

Quasi-elastic-like and other recent and future updates to GENIE

Andy Furmanski GDR Neutrino, Nov 2014

GENIE

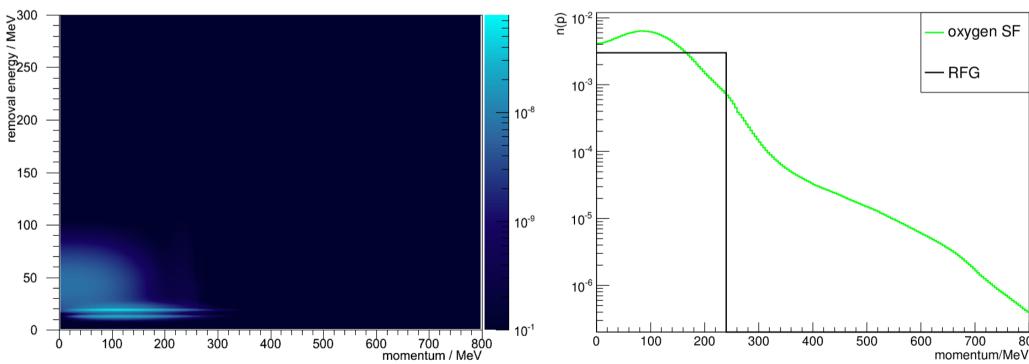
- <u>Generates</u> <u>Events</u> for <u>Neutrino</u> <u>Interaction</u> <u>Experiments</u>
- General-purpose neutrino interaction simulation software
- Written and maintained by an international collaboration
- Not directly linked to an individual experiment
 - But used by many
 - Expected to be ready out-of-the box for most purposes
 - Aim to be valid from MeV to PeV!
- Object-oriented code (C++)
 - Designed to be extendable and customisable
- Comes bundled with a large amount of experimental data and validation tools
 Unique (I think) in its ability to simulate both neutrino and electron scattering

GENIE – a history

- Initially developed within MINOS, to replace their generator NEUGEN.
- 2004-2007, development of framework, implementation of original physics models
- **2007**, first release v2.0.0
- Since 2007, several official releases have been made
 - Main improvements have been software related
 - Improvements to interfaces to flux drivers, detector geometries etc.
 - Systematic error evaluation

- GENIE is used by T2K, NOvA, MINERvA, MicroBooNE, Lar1-ND, LBNE, LAGUNA-LBNO, IceCuBE, OPERA, and several other experiments

- As GENIE has become very widespread, it is now important to keep it state-of-the-art!


Recent Releases

- 2.6.X series :

- Included electron scattering simulations
- Improvements/additions to flux drivers
- Bug fixes
- 2.8.X series
 - New interactions (MEC and inverse muon decay)
 - Included nucleon-decay simulations
 - Major overhaul of FSI routines
 - Improvements to data archives, validation, and reweighting
 - Many experimental features became full production features
 - Software improvements and bug fixes

Quasi-elastic: Spectral function

- Spectral function model is an alternative to the RFG model
- Describes the initial state of the nucleus
 - Initial energy and momentum of nucleons
 - Correlation between momentum and binding energy
 - Long tail from correlated pairs of nucleons

spectral function for oxygen

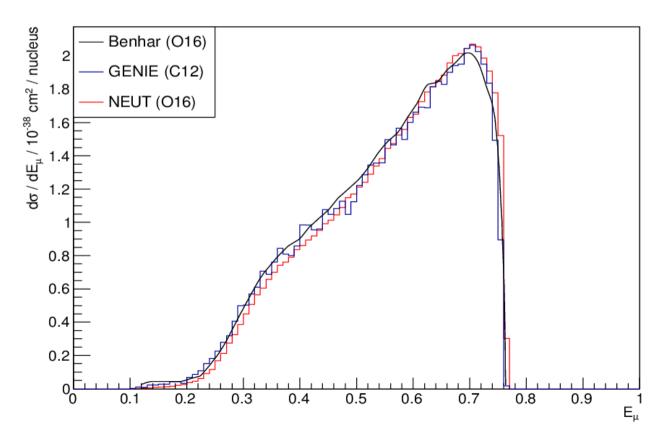
A. Furmanski (Warwick)

800

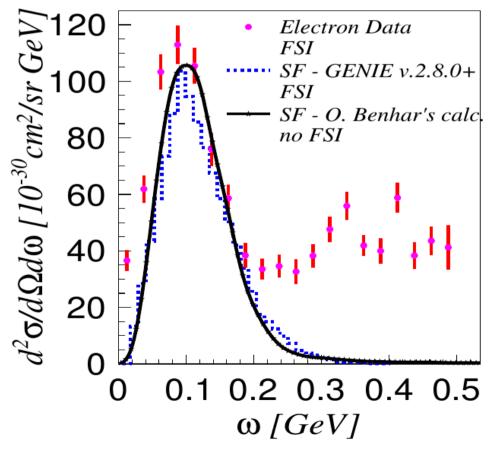
700

oxygen SF

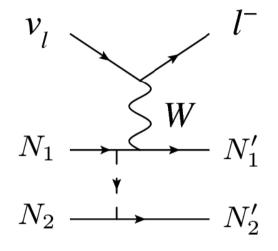
RFG


Quasi-elastic: Spectral function (2)

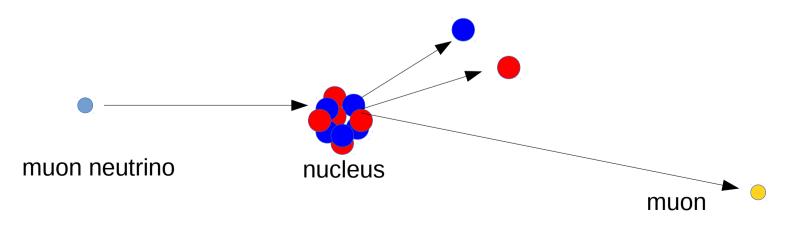
- SF has been shown to provide good agreement with electron scattering data
- High-p tail helps to fill in the 'dip' region between QE and delta peaks
- Smoother distribution clearly more physical than RFG model


Quasi-elastic: Spectral function (3)

- GENIE implementation developed by groups at Warwick and Virginia Tech
- Initial attempt to re-use RFG code, with a new nuclear model
- Lead to discovery of a minor bug in old code Fix is in place but causes a drop in efficiency


Spectral function plans

- Very good agreement shown in development branch
 - Likely to be included in the next minor release
- Code is very slow due to bug fix, not practical to use as default
- Effort is now focused on improving the efficiency

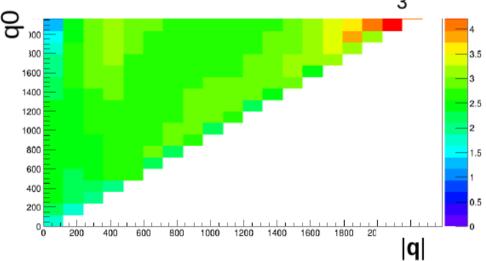


QE-like: MEC


- Often suggested the reason for the MiniBooNE high MA is multi-nucleon processes
- If you can't see the nucleons, it looks like CCQE
- Enhances the CCQE-like cross section
- A number of models on the market
 - Phenomenological fits (TEM)
 - Microscopic models (Nieves, Martini, ...)
- Previously GENIE had a home-brew model
 - Fill the gap between CCQE prediction and MiniBooNE
- Work to implement a more rigorous model

Jackie Schwer

Nieves' model

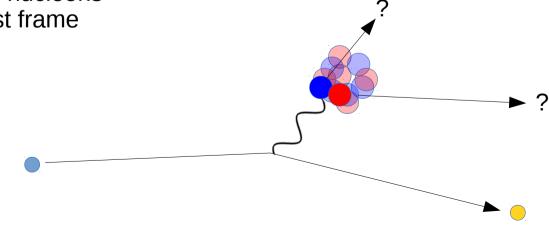


- Interaction of neutrino with a pair of nucleons
 49 feynman diagrams calculated in full model
- Fortran code made available to GENIE developers
 - Calculates cross section double differential in lepton angle and kinetic energy
- Code is too slow to incorporate directly into GENIE
- Solution is to pre-compute tables

 $\frac{\partial^2 \sigma}{\partial T_{\mu} \ \partial \cos(\theta_{\mu})}$

Tables in GENIE

- Idea 1: Store cross section as a function of muon kinematics and neutrino energy
 - Number of tables gets very large
 - Different tables required for each neutrino flavour
- Idea 2: Calculate hadronic tensor as a function of q⁰ and |q|
 - Only need 5 2D tables for each target
 - Valid for all neutrino energies and flavours
 - Far less memory used
 - Cross section calculation is done quickly in GENIE

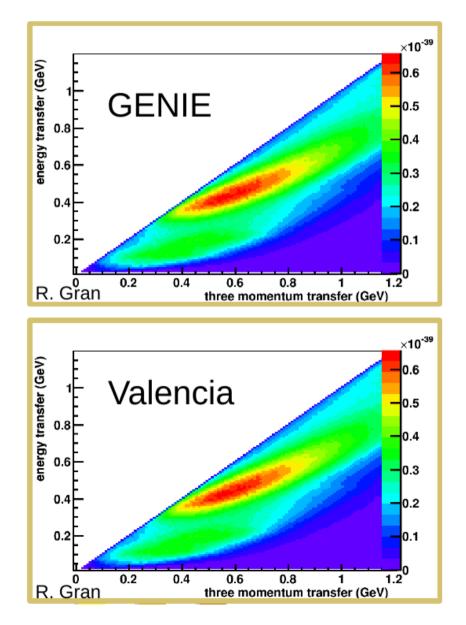


Hadron Tensor Element: W₃

Jackie Schwer

Hadronic simulation

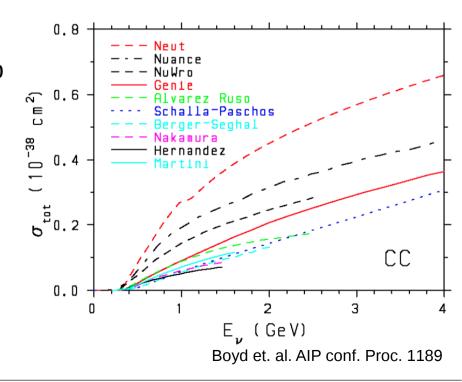
- Nieves' model makes no statement on the hadronic kinematics
 - Leptonic cross section is integrated over hadronic kinematics
- For a generator, we need all final-state particles simulated
 - Implement a simple model for the nucleons
 - Similar to implementation already present in GENIE
- Select two nucleons from the nucleus (global RFG)
 - Treat as one 'cluster'
- Add transferred momentum and energy to the cluster
- Decay cluster into two nucleons
 isotropically in rest frame



Jackie Schwer

MEC summary

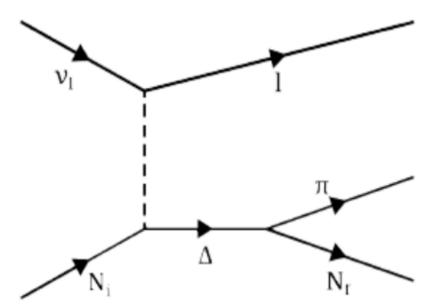
- Implementation working well
- few percent differences between Nieves' prediction and GENIE output
- Validation underway
- More additions to come
 - Correct selection of isospin
 - (ratio of nn / pn pairs)
- Expected in the next GENIE release


Other QE and QE-like

- There are now many QE (or QE-like) models on the market
 - Previously, we just used RFG with no questions!
 - Work starting to include more of these in GENIE
- If these models are implemented in generators, strict comparisons can be made with data

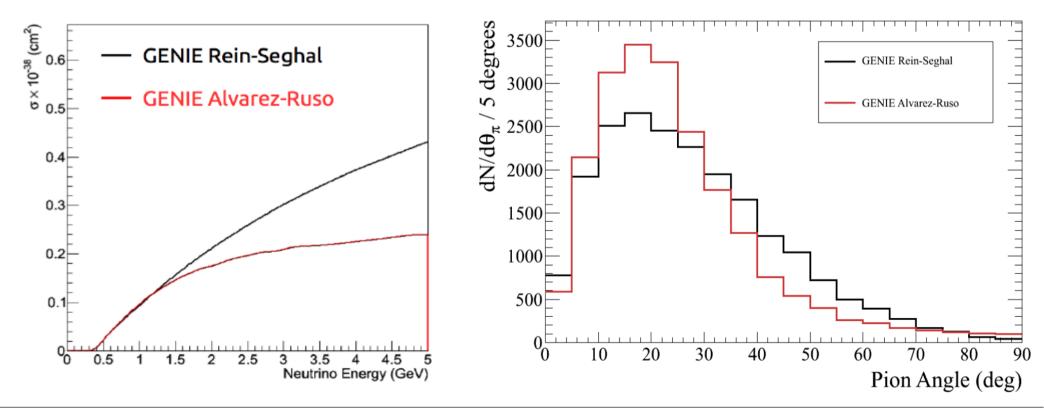
- Work also ongoing to incorporate the following :
- Rochester effective SF and TEM
 - Coopersmith, Bodek
 - Fits to electron scattering data
 - Extract effective parametrisations of the spectral function and MEC components
- Nieves full QE model
 - Johnston, Dytman
 - Includes Nieves 'QE' and 2p2h in a consistent manner

Coherent (PCAC)


- Previously included Rein-Sehgal model
 - PCAC based model
 - Large differences between different generators for the 'same' model
 - Due to differences in input data
- Rein-Sehgal not expected to be valid at low (< 2GeV) energies
- Alternative PCAC-based models exist
 - Berger-Sehgal
 - Implemented using Pion cross section lookup

Gabe Perue, Dan Cherdack

Coherent (microscopic)


- Known issues with PCAC at low energies
 - Q2 \rightarrow 0 limit in PCAC assumption ignores angular dependencies
- Alternative is a microscopic model
 - Model v + N \rightarrow I + N + pi
 - Final nucleus still in the same initial state
 - Coherent sum over all nucleons
- Alvarez-Ruso et al, PRC 75, 76 (2007) -Implemented in GENIE
- Model only valid at low energies (< 5GeV)

Dan Scully, Steve Boyd

Coherent (microscopic 2)

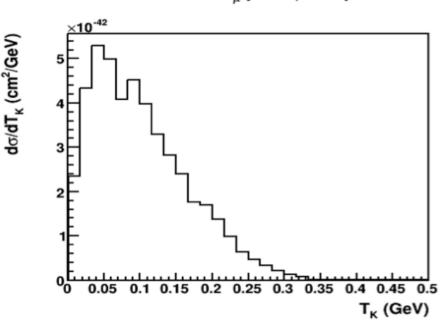
- Previously the implementation was too slow (minutes per event)
 - Huge effort to improve efficiency
 - Now the model is useable
 - Obvious shape differences to Rein-Sehgal
- Fully implemented in devlopment branch
 - Work to include in next GENIE release

A. Furmanski (Warwick)

Kaon production

- Associated production already in GENIE
- Cabbibo suppressed kaon production modes not currently simulated e.g.

 $v + N \rightarrow l^- + N + K^+$


- Dominant at low (<GeV) energies (lower threshold)
- Can be important background to nucleon decay searches $p \rightarrow v + K^{\scriptscriptstyle +}$

- Model by Alam et al.

- Predicts full final-state three-particle kinematics

Kaon production (2)

- Good agreement found between GENIE and authors predictions
- Working to move code into a future release
- No antineutrino modes simulated
 - Plan to add these modes in coming months
- Model authors also have associated production model
 - Plans to include this aspect
 - Consistent kaon production framework

1.0 GeV $\nu_{\mu} \, p \rightarrow \mu^{-} \, K^{*} \, p$

Chris Marshall, Martti Nirkko

Other work

- Many more physics changes being worked on

- Very high energy extension, for IceCube (Hoshina)
 - Could be very important for DeepCore/PINGU
- Eta production improvements (Liu)
- Berger-Sehgal and Kuzmin muon mass dependence to resonance (Nowak)
- Expansion of hA splines (Geary, Dytman)
- Updates to PCAC coherent (Perdue, Gallagher)
- In addition, many software improvements on the way
- Improvements to the automation of validation procedure
 - Reduce time taken to test new builds
 - Increase rate of releases

Release plans

- A number of new physics models are being developed in GENIE
- Next release (2.9.0) expected end of 2014
 - Hope to include the first implementations of several new models
 - Those discussed here, plus many others
 - All configurable as options, but defaults won't change
- Next major physics release (2.10.0) hopefully summer 2015
 - Incorporate new models into default
 - Ideally, perform a complete global tune
 - Represents a huge addition of physics models compared to 2.8.0
- Schedules are subject to change due to limited man-power

Thankyou for listening