### Oscillation Research with Cosmics in the Abyss



# Status report on the feasibility of measuring the neutrino mass hierarchy with an underwater Cherenkov detector



Antoine Kouchner University Paris 7 Diderot- AstroParticle and Cosmology



**GDR Neutrino** 

Marseilles 26/11/2014

### Forewords

KM3NeT is a distributed research infrastructure with <u>2 main physics topics</u>: Low-Energy studies of atmospheric neutrinos – High-Energy search for cosmic neutrinos

KM3NeT-HQ The KM3NeT Research Infrastructure 3 Installation Sites in the Mediterranean KM3Ne<sup>1</sup> KM3NeT-Data Centre KM3NeT-FR Low-Energy (ORCA) KM3NeT-Gr KM3NeT-It **High-Energy** km3net.org

Many unofficial preliminary material shown today

### Outline







The Low-Energy Physics Case

#### The High-Energy Physics Case

Today's context & KM3NeT sensitivity Common Detector technology

> Phenomenological reminder Oscillations and matter effects Electron vs Muon channels

#### **ORCA (and comparison to PINGU)**

Proposed detector

Detector performances

Sensitivity study

Planning

### **Event topologies**



Track-like contains both a cascade and one track



No track is identified



# The IceCube HE cosmic signal

5



# A phased implementation

### PHASE 1:

Shore and deep-sea infrastructure at KM3NeT-Fr & KM3NeT-It 31 lines deployed by end 2016 (**3-4 x ANTARES sensitivity**) *Proof of feasibility of network of distributed neutrino telescopes* 



2016 PHASE 1.5: 230 lines (2 building blocks) Investigation of IceCube signal

> + 50-60 M€ Letter of Intent In prep

2020 PHASE 2: 6 building blocks *Neutrino astronomy* 





S.R. Kelner, *et al* Vela X<sup>§</sup>





VOarc

### Towards an all-flavour astronomy



2° median angular resolution with ANTARES (10 times better than IceCube) → Actively being worked out for next year physics studies updates

### Detector technology



### The Multi-PMT Digital Optical Module

![](_page_8_Picture_1.jpeg)

### ----- 17 inch -

- Digital photon counting
- Directional information
- Wide angle of view
- Single pressure transition
- Cost reduction wrt ANTARES

![](_page_8_Picture_8.jpeg)

![](_page_8_Picture_9.jpeg)

# 1<sup>st</sup> prototype @ ANTARES

![](_page_9_Picture_1.jpeg)

April 2013: First DOM installed on ANTARES instrumented line

Validates photon counting and directionality performances

![](_page_9_Figure_4.jpeg)

![](_page_9_Figure_5.jpeg)

# String deployment

![](_page_10_Picture_1.jpeg)

- Fast mounting of optical modules
- Rapid deployment
- Autonomous unfurling
- Recovery of launcher vehicle

### Multiple deployments with a single cruise

![](_page_10_Picture_7.jpeg)

![](_page_10_Picture_8.jpeg)

### KM3NeT mini-line @ Capo Passero

![](_page_11_Picture_1.jpeg)

Integration Nikhef & CPPM

> Deployment KM3NeT-It May 2014

![](_page_11_Picture_4.jpeg)

![](_page_11_Figure_5.jpeg)

![](_page_11_Figure_6.jpeg)

![](_page_11_Figure_7.jpeg)

### Outline

#### The High-Energy Physics Case

Today's context & KM3NeT sensitivity Common Detector technology

#### Introduction

Quick phenomenological reminder

#### **ORCA (and comparison to PINGU)**

Detector technology

Detector performances

Sensitivity study

Planning

#### Underground atmospheric detectors

Water/Ice Cherenkov

Magnetized Trackers

![](_page_12_Picture_13.jpeg)

![](_page_12_Figure_14.jpeg)

![](_page_12_Picture_15.jpeg)

![](_page_12_Picture_16.jpeg)

The Low-Energy Physics Case

### **Oscillations of Massive Neutrinos**

![](_page_13_Figure_1.jpeg)

### Current Status of unknowns

![](_page_14_Figure_1.jpeg)

# Why knowing the mass hierarchy?

![](_page_15_Figure_1.jpeg)

### MH with LBL experiments

• « Standard approach » :probe  $v_{\mu} \leftrightarrow v_{e}$  governed by  $\Delta m^{2}_{31}$ 

 $P_{3\nu}(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}\theta_{23} P_{2\nu} = \sin^{2}\theta_{23} \sin^{2}2\theta_{13}^{\rm m} \sin^{2}\left(\frac{\Delta_{m_{31}}^{\rm m}L}{4E_{\nu}}\right)$ 

[Neglecting solar (> a few GeV and >1000's km) and CP violation effects]

- Insensitive to the sign of  $\Delta m_{13}^2$  at leading order.
- Matter effects (MSW) come to the rescue

![](_page_16_Figure_6.jpeg)

Through matter, neutrinos interact acquiring an effective mass (forward scattering) Only electron neutrinos interact through CC with electrons

 $\rightarrow$  Additional potential A in the Hamiltonian

 $A\equiv\pm\sqrt{2}G_FN_e~$  (–)+ for (anti-)neutrinos

→ Modify the oscillation probability

Earth density variations (e.g. mantle-core) also affect the oscillations (parametric resonance)

### (Constant Density) Matter Effects

#### Requirements:

- $\Delta_{13} \sim A$  matter potential must be significant but not overwhelming
- L large enough matter effects are absent near the origin
- Distinction between neutrinos and anti-neutrinos

→ different flux and cross-sections!

# Phenomenological Summary

![](_page_18_Figure_1.jpeg)

Inverted Hierachy

- Normal Hierachy

In each case, CP-phase is varied in steps of 30 degrees

 Hierarchy differences disappear at around 15 GeV

![](_page_18_Figure_7.jpeg)

### Fluxes and cross sections

![](_page_19_Figure_1.jpeg)

•

### Oscillograms & sensitivity for NT

![](_page_20_Figure_1.jpeg)

### With exceedingly large PINGU effective volume

21

$$\rho V_{\text{eff}}(E_{\nu}) = 14.6 \times [\log(E_{\nu}/\text{GeV})]^{1.8} \text{ Mt}$$

$$S^{tot} = \sqrt{\sum_{ij} S_{ij}^2} = \sqrt{\sum_{ij} \frac{(N_{ij}^{IH} - N_{ij}^{NH})^2}{\sigma_{ij}^2}}$$

 $\sigma_{ij}^2 = N_{ij}^{NH} + (fN_{ij}^{NH})^2$ 

Uncorrelated systematics

Perfect resolutions $\sigma E=4 \text{ GeV}, \sigma \theta= 22.5^{\circ}$ S=45.5\sigma (f=0%)S=7.2\sigma (f=0%)S=28.9\sigma (f=5%)S=4.5\sigma (f=5%)S=18.8\sigma (f=10%)S=3.0\sigma (f=10%)

# The ORCA feasibility study

- Launched in September 2012 (Coord. A. Kouchner)
- KM3NeT technology
- Regularly presented at GDR Neutrino since then
- First focus on neutrino muon channel
- Independent study
  - hard to reconcile with PINGU first studies
  - Consistent with other estimates

![](_page_21_Figure_8.jpeg)

![](_page_21_Figure_9.jpeg)

PINGU collaboration, arXiv:1306.5846

# Muon versus Electron channels

Both muon- and electron-channels contribute to net hierarchy asymmetry electron channel more robust against detector resolution effects:

![](_page_22_Figure_2.jpeg)

### Additional ORCA physics topics

- Indirect Search for Dark Matter
- Sensitivity to CP phase (Threshold <1GeV, MH known)</li>

Razzaque & Smirnov, arXiv:1406.1407

• Earth tomography and composition

Gonzales-Garcia et al., Phys.Rev.Lett.100:061802,2008, Agarwalla et al., arXiv:1212.2238v1

• Test NSI and other exotic physics

Ohlsson et al, Phys. Rev. D 88 (2013) 013001
 Gonzales-Garcia et al., Phys.Rev. D71 (2005) 093010

Supernovae monitoring (takes advantage on new DOM features)

Low Energy Neutrino Astrophysics
 Gamma-ray bursts, Colliding Wind Binaries
 J. Becker Tjus, arXiv:1405.0471 ...

### Outline

![](_page_24_Picture_1.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_24_Figure_3.jpeg)

The Low-Energy Physics Case

#### The High-Energy Physics Case

Today's context & KM3NeT sensitivity Common Detector technology

> Phenomenological reminder Oscillations and matter effects Electron vs Muon channels

#### **ORCA (and comparison to PINGU)**

Proposed detector

Detector performances

Sensitivity study

Planning

### Proposed Low Energy Extensions

![](_page_25_Figure_1.jpeg)

\*First performances evaluated with a 50 string detector

Optimised layouts still under study

60 OMs/string

### Preliminary performances ( $v_{\mu}$ )

KM3NeT Collaboration

27

![](_page_26_Figure_1.jpeg)

### Improvements in energy reconstruction

### Work in progress

#### Old:

Energy reconstructed from reconstructed track length

#### New:

Energy reconstructed using a function dependent on reconstructed track length and #hits

![](_page_27_Figure_6.jpeg)

# Shower reconstruction ( $v_e$ )

1. Vertex fit:

Work in progress

- maximum likelihood method based on time residuals
- two fits: first robust prefit then more precise fit
- 2. Energy + direction fit:
  - PDF for number of expected photons depending on: E<sub>v</sub>, Bjorken y, emission angle, OM orientation, distance(OM,vertex)

![](_page_28_Figure_7.jpeg)

 maximum likelihood method based probability that hits have been created by certain shower hypothesis (E<sub>v</sub>, Bjorken y, direction)

![](_page_28_Figure_9.jpeg)

### Shower reconstruction ( $v_e$ )

![](_page_29_Figure_1.jpeg)

### Shower reconstruction $(v_e)$

![](_page_30_Figure_1.jpeg)

### Towards a statistical separation of v & $\overline{\mathbf{v}}$

### Work in progress

Shower reconstruction applied to electron v has some sensitivity to Bjorken y

Should be studied on muon channel Possible improvement in PID (flavour)

![](_page_31_Figure_4.jpeg)

![](_page_31_Figure_5.jpeg)

"With the inelasticity, the total significance of establishing mass hierarchy may increase by (20 · 50)%, thus effectively increasing the volume of the detector by factor 1.5 · 2"

Ribordy & Smirnov PRD, 87. 113007 (muon channel only)

### Flavour (mis)-identification

![](_page_32_Figure_1.jpeg)

0.55

0.65

0.7

0.75

0.8

0.85

0.95 Purity

hit distance to vertex...

![](_page_33_Picture_0.jpeg)

 $\hat{\theta}^{H}$ 

# Sensitivity studies

![](_page_33_Picture_2.jpeg)

To optimally distinguish between IH and NH: likelihood ratio test with nuisance parameters  $\rightarrow$  deal with degeneracies by fitting!

$$\Delta \log(L^{\max}) = \sum_{\text{bins}} \log P(\text{data}|\hat{\theta}^{\text{NH}}, \text{NH}) - \log P(\text{data}|\hat{\theta}^{\text{IH}}, \text{IH})$$

maximum-likelihood estimates for the ∆m<sup>2</sup>'s and angles using
 both data and constraints from global fit.
 nb: constraints are different for H=IH and H=NH

1) fit mixing parameters assuming NH 2) fit mixing parameters assuming IH 3) compute  $\Delta \log L = \log(L(NH)/L(IH))$ 

 $\theta_{23}$  ,  $\Delta m^2~$  and  $~\delta_{CP}$  can be fitted from data.

|                                                          | with proposed detector (S.75Mton) |        |        |        |
|----------------------------------------------------------|-----------------------------------|--------|--------|--------|
| Error on                                                 | current                           | 1.5 yr | 2.5 yr | ≺ 5 yr |
| θ <sub>23</sub> [deg]                                    | 1.6*                              | 0.6    | 0.4    | 0.3    |
| $\Delta m^2_{tarma}$ [10 <sup>-5</sup> eV <sup>2</sup> ] | 8*                                | 7.2    | 5.8    | 4.3    |

### The proper way to do ?

### Fisher Information Matrix (FIM)

- Used in PINGU analysis
- Use 'fiducial' values (fixed true values)
- Evaluate bin-by-bin first-order derivatives of expected number of events
  - $\Rightarrow$  probe small region around fiducial values
- Covariance matrix from derivatives
- Yields individual and combined uncertainties

![](_page_33_Picture_17.jpeg)

Runs much faster  $\rightarrow$  easier for sys. studies

![](_page_34_Picture_0.jpeg)

KM3NeT Collaboration

![](_page_34_Picture_1.jpeg)

![](_page_34_Figure_2.jpeg)

Quite similar results Both collaboration currently investigating details

![](_page_34_Picture_4.jpeg)

# **Current ORCA Sensitivity**

### Pros & expected improvements

- Full correlations of osc. parameters
  *<sup>cr</sup>* uncertainties will reduce in future
- Most influential parameters fitted
- Improvement in the muon channel for energy
- Add reconstructed inelasticity (y)
- Try statistical separation of neutrinos (shower-like) from anti-neutrinos (track-like)
- Geometry optimisation

#### Cons & expected degradations

The sensitivity study does not yet account for:

- The overall flux normalization

   *The bins without physical affects*
- Neutral Currents and tau neutrinos
- Atmospheric muon background
- Other systematics
  - Flux polarity uncertainties
  - Flux flavour uncertainties
  - Cross sections
  - Energy scale
  - Exposure
  - Acceptance

Work in progress

### Layout optimisation (ex. Shower)

![](_page_36_Figure_1.jpeg)

### Other sensitivity studies

No fit

Extrapolated from 50 string detector

- Includes same reconstruction resolutions
- Same particle ID mis-identification
- Tracks includes muon and tau neutrinos (17%)
- Cascades includes NC, electron and tau neutrinos (83%)

![](_page_37_Figure_7.jpeg)

- Change hierarchy by  $\Delta m^2_{\ 13} \to \ -\Delta m^2_{\ 13} + \Delta m^2_{\ 12}$  , with  $\Delta m^2_{\ 12} = 7.6 E\text{-}5 \ eV^2$
- Best fit osc. parameters from Fogli et al. (thus theta\_23 ~ 38 deg)

• δ<sub>cp</sub>=0

![](_page_37_Figure_11.jpeg)

### Atmospheric muon rejection

Cut on the reconstructed pseudo-vertex and quality parameters of reconstruction

![](_page_38_Figure_2.jpeg)

<u>Boosted Decision Tree</u> reconstruction quality, vertex distance to center

Instrumental veto is not mandatory (though not impossible)

1% contamination achievable without strong signal loss

Room for improvement

### Studies of systematics

![](_page_39_Figure_1.jpeg)

![](_page_40_Picture_0.jpeg)

# Project timelines

![](_page_40_Picture_2.jpeg)

41

"Detector construction can be completed five years after funding starts, or as early as 2020."

"The PINGU share of the facility cost is roughly \$55M (US cost, including contingency) plus \$25M (foreign contribution) for a total of 80M\$."

#### P5 report:

"[...]cannot go forward as major projects at this time, due to concept maturity and/or program cost considerations. However, further development of PINGU is recommended [...]" "...we encourage continued work to understand systematics. PINGU could play a very important role as part of a larger upgrade of lceCube, or as a separate upgrade, but more work is required." ORCA is part of the KM3NeT program

Phase 1 (funded) : deploy a 6-7 string array In the ORCA configuration to demonstrate detection method in the GeV range.

Phase 1.5 (+31 M€) : deploy 1 building block 115 strings in French KM3NeT site. Completion in 2019

![](_page_40_Figure_10.jpeg)

ORCA can be first !

### MEUST infrastructure

Submarine infrastructure of 2<sup>nd</sup> generation (wrt ANTARES) shared between the European neutrino (KM3NeT/ORCA) and Sea Science (EMSO) communities.

![](_page_41_Figure_2.jpeg)

![](_page_41_Picture_3.jpeg)

MEDITERRANEAN EUROCENTRE FOR UNDERWATER SCIENCES AND TECHNOLOGIES

# MEUST infrastructure

- Modular ring of up to 6 nodes with double connection to shore
- Up to 120  $\nu$  DUs + Sea Science instruments
- Electrical power in HV AC (as ANTARES) and data optical transfer with dense multiplexing (DWDM KM3NeT)

Possibility to redirect the ANTARES cable to MEUST as Main Cable 2.

![](_page_42_Figure_5.jpeg)

CNRS-FEDER contract of 7 M€ (2011-15) for engineering of main components : 1 Main Cable, 1 node, 1 v DU and SS devices

<u>New</u>: 6 more v DUs financed by KM3NeT to be deployed in the ORCA dense configuration to exercise low E v reconstruction !

### **MEUST** components

![](_page_43_Picture_1.jpeg)

![](_page_43_Picture_2.jpeg)

Main Cable stored at La Seyne/ Mer, to be deployed in December

![](_page_43_Picture_4.jpeg)

### Finance

### Existing funds (Phase 1)

| France:          | 7 M€    | (MEUST-CNRS/FEDER, 4 yrs) |
|------------------|---------|---------------------------|
| Italy:           | 16 M€   | (PON-ERDF, 3 yrs)         |
| The Netherlands: | 8 M€    | (FOM)                     |
| Germany:         | 0.15 M€ | (Univ. Erlangen)          |

? M€ (ERDF)

| Requested fu | Inds (ORCA, high energy)                  |
|--------------|-------------------------------------------|
| France:      | 12.4 M€ (NUMerEnv-CNRS/CPER/FEDER, 5 yrs) |
|              | 2.5 M€ (ERC-advanced grant: Coyle)        |
|              | 1 M€ (ANR: Kouchner, Dornic)              |
|              |                                           |
| Italy:       | 10 M€ (INFN, 5 yrs)                       |

The Netherlands: 5+5 M€ (FOM, 5 yrs)

Greece, Germany, Spain, Romania, Poland, UK, ...- under discussion

### Summary

- Atmospheric Neutrinos have still a major role to play for precision measurements and determination of unknown parameters such as the mass hierarchy.
- Low energy (GeV) extensions of Neutrino Telescopes faster and cheaper than other alternatives...
- ...but challenging. So far no showstopper identified. ORCA will proceed with a demonstrator array.
- ORCA broadens the scientific scope of KM3NeT. Full support of the collaboration. Lol soon next year.
  - Positive signals for funding requests

We need the support of the French Neutrino community!

![](_page_45_Figure_7.jpeg)

KM3NeT/ORCA is a great opportunity for France (among IN2P3 priorities ):

- Host a detector
- Provide a first measurement clearly identified as a need by the scientific community