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The physics connected to the MEG experiment

e The MEG experiment search for ut = e* y decay, which violetes the
conservation of the lepton number in the charged lepton sector (CLFV)

electro-weak
symmetry breaking  outside of
(mass giving)  standard model
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Flavour Changing Neutral Currents (FCNC)

® At the tree level
® flavour is violated in Charged Current interactions (mediated by W)
e flavouris conserved in all Neutral Current interactions (mediated by g, Z° and v)

the are no vertices of the type i.e.




Flavour Changing Neutral Currents (FCNC)

® At the tree level
® flavour is violated in Charged Current interactions (mediated by W)
e flavouris conserved in all Neutral Current interactions (mediated by g, Z° and v)

the are no vertices of the type i.e.

® At the quantum level (quantum loops)

® n the quark sector; FCNC are induced by charged current loop effects, due to mixing
among fermion generations

® 0K —=upinthe quark section
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Flavour Changing Neutral Currents (FCNC)

® what about lepton sector ¢




Lepton Flavour Violation of Charged Leptons (cLFV)

° Lepton flavour is preserved into the SM (“accidental” symmetry)
® not related to the theory gauge

® naturally violated in SM extentions

LFV of neutral leptons
confirmed
-neutrino oscillations-




Lepton Flavour Violation of Charged Leptons (CLFV)

° Lepton flavour is preserved into the SM (“accidental” symmetry)
® not related to the theory gauge

® naturally violated in SM extentions

. LFV of neutral leptons
confirmed
-neutrino oscillations-
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LFV of charged
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The u™ — e" y decay as an example

® [aking into account of neutrino oscillations
SM with massive neutrinos (Dirac)
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too small to access experimentally




()BSM = Beyond Standard Model

The u™ — e" y decay as an example

® [aking into account of neutrino oscillations
SM with massive neutrinos (Dirac)
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too small to access experimentally

® 5SM well tested and successfull model, low-energy effective theory of a yet-more-fundamental one

® BSM theories such as SU(5) SUSY-GUT and SO(10) SUSY-GUT models predict measureble LFV
decay BR

SU(B) SUSY-GUT or SO(10) SUSY-GUT
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The u™ — e" y decay as an example

® BSM theorie such as SU(5) SUSY-GUT and SO(10) SUSY-GUT models predict measureble LFV

SU(B) SUSY-GUT or SO(10) SUSY-GUT

2 09

D1y — by) = “SE™ (1D 4 Dy P
(1 lay) = S (D2 4 Dy )
1

DR:DL% GFA2
107 < B(pt — ety) < 1071

Null result will turn out in a precise test of established model and will ruled out
speculative ones

cLFV signature will be a clear evidence of New Physics




The role of low energy physics in the LHC era

Rare decay searches as a complementary way to unveil BSM physics and
explore much higher energy scale w.r.t. what can be done at the high-energy

frontiers
e Direct/indirect production of BSM particles

Ya ® Real BSM particles ® Virtual BSM particles

~

vs produced in the final , produced in loops

state ® Precision and
v, ® Energy frontier (LHC) intensity frontier




The role of low energy physics in the LHC era

Rare decay searches as a complementary way to unveil BSM physics and
explore much higher energy scale w.r.t. what can be done at the high-energy

frontiers
e Direct/indirect production of BSM particles

® Real BSM particles ® \/irtual BSM particles

~

vs produced in the final , produced in loops

state ® Precision and
® Energy frontier (LHCO) Intensity frontier

® | i IS INn terms of inverse
powers of heavy scale
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® [he most intense continuous positive (surface )muon beam at low
momentum (28 MeV/c)

® up to few x 102 muon/s




The MEG experiment

e The MEG experiment aims to search for y* = e* y with a sensitivity of ~10-'3
(best upper limit BR(u* = e*y) < 1.2 x 10" @90 C.L. by MEGA experiment)

e Five observables (Eg, E¢, teg, Feg, deg) to characterize u +— €™ y events

signal RMD background Accidental background
BR ~ 1013 BR ~ 101° BR ~ 1014




Eur. Phys. J. C (2013) 73:2365

The MEG experimental set-up

e The MEG experiment aims to search for p* = et y with a sensitivity of
~10713 (best upper limit BR(u* = e*y) < 1.2 x 101 @90 C.L. by
MEGA experiment)
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Physics Analysis Overview and Event Selection

e Five observables (Eg, Ee, teg, Feg, Peg) to characterize u— ey events

e Event selection: Trigger selection (Eg> 45 MeV , |Ateg|< 10 ns, |[Ad | < 7.59) + at least 1
reconstructed track

e Blind Analysis (Sideband, Blind box)
e Maximum likelihood to extract Nsig

e CL frequentistic approch

Ey vs T distribution without any selection.

Number of events / (0.5MeV)




Phy. Rev. Lett. 110, 201801 (2013)

Summary of Results

(**) 90% C.L. upper limit averaged over pseudo-
experiments based on null-signal hypothesis with
expected rates of RMD and BG

0.09x10°"2

-0.35x10712

-0.06x10712

B(w™ — e v) <5.7x10-'* (all combined data) *

X4 more stringent than the previous upper limit
(B(u" — ¢* vy) < 2.4x107'2 -MEG 2009-10)

X20 more stringent than the MEGA experiment result
(B(u* — ¢*vy) < 1.2x10"" -MEGA 2001)




\Where we are

® Obtained 90% UL

Expected 90% UL (MC)
= Median (sensitivity )}
= Median = lo
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ArXiv:1301.7225.v2

Future Prospects: MEGI

e An upgrade of MEG, aiming at a sensitivity improvement of one order of
magnitude (down to 5 x 10-1%) approved by PSI and funding agencies is
ongoing
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Current detector: MEG

e An upgrade of MEG, aiming at a sensitivity improvement of one order of
magnitude (down to 5 x 10-1%) approved by PSI and funding agencies is
ongoing




Future Prospects: MEGI

e An upgrade of MEG, aiming at a sensitivity improvement of one order of
magnitude (down to 5 x 10-14) approved by PSI and funding agencies
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Future Prospects: MEGI

e An upgrade of MEG, aiming at a sensitivity improvement of one order of
magnitude (down to 5 x 10-14) approved by PSI and funding agencies
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Future Prospects: M

Upgraded
MEG

L Xe with
MPPC in VUV

Fast
read-out

pixelized TC

Kept the key elements
of MEG

1. World’s most intense
7%x107 Muon/s DC muon beam @ PS|
2. Innovative LXe y-ray
detector
3. Gradient B-field e*-
spectrometer
4. Thousends virtual
oscilloscopes (DAQ)

5. Sophisticated
calibration methods

panma-ray detector

Beam transport

—G Now

COBRA positron speg




Future Prospects: MEGI

® [he most intense continuous positive Kept the key elements
(surface Ymuon (7 x 107 p/s) beam at low of MEG

momentum (28 MeV/c) 1. World’s most intense

® high sensitivity In a relative short time (few years) DC muon beam @ PSI
accidental background undercontrol (Bace ~ R) 2. Innovative LXe y-ray

low straggling and good identification of the decay detector |
region 3. Gradient B-field e*-

| | | spectrometer
muons stopped In a thin target (current CH; thickness: 4 Thousends virtual
204 um) oscilloscopes (DAQ)
5. Sophisticated
calibration methods

Separator Scan

finma-ray detector

500 1000 1500 2000 2500

Separator Magnet DAC value COBRA positron spe




Future Prospects: MEGI

® A large homogeneous calorimeter using only Kept the key elements
scintillation light of MEG

® very good resolutions for photon energy, direction and 1 World's most intense

time measurements DC muon beam @ PS|
2. Innovative LXe y-ray
detector

Rapid and 3. Gradient B-field e*-

High light vield scintillator spectrometer

e T=422and45ns 4., Thousends virtual

* 40000 ph/MeV oscilloscopes (DAQ)
5. Sophisticated
calibration methods

finma-ray detector

COBRA positron spe




Future Prospects: MEGI

® Gradient B-field Kept the key elements
® constant projected radius of MEG

® |ow momentum e’ swept away |
1. World’s most intense

DC muon beam @ PSI
2. Innovative LXe y-ray
detector

3. Gradient B-field e*-
spectrometer

4. Thousends virtual
oscilloscopes (DAQ)

5. Sophisticated
calibration methods

finma-ray detector

COBRA positron spe




Future Prospects: MEGI

e DAQ based on the Domino Ring Sampler (DRS) Kept the key elements
chip of MEG

® full waveform digitization up to 5 Gsample/s 1. World’s most intense

DC muon beam @ PS|
2. Innovative LXe y-ray
detector

3. Gradient B-field e*-
spectrometer

4. Thousends virtual
oscilloscopes (DAQ)
5. Sophisticated
calibration methods

finma-ray detector

COBRA positron spe




Future Prospects: MEGI

® Complementary calibration and monitoring Kept the key elements
methods of MEG

® to reach and maintain the required detector |
1. World’s most intense

performances over the time DC muon beam @ PS|

2. Innovative |LXe y-ray
i A = : L Xe LY monitoring deteCtor
. g o *y energy lineari ' .
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MEGII: just few numbers

High granularity

Less material

High Trasparency DC
towards the TC counter

o(Ee) [keV] ~ 150 (325);
0(0e,Pe) [mrad] ~ 5 (7-11);
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MEGII: just few numbers

High granularity

Less material

High Trasparency DC
towards the TC counter

o(Ee) [keV] ~ 150 (325);
0(0e,Pe) [mrad] ~ 5 (7-11);
o(te) [pS] ~ 30 (70); ‘

Current TC




MEGII: just few numbers

High granularity

Less material

High Trasparency DC
towards the TC counter

o(Ee) [keV] ~ 150 (325);
0(0e,®e) [mrad] ~ 5 (7-11);
o(te) [ps] ~ 30 (70);

g(det) [%] ~ 80 (40);

e* are scattered by
frame or preamp,

Track up to just
before the timing
counter.

0 massive material
onthe way.

%W(E\ AN !




MEGII: the upgraded LXe calorimeter

High energy and position
resolutions

High pile-up rejction capability
High acceptance and detection
efficiency

O-(Ey)/Ey [%] ~ 1.3 (W<20m)
(2.6); ~ 1.0 (w>2cm) (1.7)
o(xy) [mm] ~ 2 (w<2cm) (5);

12x12 mm?2SiPM
(~4000 ch)

+
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MEGII: just few numbers

High energy and position
resolutions

High pile-up rejction capability
High acceptance and detection
efficiency

O-(Ey)/Ey [%] ~ 1.3 (W<20m)
(2.6); ~ 1.0 (w>2cm) (1.7)
o(xy) [mm] ~ 2 (w<2cm) (5);

2-inch PMT

on the incident face
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MEGII: just few numbers

High energy and position
resolutions

High pile-up rejction capability
High acceptance and detection
efficiency

O-(Ey)/Ey [%] ~ 1.3 (W<20m)
(2.6); ~ 1.0 (w>2cm) (1.7)
o(xy) [mm] ~ 2 (w<2cm) (5);

current



Where we will be

~ 5 x 1014

500 k factor (x1011)

- -

2010

MEG

2012+2013




The muon’s cLFV effective lagrangian

m k _
Lrpv = s BROuer F* - oL g
LFV (k +1) sHROuvEL (k+ 1) ZMR’YueLf")’ f




The Mu3e experiment

¢ [The Mu3e experiment aims to search for y* = etet e with a sensitivity
of ~1071° (current best upper limit BR(u* = et ete) < 1. x 102 @90
C.L. by the SINDRUM experiment)

Case 1: dominant dipole coupling (k —0)
my

k+1)A

- 174

L.rry = :

Ut — ety most sensistive channel!




The Mu3e experiment

¢ [The Mu3e experiment aims to search for y* = etet e with a sensitivity
of ~1071° (current best upper limit BR(u* = et ete) < 1. x 102 @90
C.L. by the SINDRUM experiment)

Case 2: tree level interaction (k > 10)

k
(k+ 1A

2 ﬁRny 6L7’Y” f

tree level interaction accessible only via p* = efet e




cLFV search: complementry approch

“"B(u — e conv in Z7Al)=10"8

B(u — e conv in Z7Al=10"°1

. Blu—ey)=107%

B(u — ey)=10""

\\\\\\\\ H \ \\\\\\\\
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Summary

¢ | epton flavour violation is presently one of the most exciting branch of particle
physics

e The MEG experiment @PSI| was design to reach a sensitivity of ~ few x 10°1° on
the u* — et y decay. It has set the most stringent upper limit on the BR(p* — et
Y) < 5.7 x 10° (based on the 2009-2011 sample)

e [he analysis of the full data sample is ongoing. It will be doubled including the
collected statistics of the 2012-2013 sample and a new result will be delivered
soon!

e An upgrade of the MEG detector started and is ongoing aiming at a sensitivity of ~
few x 1014




Likelihood Fit (2009-2011)

Events / (56 psec)

Events / (0.24 MeV)
Events / (0.4 MeV)

52 5 58

51 54 55 5 50 52 54 56
Positron Energy (MeV) Gamma Energy (MeV)

Green: Signal
Red: RMD
Purple: BCK
Blue: Total
Black: Data

NSIG =-0.4(+4.8-1.9)
NRMD = 167.5 + 24
NBCK =2414 + 37

Events /(4 mrad)
Events /(4 mrad)




Confidence Interval

e Confidence interval calculated with Feldman-Cousins method + profile
likelihood ratio ordering

Profile likelihood ratio

Confidence Level
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Consistent with null-signal hypotesis




