aiming at a sensitivity improvement of one order of magnitude (down to 5 x 10⁻¹⁴) approved by PSI and funding agencies

- The most intense continuous positive (surface)muon (7 x 10⁷ p/s) beam at low momentum (28 MeV/c)
 - high sensitivity in a relative short time (few years)
 - accidental background undercontrol ($B_{acc} \sim R$)
 - low straggling and good identification of the decay region
 - muons stopped in a thin target (current CH₂ thickness: 204 um)

Kept the key elements of MEG

1. World's most intense DC muon beam @ PSI

Innovative LXe γ-ray detector

- 3. Gradient B-field e⁺spectrometer
- 4. Thousends virtual
- oscilloscopes (DAQ)
- 5. Sophisticated
- calibration methods

MEG Now

- A large homogeneous calorimeter using only scintillation light
 - very good resolutions for photon energy, direction and time measurements

 World's most intense DC muon beam @ PSI
 Innovative LXe γ-ray detector
 Gradient B-field e⁺spectrometer
 Thousends virtual oscilloscopes (DAQ)
 Sophisticated calibration methods

MEG Now

- Gradient B-field
 - constant projected radius
 - low momentum e⁺ swept away

Kept the key elements of MEG

World's most intense
 DC muon beam @ PSI
 Innovative LXe γ-ray
 detector

3. Gradient B-field e⁺spectrometer

4. Thousends virtual oscilloscopes (DAQ)5. Sophisticated calibration methods

nma-ray detector

MEG Now

- DAQ based on the Domino Ring Sampler (DRS) Kept the key elements chip
 - full waveform digitization up to 5 Gsample/s

- Complementary calibration and monitoring methods
 - to reach and maintain the required detector performances over the time

Kept the key elements

of MEG

1. World's most intense

DC muon beam @ PSI

MEGII: the new spectrometer

High granularity Less material High Trasparency DC towards the TC counter

High granularity Less material High Trasparency DC towards the TC counter

Current DCH

High granularity Less material High Trasparency DC towards the TC counter

 $\sigma(E_e)$ [keV] ~ 150 (325); $\sigma(\theta_e, \Phi_e)$ [mrad] ~ 5 (7-11); $\sigma(t_e)$ [ps] ~ 30 (70); A shall be

High granularity Less material High Trasparency DC towards the TC counter

 $\sigma(E_e)$ [keV] ~ 150 (325); $\sigma(\theta_e, \Phi_e)$ [mrad] ~ 5 (7-11); $\sigma(t_e)$ [ps] ~ 30 (70);

Current TC

A MARINA

MEGII: the upgraded LXe calorimeter

High energy and position resolutions High pile-up rejction capability High acceptance and detection efficiency

 $\sigma(E_{Y})/E_{Y}$ [%] ~ 1.3 (w<2cm) (2.6); ~ 1.0 (w>2cm) (1.7) $\sigma(x_{Y})$ [mm] ~ 2 (w<2cm) (5);

High energy and position resolutions High pile-up rejction capability High acceptance and detection efficiency

 $\sigma(E_Y)/E_Y$ [%] ~ 1.3 (w<2cm) (2.6); ~ 1.0 (w>2cm) (1.7) $\sigma(x_Y)$ [mm] ~ 2 (w<2cm) (5);

High energy and position resolutions High pile-up rejction capability High acceptance and detection efficiency

 $\sigma(E_{Y})/E_{Y}$ [%] ~ 1.3 (w<2cm) (2.6); ~ 1.0 (w>2cm) (1.7) $\sigma(x_{Y})$ [mm] ~ 2 (w<2cm) (5);

current

Where we will be

The muon's cLFV effective lagrangian

The Mu3e experiment

The Mu3e experiment aims to search for µ⁺ → e⁺ e⁺ e⁻ with a sensitivity of ~10⁻¹⁶ (current best upper limit BR(µ⁺ → e⁺ e⁺ e⁻) ≤ 1. x 10⁻¹² @90
 C.L. by the SINDRUM experiment)

<u>Case 1</u>: dominant dipole coupling (k \rightarrow 0)

$$\mathcal{L}_{cLFV} = \frac{m_{\mu}}{(k+1)\Lambda^2} \overline{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{k}{(k+1)\Lambda^2} \overline{\mu}_R \gamma_{\mu} e_L \overline{f} \gamma^{\mu} f$$

 $\mu^+ \rightarrow e^+ \gamma$ most sensistive channel!

 $e^{+} e^{+} e^{-}$

The Mu3e experiment

The Mu3e experiment aims to search for µ⁺ → e⁺ e⁺ e⁻ with a sensitivity of ~10⁻¹⁶ (current best upper limit BR(µ⁺ → e⁺ e⁺ e⁻) ≤ 1. x 10⁻¹² @90
 C.L. by the SINDRUM experiment)

<u>Case 2</u>: tree level interaction (k > 10)

$${\cal L}_{cLFV} = {m_\mu\over (k+1)\Lambda^2} \overline{\mu}_R \sigma_{\mu
u} e_L F^{\mu
u} + {k\over (k+1)\Lambda^2} \overline{\mu}_R \gamma_\mu e_L \overline{f} \gamma^\mu f$$

tree level interaction accessible only via $\mu^+ \rightarrow e^+ e^- !$

 $e^{+} e^{+} e^{-}$

 \mathcal{O}

cLFV search: complementry approch

Summary

- Lepton flavour violation is presently one of the most exciting branch of particle physics
- The MEG experiment @PSI was design to reach a sensitivity of ~ few x 10⁻¹³ on the $\mu^+ \rightarrow e^+ \gamma$ decay. It has set the most stringent upper limit on the BR($\mu^+ \rightarrow e^+ \gamma$) < 5.7 x 10⁻¹³ (based on the 2009-2011 sample)
- The analysis of the full data sample is ongoing. It will be doubled including the collected statistics of the 2012-2013 sample and a new result will be delivered soon!
- An upgrade of the MEG detector started and is ongoing aiming at a sensitivity of ~ few x 10⁻¹⁴

Likelihood Fit (2009-2011)

Confidence Interval

 Confidence interval calculated with Feldman-Cousins method + profile likelihood ratio ordering

Consistent with null-signal hypotesis