# Status of Double Chooz and first near detector data

Emmanuel Chauveau on behalf of the Double Chooz collaboration

Research Center for Neutrino Science Tohoku University, Sendai, Japan

> GDR Neutrino, Marseille November 27th, 2014





### Measurement of $\theta_{13}$ with reactor neutrinos



$$P_{\bar{\nu}_e \to \bar{\nu}_e} \ = \ 1 \ - \ \sin^2(2\theta_{13}) \ \sin^2\left(\frac{\Delta m_{31}^2 L}{4 \ E}\right) \ + \ {\cal O}(10^{-3}) \ \ \ {\rm for} \ L/E \lesssim 1$$

- $\blacksquare$  survival probability depends of L/E  $_{\nu}$   $\rightarrow$  measurement based on rate and shape deformation
- precise measurement of  $\theta_{13}$  by 2 identical detectors (cancel flux & efficiency uncertainties)
  - far detector ightarrow disappearance of  $ar{
    u}_e$  around first minimum
  - near detector  $\rightarrow$  unoscillated neutrino flux

# **Double Chooz experimental layout**



### **INVERSE BETA DECAY on proton (threshold > 1.8 MeV)**

$$\bar{\nu}_e + p^+ \longrightarrow e^+ + n$$

**prompt signal:** scintillation +  $e^+$  annihilation Eprompt  $\approx E(ve) - 0.8 \text{ MeV}$ 



Neutrino target: liquid scintillator PXE + Gd

Gamma catcher: liquid scintillator PXE (no Gd)

**Buffer volume:** transparent mineral oil with 390 x 10" PMTs assembly

Inner Veto: liquid scintillator (LAB) with 78 x PMTs 8"

Outer Veto: plastic scintillator strips 2014 RESULTS WITH THE FAR DETECTOR ("DC-III" n-Gd)

### **DC-III** new event selection

|                  | DC-II (2012)    | DC-III (2014)   |
|------------------|-----------------|-----------------|
| Prompt Energy    | 0.7 – 12.2 MeV  | 0.5 – 20 MeV    |
| Delayed Energy   | 6 – 12 MeV      | 4 – 10 MeV      |
| Δt               | 2 – 100 μs      | 0.5 – 150 μs    |
| ΔR               | n/a             | < 1 m           |
| isolation window | [-100, +400] µs | [-200, +600] µs |

- **muon veto:**  $\Delta t_{last-\mu} > 1 \text{ ms}$
- OV veto: no OV hit coincident with prompt
- $^{9}$ Li veto: likelihood method trained with  $^{12}$ B $^{9}$ Li rejection > 50% with dead time < 0.5%
- "FV" veto: point-like characterisation of energy deposit (reject stopping muons)
- IV veto: reject fast-neutrons and accidentals
- light noise: improved criteria on charge isotropy and simultaneity of PMT signals

### opened selection cut (more signal) + new vetos (less background)



# **DC-III** neutrino backgrounds





Cosmogenetic background  $\beta$ -n emitter (mainly <sup>9</sup>Li)  $\blacksquare 0.97 \stackrel{+0.41}{-0.16}$  /day DC-II: 1.25  $\pm$  0.54 /day





Correlated background fast neutrons, stopping- $\mu$   $\bullet$  0.60  $\pm$  0.05 /day DC-II: 0.67  $\pm$  0.20 /day





### Accidental background natural radioactivity ■ 0.070 ± 0.005 /day DC-II: 0.261 ± 0.002 /day

### less background + more precise measurement of rate and shape

# **DC-III** neutrino candidates



### New Gd data set

- data from April 2011 to January 2013
- live time: 467.9 days (previously: 227.9 days)
  - $\rightarrow$  including 7.5 days of two reactors OFF data
- 17'358 neutrinos candidates (previously: 8'249 candidates)

### statistics of neutrino candidates is doubled

# 2014 Rate + Shape results (Gd)



 $\sin^2(2\theta_{13}) = 0.090 \stackrel{+0.035}{_{-0.028}}$ 

previous results: 0.109  $\pm$  0.039

- excellent spectral distortion in 0.5 4 MeV (region constraining  $\theta_{13}$  fit)
- origin of E/L structure > 4 MeV under investigation integrated effect negligible on  $\theta_{13}$

# 2014 Two reactors OFF results



- only experiment with 7.5 days of data with all reactors OFF → unique opportunity to measure background
- observed events rate: 0.97  $\pm$  0.37 /day vs expected: 1.78  $^{+0.43}_{-0.19}$  /day
- good agreement in 4 8 MeV region
- small deficit of data outside → disfavor missing/unknown background

# 2014 Reactor Rate Modulation analysis



exploit the 100 % variation in reactor power unique with Double Chooz

independent measurement of  $\theta_{13}$  (slope) and background (intercept):

 $\sin^2(2\theta_{13}) = 0.090 \stackrel{+0.034}{_{-0.035}}$  background rate = 1.55  $\stackrel{+0.18}{_{-0.16}}$  /day

- consistent with rate+shape fit and OFF-OFF data
- most precise "rate-only" measurement

# More 2014 results ...

- Precision Muon Reconstruction in Double Chooz Nucl. Inst. Meth. A 764 (2014) 330 arXiv:1405.6227
- Improved measurements of the neutrino mixing angle  $\theta_{13}$  ... JHEP 10 (2014) 086 <u>arXiv:1406.7763</u>
- Ortho-positronium observation in the Double Chooz Experiment JHEP 10 (2014) 032 arXiv:1407.6913 → Timothée's talk this afternoon
- finalising an improved n-H analysis using DC-III data set

# STATUS OF THE NEAR DETECTOR FIRST COMMISSIONING DATA

# **Near Laboratory**



- larger laboratory divided into 3 clean rooms to parrallelise integration tasks for  $\approx 1$  year construction
- larger pit to afford a 1 m thickness water shielding around the detector
- digging of tunnel + underground laboratory started in 2011
- Iaboratory fully delivered on May 2013  $\rightarrow$  beginning of the detector integration

# Near detector integration (1/3)



Inner-Veto vessel  $\rightarrow$  Inner-Veto PMTs  $\rightarrow$  Inner-Detector vessel

# Near detector integration (2/3)



Inner-Detector PMTs  $\rightarrow$  acrylics vessels  $\rightarrow$  chimney connections

# Near detector integration (3/3)



detector closed  $\rightarrow$  filling  $\rightarrow$  top shielding  $\rightarrow$  DAQ/electronics

# Near detector commissioning status



- detector is alive (ON) and stable for few weeks now
- start training shifters handling 2 detectors with new GUIs
- working on data reduction scheme by DAQ: replace PMTs waveforms by reduced data (PMT charge, tstart, ...) for muon events tagged by trigger (> 200 Hz)
- preparation of an automated data reconstruction at CC/IN2P3

# Observation of first "near" neutrinos



first neutrinos candidates were seen!

basic selection based on DC-III cut: muon veto,  $\Delta t$  prompt-delay, isolation window

# Observation of first "near" neutrinos



first neutrinos candidates were seen!

basic selection based on DC-III cut: muon veto,  $\Delta t$  prompt-delay, isolation window

clear and clean IBD signal (no calibration + no advanced reconstruction!)

# Future prospect with near+far detector



- remarkable improvement with the new Gd analysis
- first data near the detector will improve sharply the precision (projection based on DC-III background model → improvement expected and in preparation)
- expect to challenge a final sensitivity of  $\approx 0.01$  on sin<sup>2</sup>(2 $\theta_{13}$ )

# Talk summary

### 2014 results with far detector only:

- more statistics, better selection and background rejection
- $-\sin^2 2\theta_{13} = 0.090 + 0.035_{-0.028}$  fully consistent with previous publications
- new improved H analysis to follow

#### near detector status:

- detector is completed, filled and alive
- excellent performance at early commissioning stage

#### coming phase with 2 detectors:

- quick cancellation of systematics of flux and detection efficiency
- target a final precision of  $\approx 10$  % on sin<sup>2</sup>(2 $\theta_{13}$ )
- investigate further the E/L structure above 4 MeV
- more physics: reactor anomaly, sterile neutrino, reactor monitor, ...

### DOUBLE CHOOZ HAS TWO DETECTORS NOW STAY TUNE FOR UPCOMING 2015 RESULTS!

# BACKUP

# E/L structure investigation: robustness of rate+shape fit



- test rate+shape fit with an additional/hypothetical background: n-C-capture-like peak (≈ 5 MeV) with several normalisations and shapes
- largest deviation observed: 0.3  $\sigma$  on sin<sup>2</sup>(2 $\theta_{13}$ ), 0.1  $\sigma$  on <sup>9</sup>Li rate, < 0.1  $\sigma$  on others

 $\rightarrow$  negligible impact on  $\theta_{13}$ 

# E/L structure investigation: possible culprits



- detection systematics: no impact on shape
- **energy reconstruction:** C-n peak in GC with  $\Delta$ (data,MC) < 0.5 %  $\rightarrow$  disfavored
- **background:** constrained  $\rightarrow$  possible but not only the sole cause
- reactor flux: possible



- 2 reactors ON data 1 reactor ON data = pure 1-ON data (background free) → deviation consistent with observation on rate+shape fit result
- investigation of the region 4 6 MeV (excess of neutrino candidates): → rate is correlated with flux of reactor neutrinos (empirical data-driven observation)

# E/L structure vs previous DC results



- same pattern observed in DC-II results with different selection (Gd, H) and detector volume (H)
- better resolved with DC-III (more statistics, better energy scale and less background)

# E/L structure vs other experiments



same pattern is confirmed by other reactor experiments

# E/L distortion @Neutrino 2014

