

The first physics results from DarkSide

26/11/2014

P Agnes Lab APC, Université Paris 7 GdR Neutrino, Marseille

Dark Matter

Several indirect observations:

- Galaxy clusters
- Galactic rotation curves
- Weak lensing
- Strong lensing
- Hot gas in clusters
- Bullet Cluster
- Supernovae
- CMB

Dark Matter

Several indirect observations:

- Galaxy clusters
- Galactic rotation curves
- Weak lensing
- Strong lensing
- Hot gas in clusters
- Bullet Cluster
- Supernovae
- CMB

The Dark Matter particle properties:

- It is **stable**
- It interacts through gravitational force
- It is electrically neutral
- It does not interact strongly
- It may interact weakly
- It should have a directionality

WIMPs:

Weakly Interactive Massive Particles

Direct Detection Requirements

Large masses

Low rate (~1 event/ton/yr
@ 10⁻⁴⁷ cm² in noble liquids)

Low energy thresholds

• Low energy nuclear recoils (< 100 keV)

Background suppression

- Deep underground
- Passive/active shielding
- Low intrinsic radioactivity
- Gamma background discrimination

Current status of the Dark Matter Hunt

Noble liquids

Dense, relatively inexpensive, easy to purify (scalable to Large Masses)

High ionization (W~20 eV) High scintillation yield (~40,000 photons/MeV) Transparent to their own scintillation High electron mobility and low electron diffusion Discrimination: ionization/scintillation

Liquid Xenon

High intrinsic radio-purity

Liquid Argon

Discrimination: ionization/scintillation + **PSD** Intrinsic contamination from ³⁹Ar

(it can be **depleted**)

Depleted Underground Ar

arXiv:1204.6011

Double-phase Liquid Argon TPC

DarkSide-50 @LNGS The DLAr-TPC technique is also foreseen for future large-scale **neutrino** detectors: (different energy range, different charge readout system, etc...)

LBNO detector @Pyhäsalmi

WA105 demonstrator @CERN

The DarkSide Collaboration

France

APC - Universite Paris 7 Diderot, CNRS/IN2P3,CEA/IRFU
 IPHC - Universite de Strasbourg, CNRS/IN2P3
 LPNHE - CNRS/IN2P3, Université Pierre et Marie Curie

Italy INFN LNGS Gran Sasso Science Institute INFN and Universita degli Studi di Cagliari, Genova, Milano, Napoli

Russia Joint Institute for Nuclear Research SINP, Lomonosov Moscow SU NRC Kurchatov Institute St. Petersburg NPI

> **Poland** Jagiellonian University

Ukraine Institute for Nuclear Research

China IHEP Beijin

USA

Augustana College Black Hills State University University of Chicago University of Hawaii University of Houston University of Massachusetts Princeton University Temple University UC Davis UCLA Virginia Tech PNNL, SLAC FNAL, LANL, LLNL

26/11/14

The DarkSide Guidelines

Background suppression

- Ultra-low background materials
- Depleted Liquid Argon
- Low background photo-detectors
- Low background material components

Active Shields

- Water Cherenkov against muons
- Borate Scintillator against muons and n
- Multiple scattering with the TPC

Residual background identification

Background Identification

- Pulse shape Discrimination
- Ionization/scintillation ratio
- Neutron flux with the Borate scintillator
- Position reconstruction

Main goal: a **bg-free experiment**

Staged approach:

DarkSide-10 2011-2013

~10⁻⁴⁵ cm²

DS50 Detector design

At Laboratori Nazionali del Gran Sasso, LNGS, Italy

LAr TPC

36 cm x 18 cm radius 50 kg LAr (**36.9 kg fiducial mass**) 19 + 19 3" PMTs Uniform Electric Field (200 V/cm) ~1 cm Gas Pocket Extraction Electric Field (2.8 kV/cm) Reflectors and TPB coating

Outer neutron veto

Liquid Scintillator (1:1 TMB + PC) 110 PMTs (LY = 0.5 pe/keV) 30 tons, 2 m radius

Water Cherenkov detector

80 PMTs 1 kt water, 5.5 m radius

Veto's Rejection Efficiencies:

> 99.5% against Radiogenic neutrons> 95% against Cosmogenic neutrons

GdR Neutrino 2014 - Marseille

Detection signature

S2/S1 Ratio

Benetti et al. (ICARUS) 1993; Benetti et al. (WARP) 2006

The Pulse Shape Discrimination

GdR Neutrino 2014 - Marseille

DS-50 TCP commissioning

First physics results arxiv:1410.0653 (submitted to PLB)

GdR Neutrino 2014 - Marseille

The ³⁹Ar spectrum

Currently running with Atmospheric Argon (rich in ³⁹Ar)

Rate: ~ 1 Hz/kg

Electron lifetime: ~ 5 ms Maximum drift time in the TPC is 375 μs at 200 V/cm

Drift velocity 0.93 mm/mus

- High Purity
- Stability of the Electric Field

Understanding the TPC

APC, IPHC and LPNHE are leading the simulation group:

 \rightarrow Development of the full **Geant4** simulation of the detector (particle tracking, optics)

- \rightarrow Electronics simulation
- \rightarrow Calibration

The internal optics description

GdR Neutrino 2014 - Marseille

Understanding the TPC

The recombination model (for PSD)

The recombination probability is obtained **globally fitting** existing data from different data pools

Electron Recoil calibration

Average Light Yield:

~ 8.0 pe/keV at null field ~7.1 pe/keV at 200 V/cm **Calibration with other sources** is currently ongoing ⁵⁷Co, ¹³³Ba, neutrons...

Nuclear Recoil Calibration (SCENE)

Need to study the response of the TPC to **single nuclear recoils** (expected from WIMPs) **SCENE** Scintillation Efficiency of Nuclear Recoils in Noble Elements

Neutron calibration in large detectors can be affected by **multiple interactions** of **neutrons** SCENE has collected extremely pure samples of single nuclear recoils in a small TPC resembling DS-50 TPC design. We opted to use **SCENE data @ 200V/cm**

The first results (42.7 days)

Discrimination comparison

Present Limit and Projection

DarkSide G2

~3.8 ton: Active Uar mass.
~4.8 ton: total Uar mass.
30 ton boron-loaded liquid Scintillator Veto (LSV).
1,000 ton ultra pure water (WT).

The same outer veto sphere

Exploiting Directionality

Directionality

S1 is different if the electric field is parallel or perpendicular to the nuclear recoil (in LAr only)

Some weak hints of this effect in LAr observed in **SCENE**

This effect might strengthen the significance of few WIMPs candidates if they will be observed in DS-G2

ANR pre-proposal submitted
(APC, LPNHE, IPNO, IPHC)
→ Building of a small TPC
→ Study directionality with tests at IPNO beam

Angular dependence from SCENE

http://arxiv.org/abs/1406.4825

Conclusions

The Liquid Argon TPC is promising technique for a large detector for direct Dark Matter search:

DS-50 taking data since Oct 2013 (first results in ArXiv:1410.0653) PSD is an effective background rejection technique Extended calibration phase presently ongoing Underground Argon expected for beginning next year

French groups are active with leading roles in DarkSide

Darkside-G2 design under discussion

BackUp

Present Limit and Projection

29

Detection technique

The electrons are extracted into the gas region, where they induce **electroluminescence (S2)**

The time between the S1 and S2 signals gives the vertical position

Main Backgrounds to the WIMPs search

Outer Neutron Veto

4 m diameter, 1:1 TMB + PC Instrumented with 110 8" PMTs

Liquid scintillator allows coincident veto of neutrons in the TPC and provides *in situ* **measurement of the neutron background rate**

¹⁴C content (~10⁻¹³ ¹⁴C/¹²C, ~120kHz) is too high (~98% efficiency) to achieve design efficiency (~99.5%).
The current TMB will be replaced with new low ¹⁴C TMB.

The Pulse Shape Discrimination

DS50 TPC

PSD extrapolation in DS-G2

