Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar

Michele Frigerio Laboratoire Charles Coulomb, CNRS & UM2, Montpellier

MF & Carlos E.Yaguna, arXiv:1409.0659 [hep-ph]

GDR neutrino - 26/27 November 2014 - CPPM Marseille

Outline

- Sterile neutrinos for everything ?
- Multi-keV sterile neutrinos as dark matter: how to generate the correct abundance ?
- Multi-TeV or multi-GeV sterile neutrinos: can a sizable lepton (and baryon) asymmetry arise ?
- A charged scalar δ⁺ may ease these tasks: motivations, implications, signatures

Sterile neutrinos: motivations

- Theory: gauged B-L, left-right symmetry, SO(10) unification, ... in general the symmetry breaking scale V should be high but the sterile mass scale $M_N = y_N V$ may be naturally suppressed
- Phenomenology:
 - non-zero V masses, seesaw is operative for $M_N \gtrsim 10 \text{ eV}$! (here I will neglect oscillation anomalies, that require $M_N \sim eV$) talk by Carlo Giunti
 - baryogenesis via leptogenesis from N-decays $(T \sim M_N)$ or from N-oscillations $(T \gg M_N)$ Eukugita-Yanagida, 86Akhmedov-Rubakov-Smirnov, 98
 - for M_N = multi-keV, N is stable enough and cold enough to be an automatic dark matter candidate

Dodelson-Widrow, 93

 pragmatical motivation: precision SM measurements allow only for gauge singlets below 100 GeV, with small Yukawa couplings

v Minimal Standard Model

- By definition, SM + three sterile neutrinos below the EW scale: one multi-keV N₁ for DM, two multi-GeV N_{2,3} for leptogenesis
- Main implications:

Asaka-Blanchet-Shaposhnikov, 05 Asaka-Shaposhnikov, 05

- Lightest neutrino mass $m_V^{\text{lightest}} \lesssim 10^{-6} \text{ eV}$
- DM production from v_{α} N₁ oscillations needs to be resonantly enhanced by a large primordial lepton asymmetry Laine-Shaposhnikov, 08
- Leptogenesis from V_α N_{2,3} oscillations can be successful for a specific flavour structure of (y_ν)_{α2,3} and M₂-M₃ ≤ 10⁻⁵ M₂ Canetti-Shaposhnikov, 10

Shuve-Yavin, 14

- Detailed analyses of this model led to important progress on the theoretical and phenomenological side
- However, minimality is scarcely motivated and, once it is relaxed, several strict predictions drop

N_I dark matter from oscillations

adapted from Canetti-Drewes-Frossard-Shaposhnikov, 12

v Minimal Standard Model

- By definition, SM + three sterile neutrinos below the EW scale: one multi-keV N₁ for DM, two multi-GeV N_{2,3} for leptogenesis
- Main implications:

Asaka-Blanchet-Shaposhnikov, 05 Asaka-Shaposhnikov, 05

- Lightest neutrino mass $m_V^{\text{lightest}} \lesssim 10^{-6} \text{ eV}$
- + DM production from V_{α} N₁ oscillations needs to be resonantly enhanced by a large primordial lepton asymmetry Laine-Shaposhnikov, 08
- Leptogenesis from V_α N_{2,3} oscillations can be successful for a specific flavour structure of (y_ν)_{α2,3} and M₂-M₃ ≤ 10⁻⁵ M₂ Canetti-Shaposhnikov, 10

Shuve-Yavin, 14

- Detailed analyses of this model led to important progress on the theoretical and phenomenological side
- However, minimality is scarcely motivated and, once it is relaxed, several strict predictions drop

Leptogenesis from N_{2,3} oscillations

adapted from Canetti-Drewes-Frossard-Shaposhnikov, 12

v Minimal Standard Model

- By definition, SM + three sterile neutrinos below the EW scale: one multi-keV N₁ for DM, two multi-GeV N_{2,3} for leptogenesis
- Main implications:

Asaka-Blanchet-Shaposhnikov, 05 Asaka-Shaposhnikov, 05

- Lightest neutrino mass $m_V^{\text{lightest}} \lesssim 10^{-6} \text{ eV}$
- + DM production from V_{α} N₁ oscillations needs to be resonantly enhanced by a large primordial lepton asymmetry Laine-Shaposhnikov, 08
- Leptogenesis from V_α N_{2,3} oscillations can be successful for a specific flavour structure of (y_ν)_{α2,3} and M₂-M₃ ≤ 10⁻⁵ M₂ Canetti-Shaposhnikov, 10

Shuve-Yavin, 14

- Detailed analyses of this model led to important progress on the theoretical and phenomenological side
- However, minimality is scarcely motivated and, once it is relaxed, several strict predictions drop

The role of a charged scalar

- In most, well-motivated SM extensions, sterile neutrinos come with several other fields
- A scalar δ^+ , weak singlet of charge one, is very much special for its couplings to leptons

$$\mathcal{L}_N \supset -\frac{1}{2} \overline{(N_{Ri})^c} (M_N)_{ij} N_{Rj} - \overline{l_{L\alpha}} (y_\nu)_{\alpha i} N_{Ri} \tilde{H}$$

$$\mathcal{L}_{\delta} \supset -M_{\delta}^2 \delta^+ \delta^- - \overline{l_{L\alpha}} (y_L)_{\alpha\beta} (i\sigma_2) (l_{L\beta})^c \delta^+ - \overline{(e_{R\alpha})^c} (y_R)_{\alpha i} N_{Ri} \delta^+$$

$$l_L \leftrightarrow e_R \qquad H \leftrightarrow \delta^+$$

Dark matter from δ^+ decays

Frigerio-Yaguna, 14

This is independent from active-sterile mixing angles $\theta_{\alpha I}$ (y_R versus y_V) This production mechanism dominates over oscillations for $\theta_{\alpha I} < 10^{-5}$ X-ray bounds can be evaded reducing $\theta_{\alpha I}$, even for $M_I >> 10$ keV !

Dark matter indirect detection

$$N_1 \to \nu_{\alpha} \gamma \quad \Rightarrow \quad E_{\gamma} \simeq M_1/2$$

The X-ray rate is proportional to $M_1^5 \theta_{\alpha 1}^2$ The N_1 relic density from δ^+ decays is independent from M_1 and $\theta_{\alpha 1}$

As a case study, consider the unidentified spectral line at 3.5 keV observed from some galaxy clusters and from Andromeda Bulbul et al., 14 Boyarsky-Ruchayskiy-lakubovskyi-Franse, 14

(the signal significance was questioned, and no signal was observed from other clusters/galaxies, in several recent papers)

One can fit such observation with $M_1 \approx 7$ keV and $\theta_{\alpha 1} \approx 3 \cdot 10^{-6}$ N_1 relic density from oscillations is tiny and slightly too warm (barring large primordial lepton asymmetry): δ^+ decays can cure these problems

Weaker rates are compatible with this scenario too ...

Leptogenesis close to TeV scale

For $M_{2,3} > T_{EW}$, M_{δ} lepton asymmetry can be produced in $N_{2,3}$ decays through y_R in complete analogy with decays through y_V

Frigerio-Hambye-Ma, 06

Large enough CP asymmetry:

 $\frac{\left|\operatorname{Im}\left[\sum_{\alpha} (y_R)_{\alpha 2} (y_R)_{\alpha 3}^*\right]^2\right|}{\sum_{\alpha} (y_R)_{\alpha 2} (y_R)_{\alpha 2}^*} \gtrsim 2 \cdot 10^{-6} \frac{M_3}{M_2}$

Small enough washout:

$$\sum_{\alpha} (y_R)_{\alpha 2} (y_R)_{\alpha 2}^* \lesssim 10^{-13} \frac{M_2}{1 \text{ TeV}}$$

Leptogenesis from y_R can be successful for M_2 as small as a few TeVs contrary to leptogenesis from y_V that requires $M_2 > 10^8$ GeV (barring resonances) because m_V is tiny for TeV scale wash

for TeV scale washout effects see Racker, 13

Leptogenesis from N-oscillations (y_v)

$$\overline{l_{L\alpha}}(y_{\nu})_{\alpha i}N_{Ri}\tilde{H} = y_{\nu}^{\alpha}\overline{l_{L\alpha}}N_{R\alpha}\tilde{H}$$

Akhmedov-Rubakov-Smirnov, 98 Asaka-Shaposhnikov, 05

- At T >> M_N the states N_{α} are produced coherently and oscillate among different α
- With two or more steriles, CP violation is possible: a flavour asymmetry Δ_{α} appears between N_{α} of opposite helicities
- $\Sigma_{\alpha}\Delta_{\alpha}=0$ (no lepton number violation), but a net lepton asymmetry is transferred to baryons, if only some flavour α goes in equilibrium above T_{EVV} : $y_{\nu}^{\alpha} > 10^{-7}$ for some α only
- Here M_N acts as washout, since it equilibrates the opposite helicities of N_{α} : to avoid strong washout $M_N < 100 \text{ GeV}$
- Large y_v^{α} tends to spoil coherence, as active-sterile transitions become faster than the oscillation time: $y_v^{\alpha} < 10^{-5}$
- $N_{2,3}$ should decay through y_v before BBN: this implies $M_N > 0.1$ GeV

Leptogenesis from N_{2,3} oscillations

adapted from Canetti-Drewes-Frossard-Shaposhnikov, 12

Leptogenesis from N-oscillations (y_R)

$$\overline{(e_{R\alpha})^c}(y_R)_{\alpha i}N_{Ri}\delta^+ = y_R^{\alpha}\overline{(e_{R\alpha})^c}N_{R\alpha}\delta^+$$

Frigerio-Yaguna, 14

- The very same mechanism is operative producing N_{α} from $e_{R\alpha}$ instead of $I_{L\alpha}$, through the coupling y_R instead of y_{ν}
- Charged lepton Yukawas equilibrate $e_{R\alpha}$ and $I_{L\alpha}$ // one needs M_{δ} (instead of M_H) smaller than T_{oscill} // y_R provides extra CP violation
- With y_{v} only one needs $M_2-M_3 \leq 10^{-5} M_2$ (large oscillation time enhances Δ_{α}): tuning can be relaxed when y_{R} is added (as indicated by related numerical studies) Drewes-Garbrecht, 12 Shuve-Yavin, 14
- y_R is not constrained by the seesaw relation, nor by $N_{2,3}$ decays via active-sterile mixing: larger window open in the y_R - M_N plane

$N_{2,3}$ and δ^+ detection

- N_{2,3} are feebly coupled to the SM, still activesterile mixing could be observable in various neutrino experiments: looking forward to SHiP
- Charged scalars could be produced at LHC through q qbar $\rightarrow \gamma/Z \rightarrow \delta^+\delta^-$ followed by $\delta^+ \rightarrow e_{\alpha}^+ + \gamma$
- The best way to constrain M_{δ} is to use the SUSY search of right-handed sleptons (same gauge charges as δ^+) directly pair-produced and decaying into lepton + light neutralino: $M_{\delta} > 240$ GeV at 95% C.L.

talk by Nicola Serra

1403.5294

Flavour structure of the model

Recap or required masses and couplings (order of magnitude) (they may be interpreted in terms of a flavour symmetry, broken by a small parameter $\varepsilon = \langle \Phi \rangle / \Lambda \sim 0.1$)

 $M_N = diag(10 \text{ keV}, 10 \text{ GeV}, 10 \text{ GeV}) = diag(\epsilon^{16}, \epsilon^{10}, \epsilon^{10}) 10^{11} \text{ GeV}$

This fits (i) neutrino mass (ii) dark matter relic density (iii) baryon asymmetry from $N_{2,3}$ oscillations A well-defined hierarchy of masses and couplings is required (specific flavour structure), but no fine-tuning is needed

Conclusions

- Sterile neutrinos N may play a role in the generation of the baryon asymmetry and of the dark matter relic density, in various ranges of masses and couplings
- Freeze-in is generic: light, feebly coupled states can be populated by heavy particle decays/annihilations; a charged scalar δ^+ does the job to produce N dark matter
- Leptogenesis knows many ways: N out-of-equilibrium decays or N flavour oscillations, in connection with m_{ν} (coupling $N_L l_L H$) or not (coupling $N_R e_R \delta^+$)
- These mechanisms involve states at accessible energies, TeV or even much below, with the opportunity for a number of direct tests