

Highlights from the T2K experiment

Stefania Bordoni (for the T2K collaboration)

GDR Neutrino 2014 Marseille, 26 - 27 November

The T2K experiment

- Long baseline neutrino oscillation experiment in Japan (Tokai to Kamioka)
- Muon neutrinos produced from a 30 GeV proton beam (JPARC)
- Neutrinos detected at 2 points :
 - the near detector (ND280) at 280 m
 - the far detector (Super-Kamiokande) at 295 Km

Two main goals :

- v_{μ} disappearance $P(v_{\mu} \rightarrow v_{\mu})$: measure Δm^{2}_{32} and 9_{23}
- V_e appearance $P(v_{\mu} \rightarrow v_e)$: measure 9_{13} and constrain δ_{CP}

Japan Proton

Overview of the talk

- The T2K experiment : design principle and the T2K detectors
- The T2K analysis strategy
- Oscillation analyses
 - ν_e appearance
 - ν_{μ} disappearance
 - \bullet joint $\nu_e\text{-}\nu_\mu$ analyses
- Exotic physics
- Toward the future

The design principle

- First experiment using an off-axis technique (2.5°)
 - Narrow-band beam peaked at the oscillation maximum
 - Reduce the high-energy tail of the spectrum: reduction of the background to oscillation analyses: DIS, RES and Neutral Current

The SK detector

- Cylindrical detector located at ~I Km underground in the Kamioka mine (295 Km from the proton target)
- Filled with 50 kton of ultra pure water (22,5 kton FV)
 - Inner detector (ID) : \sim I I 000 inward facing PMTs
 - Outer detector (OD): ~2 000 outward facing PMTs to veto external background
- Detection based on **Cherenkov technique**
- Very good capabilities to **distinguish electrons from muons**

The T2K near detectors

ND280 detectors

- Same off-axis angle as SK \rightarrow cancelation of the shared systematics
- Located inside the UAI/NOMAD magnet (0.2 T magnetic field)
 - Dedicated π^0 detector (P0D)
 - ◆ Tracker :
 - + Fine Grained detectors (FGDs) as active target
 - ◆ Gas TPCs for momentum measurements and PID
 - Surrounded by EM calorimeters and muon detectors (SMRD)

UA1 Magnet Yoke SMRD X PPCs FGDs Devenstream P0P Pdetector Devenstream Beam POP POP POD POD Barrel ECAL

INGRID detector

- On-axis near detector
- Monitor the beam stability day by day using neutrino interactions
 - + 16 identical modules arranged as a cross composed by iron and scintillators
 - I proton module only composed of scintillators for neutrino cross section measurements

Stefania Bordoni (IFAE)

Neutrino Flux prediction :

- Simulation of hadronic interactions in target and propagation of secondary particles
- Hadron production data from NA61/SHINE

Neutrino Flux prediction :

- Simulation of hadronic interactions in target and propagation of secondary particles
- Hadron production data from NA61/SHINE

Cross section models:

- Interaction generator (NEUT)
- External data (MiniBooNE)

Stefania Bordoni (IFAE)

Neutrino Flux prediction :

- Simulation of hadronic interactions in target and propagation of secondary particles
- Hadron production data from NA61/SHINE

• External data (MiniBooNE)

Neutrino Flux prediction :

- Simulation of hadronic interactions in target and propagation of secondary particles
- Hadron production data from NA61/SHINE

Fit to ND280 data constrains flux and cross section parameters

Cross section models:

- Interaction generator (NEUT)
- External data (MiniBooNE)

Neutrino Flux prediction :

- Simulation of hadronic interactions in target and propagation of secondary particles
- Hadron production data from NA61/SHINE

Systematic uncertainties

- Strong reduction of the systematic uncertainties to the event rate at Super-Kamiokande thanks to the ND280 data
- Current systematics already < 10%

ates	Before ND280 Constraint
e of the second se	After ND280 Constraint
°D 7 ⁴	
Jo 2 #	
o	0.5 1 1.5 2 2.5 3
Ū	Reconstructed v Energy (GeV)

		v_{μ} sample	v_{e} sample
$\boldsymbol{\nu}$ flux and	w/o ND measurement	21.8%	26.0%
cross section	w/ ND measurement	2.7%	3.1%
ν cross section d nuclear target bt	ue to difference of w. near and far	5.0%	4.7%
Final or Secondary Hadronic Interaction		3.0%	2.4%
Super-K detector		4.0%	2.7%
total	w/o ND measurement	23.5%	26.8%
	w/ ND measurement	7.7%	6.8%

Fractional error on number-of-event prediction

Note: Systematics error updated for joint analyses

Oscillation analyses results

- Maximum likelihood fit in $\{p_e, \boldsymbol{\vartheta}_e\}$
- Consistent with analysis based on E_{reco}

7.3 σ significance to non-zero ϑ_{13} Discovery of v_e appearance!

- \bullet Constraints on δ_{CP} combining with reactors
- Dependency to ϑ_{23} \rightarrow joint ν_{e} ν_{μ} analysis

ν_{μ} disappearance results

- World leading measurement for 9₂₃ : first time for an accelerator-based experiment !
- Maximal mixing is favored
- sin²9₂₃ = 0.514 ± 0.055 (NH) → 10% uncertainties corresponding to 3° on the angle

Joint V_{μ} - V_e fit analysis

- The 4 oscillation parameters Δm^2_{32} , ϑ_{23} , ϑ_{13} , δ_{CP} are determined through a simultaneous fit of the reconstructed energy spectra of both ν_{μ} and ν_{e} samples (and ND280)
- Inclusion of reactor constraints (PDG 2013)
- Best fit value for δ_{CP} ~ $\pi/2$
- (Very) weak preference for NH and second octant

Posterior probability of different models

(Bayesian analysis)					
(%)	NH	IH	Sum		
sin²9₂₃≤0.5	18	8	26%		
sin ² 9 ₂₃ >0.5	50	24	74%		
Sum	68%	32%			

Exotic physics

- The T2K collaboration is also performing searches for non standard physics processes :
 - Short baseline oscillations at ND280
 - nue-disappearance: published and presented at the previous GDR by Claudio
 - numu-disappearance: blind analysis, Monte Carlo sensitivity studies ongoing, not ready yet
 - Searches for Lorenz Violation with INGRID : blind analysis, Monte Carlo study almost ready for internal collaboration review

Toward the future

What's next ?

TZK

- World leading results with only 8% of the total expected statistics
 - \bullet First observation of the ν_e appearance
 - Best world measurement of $\text{sin}^2 \boldsymbol{9}_{23}$ (10% uncertainties) through ν_{μ} disappearance
 - First hints of $\delta_{\text{CP}} \neq$ 0 by joint ν_{μ} - ν_{e} analyses combined with reactor constraints

- Sensitivity studies have been performed to understand the physics potential of T2K
 - Running 50% ν 50% anti-ν mode will further enhance the T2K physics potential
 - To maximize the sensitivity to δ_{CP} , with current and future generation experiment, systematic uncertainties should be of the order of 2-3%

Stefania Bordoni (IFAE)

Anti-neutrino mode runs

First anti-V candidate event @ \$K

muon-like ring

- First data in anti- ν mode already recorded! Last summer we recorded ~0.5 \times 10²⁰ POT (Run 5)
- A new run in anti-ν mode has just started. We aim to collect soon the same statistic as in ν-mode
- ullet Oscillation analyses with anti-ullet mode data presented soon

About the current systematics

• Current ND280 constraints:

- \bullet Based on $\nu_{\mu}\text{-}\text{CC}$ interactions in FGD1 (CH)
- Categorization of the events based on the final state topologies (model independent)
- Reduction of the flux and shared cross-section systematics from 20% to 2-3%

muon

possible secondary tracks e.g. pion, Michel electron

		v_{μ} sample	v_{e} sample
${ m v}$ flux and	w/o ND measurement	21.8%	26.0%
cross section	w/ ND measurement	2.7%	3.1%
v cross section d nuclear target bt	ction due to difference of 5.0%		4.7%
Final or Secondary Hadronic Interaction		3.0%	2.4%
Super-K detector		4.0%	2.7%
total	w/o ND measurement	23.5%	26.8%
	w/ ND measurement	7.7%	6.8%

Fractional error on number-of-event prediction

However, the potential of ND280 is still not fully exploited

Stefania Bordoni (IFAE)

About the current systematics

TZK

Current ND280 constraints limitations :

- **Different target** between near (CH) and far detector (O)
- Different acceptance of the two detectors : near (mainly forward going tracks) and far (4 π)
- Deeply rely on cross-section models to extrapolate the interaction rates at the far detector (where the neutrino flux has changed due to the oscillations)

• Main limitation: unconstrained relation between the lepton kinematics and the neutrino energy

About the current systematics

Current ND280 constraints limitations :

- **Different target** between near (CH) and far detector (O)
- Different acceptance of the two detectors : near (mainly forward going tracks) and far (4 π)
- Deeply rely on cross-section models to extrapolate the interaction rates at the far detector (where the neutrino flux has changed due to the oscillations)

• Main limitation: unconstrained relation between the lepton kinematics and the neutrino energy

On going developments for future analyses :

- Consider interactions in the FGD2 (water + carbon target)
- New reconstructions improvements : high angle and backward going tracks also in ND280
- Provide new cross-section measurements model independent to improve the current models
- ... new approach ?

Stefania Bordoni (IFAE)

Cross-section measurements

TZK

- Many cross-section measurements (published and ongoing) at T2K using all the three detectors **INGRID**, **ND280** and **SK**
- Not possible to report all of them. They would deserve a dedicated talk
- 3 results are reported here (arbitrary choice) as example of the effort done by the collaboration to provide new data to constrain the theoretical models

Stefania Bordoni (IFAE)

18

One step beyond

- The collaboration is already looking forward: call for new ideas and projects helping to improve the current measurements
- Among the several proposals, two ideas (WAGASCI, nuPRISM) have sufficiently grown up and recently become independent collaborations
- WAGASCI and nuPRISM are no more T2K projects (although significant overlap of personnel, place and purpose). Briefly mentioned here because of their physics interest

GDR Neutrino 2014

• WAGASCI

- H2O/CH off-axis (1.6°) detector with a 3D grid-like structure
- 7 institutes (LLR!), 39 collaborators
- Main goals : absolute and ratio cross section H2O/ CH (4 π acceptance, 3% accuracy)
- Approved as test experiment, start operation on October 2016

One step beyond: nuPRISM

- Water Cherenkov detector as SK but with different off-axis angles (1°-4°) @ IKm
- 22 Institutes, 45 collaborators

Neutrino Precision Reaction Independent Spectrum Measurement

One step beyond: nuPRISM

- Water Cherenkov detector as SK but with different off-axis angles (1°-4°) @ 1Km
- 22 Institutes, 45 collaborators
 - Exploiting the off-axis angle (OAA) technique to have a **direct correspondence between the lepton kinematics and the neutrino energy** : "Neutrino spectrometer"
 - By (linear) combination of the fluxes at different OAA any energy spectra can be built
 - gaussian \rightarrow cross section measurements
 - oscillated SK-like \rightarrow minimize the dependency to cross-section models for osc. analyses
 - Physics potential to test the MiniBooNE results on **short baseline oscillations**

Neutrino Precision Reaction Independent Spectrum Measurement

Stefania Bordoni (IFAE)

Conclusions

- World leading results with only 8% of the total expected statistics
 - First observation of the ν_e appearance
 - Best world measurement of $\sin^2 \theta_{23}$ (10% uncertainties) through ν_{μ} disappearance
 - First hints of $\delta_{CP} \neq 0$ by joint $\nu_{\mu} \nu_{e}$ analyses combined with reactor constraints
- T2K already collected anti-neutrino data
 - Measure anti- ν_e and anti- $\nu_\mu\,$ oscillations in the near future
 - Aiming to collect 50% ν 50% anti- ν to optimize the sensitivity to δ_{CP}
- Many other interesting measurements are performed: cross-section measurements and searches for non-standard processes
- New interesting and very promising ideas have already born : stay tuned!

Stefania Bordoni (IFAE)

Summary of the data taking

• Reached stable beam at 235kW

Stefania Bordoni (IFAE)

GDR Neutrino 2014

24

Stefania Bordoni (IFAE)

1500

1000

500

v_{μ} CC interactions @ ND280

CCIπ⁺

Purity

- Simple selection done using information coming from the tracker (FGD and TPCs)
- Muon as highest momentum negative track with energy deposition consistent with TPC muon hypothesis

Data

CC-0π

CC-1π

BKG

External

:73.5%

 p_{μ} (MeV/c)

Other

Efficiency: 53.1%

1500 2000 2500 3000 3500 4000 4500 5000

CC-Other

CC0m

Purity

 Momentum and identity of the secondary particles by TPC and FGD

Number of entries

500

400

300

200

100

500

1000 1500 2000

Improving the event rate @SK

- TZK
- Significant improvement of the prediction of the neutrino event rate at the far detector

V_e appearance

Ve appearance analysis

Dependence of the best fit values to the 9_{23} angle

Yellow band: average 9_{13} value from PDG 2012

 $9_{13} = 0.098 \pm 0.013$

v_{μ} Fe/CH x-sec @INGRID

Phys. Rev. D, 90, 052010 (2014)

- Proton module : only scintillators, 100% active target
- Standard module: sandwich of Fe and CH layers
- Both modules are on the central axis of the beam ar thus exposed to the same beam flux → cancelation some systematics

V_µ Fe/CH x-sec @INGRID

Phys. Rev. D, 90, 052010 (2014)

- CC Inclusive σ measurement on Fe @ IGeV never measured before. Previous measurements from MINOS at higher energies
- CC Inclusive σ measurement on CH @ IGeV already previously measured by ND280.
 Measurement at higher energy is possible for INGRID due to his position on-axix (higher <Ev>)
- σ ratio Fe/CH @ at lower energy than MINERvA

 $\sigma_{\rm CC}^{\rm Fe} = (1.444 \pm 0.002(\text{stat})^{+0.189}_{-0.157}(\text{syst})) \\ \times 10^{-38} \text{ cm}^2/\text{nucleon},$ $\sigma_{\rm CC}^{\rm CH} = (1.379 \pm 0.009(\text{stat})^{+0.178}_{-0.147}(\text{syst}))$

 $\times 10^{-38}$ cm²/nucleon, and

 $rac{\sigma_{ ext{CC}}^{ ext{Fe}}}{\sigma_{ ext{CC}}^{ ext{CH}}} = 1.047 \pm 0.007(ext{stat}) \pm 0.035(ext{syst}),$

arXiv:1407.7389 (submitted to PRL)

- Difficult analysis because based on the ν_e beam component (1%)
- Search for negative electron-like track with vertex in the FGD I
- Selection based on the TPC and Ecal PID to reject muons
- Main background due to photon conversions

$v_e CC$ cross section @ ND280 IZK

arXiv:1407.7389 (submitted to PRL)

- \bullet First ever ν_{e} differential cross section at the GeV scale
- Good agreement with data/MC (both GENIE and NEUT)
- Some discrepancies at low Q^2 : most interesting region to understand the differences between v_e and v_μ cross section: crucial for a LBL experiment to search for CP violation in the lepton sector

Stefania Bordoni (IFAE)

NCQE cross-section @ SK

Phys Rev D. 90, 07 2012 (2014)

- Measurement of NCQE by nuclear de-excitation gamma rays (ν + ¹⁶O $\rightarrow \nu$ + p + ¹⁵O*)
 - Signal: primary γ -rays from nucleus de-excitation
 - secondary γ -rays from the interaction of the knocked-out nucleon with water
 - Motivation: measurement of the γ -rays background from atmospheric neutrinos for the study of astrophysical neutrinos ($E_v \sim 10 \text{ MeV}$)

Beam-related expectation	$ u_{\mu}$	$ u_e$	$ar{ u}_{\mu}$
NCQE	34.33	0.46	0.69
NC non-QE	11.59	0.26	0.45
CC	2.01	0.0014	0.025
Signal		34.80	
Background (beam)		15.02	
Beam-unrelated		1.20	
Observed events		43	

Search for SBL oscillations

- 3+1 model $P_{\nu_e \to \nu_e} = 1 \sin^2 2\theta_{ee} \cdot \sin^2 \left(\frac{1.267 \Delta m_{41}^2 L_{\nu}}{E} \frac{\text{GeV}}{\text{eV}^2 \text{km}} \right)$
- No hints of v_{μ} disappearance exists so far $\rightarrow \sin^2(2\theta_{\mu\mu})=0$
- Search for v_e disappearance in the sin²(2 θ_{ee}), Δm^2_{41} plane \rightarrow Study Gallium and reactor anomalies

Analysis strategy

 \bullet Use the ν_{e} and γ selection (to constrain the background) at ND280 and fit the E_{\text{reco}} distribution

• Binned log-likelihood ratio method

Stefania Bordoni (IFAE)

nuPRISM

- The detector can be logically divided into slices of offaxis based on the reconstructed vertex position
- Taking a linear combination of each of these slides a pseudo-monochromatic beams at any energy between 0.4 and 1 GeV
 - high energy tails subtracted using further off-axis measurements
 - low energy tails subtracted using further on-axis measurements
- nuPRISM technique can be expanded beyond monochromatic beams : it is possible to produce an oscillated SK-like spectrum → reduction of the uncertainties associated to cross section modeling

nuPRISM

- 4.6×10²⁰ POT
- nuPRISM can resolve MiniBOONE anomaly @ 90% CL

GDR Neutrino 2014

• Do not include existing constraints from ND280 measurements which will improve the sensitivity

- I Km baseline ideal to search for SBL oscillations through sterile neutrino
- The flux varies across nuPRISM giving unique capabilities
 - direct probe of the oscillation w/o relying on reconstructed energy
 - NC and CC background events will affect different off-axis slices differently

T2K+Nova Future sensitivity δ_{CP}

Assuming true values : $sin^{2}2\theta_{13} = 0.1$, $\Delta m^{2}_{32} = 2.4 \times 10^{-3} eV^{2}$

Stefania Bordoni (IFAE)