

(Direct) Searches for sterile neutrinos below the electroweak scale

Nico Serra – Universität Zürich

GdR Neutrino CPPM – Marseille 26th–27th November 2014

Sterile Neutrinos

Fermions get mass via the Yukawa couplings

$$-\mathcal{L}_{\text{Yukawa}} = Y_{ij}^d \overline{Q_{Li}} \phi D_{Rj} + Y_{ij}^u \overline{Q_{Li}} \tilde{\phi} U_{Rj} + Y_{ij}^\ell \overline{L_{Li}} \phi E_{Rj} + \text{h.c.}$$

If we want the same coupling for neutrinos, we need right-handed (sterile) neutrinos... the most generic lagrangian is

Seesaw

$$-\mathcal{L}_{M_{\nu}} = M_{Dij}\overline{\nu_{Li}}N_j + \frac{1}{2}M_{Nij}\overline{N_i^c}N_j + h.c.$$

$$\mathcal{V} = (\nu_{Li}, N_j)$$

$$-\mathcal{L}_{M_{\mathcal{V}}} = \frac{1}{2}\overline{\mathcal{V}}M_{\mathcal{V}}\mathcal{V} + h.c.$$

$$M_{\nu} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_N \end{pmatrix}$$

Eigenvalues

$$\lambda_{\pm} = \frac{M_N \pm \sqrt{M_N^2 + 4M_D^2}}{2}$$

Assuming
$$M_N \gg M_D$$

Sterile Neutrinos Masses

Seesaw formula $m_D \sim Y_{I\alpha} < \phi > \text{and } m_\nu = \frac{m_D^2}{M}$

- Assuming $m_{\nu} = 0.1 \text{eV}$
- if $Y \sim 1$ implies $M \sim 10^{14} {\rm GeV}$
- if $M_N \sim 1 \text{GeV}$ implies $Y_\nu \sim 10^{-7}$

remember $Y_{top} \sim 1$. and $Y_e \sim 10^{-6}$

- From the seesaw point of view the mass of sterile neutrinos can be basically anything
- If we want to explain the smallness of neutrino masses (in a natural way) the mass of sterile neutrinos should be at least at the GeV scale

Sterile neutrino in cosmology

- There is in principle no constraint on the number of sterile neutrinos
- We need at least two sterile neutrinos to justify two mass differences, solar and atmospheric
- Role of sterile neutrinos in cosmology (talk by M. Frigerio):
 - A light sterile neutrino with mass around the KeV can be candidate for warm Dark Matter
 - Two or more sterile neutrinos can be responsible for BAU via leptogenesis

The nuMSM

T.Asaka, M.Shaposhnikov PL B620 (2005) 17 M.Shaposhnikov Nucl. Phys. B763 (2007) 49

- The lightest sterile neutrino in the KeV region, has a lifetime longer than the age of the Universe and is warm Dark Matter
- Only the two heavier contribute to the seesaw and also generate BAU
- Shaposhnikov proposed that with no mass scale associated to the Planck scale and other problems solved at low energy you do not need other NP (debated in the theory community)

• Seesaw: The bottom region derive on the finite mass of active neutrino, not all sterile neutrinos can be below this line

 BBN: Constraint derived asking that the sterile neutrinos decay before the Big Bang Nucleosynthesis

- BAU: If the coupling with neutrinos is too strong they would be in thermal equilibrium and the BAU would be washed out
- If you have three sterile neutrino participating to the seesaw than the BAU constraint are around $U^2 < 10^{-3}$ (Canetti et al. arxiv:1404.7114)

• There is another region that opens up at high energies (above EW scale) which is not part of this talk

Production and decays

- The production of sterile neutrinos happens via mixing of sterile neutrinos with active neutrinos, i.e. it is suppressed by a factor U²
- If the mass is small enough they can be produced in semileptonic meson decays (pions, kaons, D-mesons, B-mesons)
- The decay of sterile neutrinos also happens via mixing with active neutrinos, decay channels $N \to h\ell, N \to \ell\ell^{(\prime)}\nu, N \to h^0\nu$

Production and decays

- For high masses of sterile neutrinos they can be produced by decays of Z and W involving neutrinos with one neutrino mixing with the sterile neutrino
- At high masses of N (>> Lambda_{QCD}) the two quarks do not hadronize together and you have the channels $N \to \text{jet jet } \ell, N \to \ell \ell^{(\prime)} \nu, N \to \text{jet jet } \nu$

Lifetime

- Lifetime very different for different values of U^2 and ${\cal M}$
- Different backgrounds in the different regions of the U^2, M plane
- Likely very different analyses for long and short lifetimes and for low and high masses

The decay width goes has a strong dependence on the mass $\Gamma_N = \frac{G_F^2 M_N^5 U^2}{192\pi^3} \times \mathcal{N}$ where \mathcal{N} is the number of decay channels

PS191 (Phys. Lett. B 166 (1986) 479; Phys. Lett. B 203 (1988) 332):

- Fixed target experiment at PS of CERN
- p energy 19GeV, 128 m from target, ~0.9x10¹⁹ pot
- Search for sterile neutrinos coming from Kaon decays

CHARM (Phys. Lett. B 166, 473 (1986)):

- Fixed target experiment at CERN
- p at 400 GeV, detector about 500m from target, $\sim 10^{18}$ pot
- Search for HNLs coming from D-meson decays

nuTeV (Phys. Rev. Lett. 83 (1999) 4943):

- Tevatron fixed target
- p at 800GeV on target, ~1.5Km from target, ~2.5x10¹⁸ pot
- Search for HNLs in kaon and D-mesons

DELPHI (Z. Phys. C 74, 57 (1997)):

- Limit using Z⁰ decaying into two neutrinos, one of them mixing with sterile neutrinos
- Number of $Z^0 \sim 10^7$

Other searches

• Searches at B-factories and LHCb

Phys.Rev. D85 (2012) 071103

 Searches at ATLAS/CMS of displaced vertexes (two displaced vertexes) and also for masses larger than the mass of the Z

SHiP experiment

- Increase the number of pot
- Go as close as possible to the target
- Decay volume as large as possible
- As low background as possible

Eol arXiv:1310.1762 www.cern.ch/ship

- p on heavy target (W) 2x10²⁰ pot at 400GeV energy
- Slow beam extraction (1s) to minimise the background
- Heavy target to stop pion and kaons before they decay into neutrinos
- Long muon shield to range out muons

- Same optimisation also maximise the flux of tau neutrinos, since they come from D_s leptonic decays
- We also foresee a tau neutrino detector immediately before the sterile neutrino decay volume

Muon background

- Muons coming mainly from eta^(') and omega
- We are studying two solutions: passive and <u>active</u> <u>filter</u>
- Active filter with sweeping magnets preferred (under design)
- Enormous flux of about 10¹¹ muons/spill(5x10¹³ pot)

Evacuated Decay Volume

Vacuum level chosen to have the background coming from neutrino scattering in the air to a negligible level

Magnet

A dipole magnet very similar to the LHCb one but with 40% less iron and three times less power

LHCb: 4Tm and aperture ~ 16 m²

This design:

- aperture 20 m²
- Two coils Al-99.7
- peak B field ~ 0.2 T
- field integral ~ 0.5 Tm su 5 m

Tracker

Straw tubes similar to NA62 with 120 µm space resolution, 0.5% X₀/X.

Main difference to NA62: A. 5m lenght B. vacuum 10⁻² mbar C. 2kHz/straw of 1cm diam

Background

- Strangeness from neutrino interactions in the material (especially K_L)
- Kinematic difference with the signal (especially at high masses)

Background

- Pointing and invariant mass for HNLs and K_L —> pi mu nu
- Clearly less of a problem for fully reconstructed signal decays (N—>pi mu)
- Plan to equipe the last few interaction length with specific veto detectors

- Careful design of the sweeping magnets
- Kinematic rejections of K_L
- Veto with very good time resolution (at least ns)

CERN accelerator complex

SHiP Expectation for sterile neutrinos

- Expected sensitivity of the SHiP experiment in three different scenarios
- Sterile neutrinos from D and B mesons
- In all cases we expect to improve previous results by 3-4 orders of magnitudes

Other SHiP physics case

SHiP is in general sensitive to relatively light very weakly coupled long lived particles (e.g. models with Hidden sectors):

- Light scalars mixing with the Higgs
- Axion-like particles
- Dark photons

. . .

• Light Susy (light R-parity violating neutralino, light sgoldstino, hidden susy)

In addition tau neutrino detector before the decay volume, expected about 3000-4000 reconstructed tau neutrinos:

- Charm cross section production with tau neutrinos
- Discover the tau antineutrino

What about sterile neutrinos with larger masses?

Signature at colliders

The main signature are very displaced vertexes

CMS/ATLAS toy study

- Considering the full 3000 fb⁻¹
- Sterile neutrinos coming from Ws
- Assuming to go to ~0 background with flight distance cuts

One should remember that the BAU limit is less constraint by several orders of magnitudes if we consider three sterile neutrinos participating to the seesaw

Future Z factories

FCC-ee as Z factory: 10¹² Z (possibly even 10¹³ with crab-waist) $1.2 \times 10^{36} \text{ cm}^{-2} \text{s}^{-1}$ 10² FCC-ee (4 IPs) ₩⁻: 4.8 × 10³⁵ cm⁻²s⁻¹ HZ: 2.4×10^{35} cm⁻²s⁻¹ CLIC 10 tt: 7.2 × 10³⁴ cm⁻²s⁻¹ GeV: 1.8 × 10³⁴ cm⁻²s⁻¹ $1.0 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ 1 $7.5 \times 10^{33} \,\mathrm{cm}^{-2}\mathrm{s}^{-1}$ 0 1000 2000 3000 √s [GeV]

Luminosity [10³⁴ cm⁻²s⁻¹]

30 years later and with experience gained on LEP, LEP2 and the B factories we can propose a Z,W,H,t factory of many times the luminosity of LEP, ILC, CLIC

CERN is launching a 5 years international design study of Circular Colliders 100 TeV pp collider (FCC-hh) and high luminosity e+e- collider (FCC-ee)

IHEP in China is studying CEPC a 50-70 km ring with e+e- Higgs factory followed by HE pp.

FCCee sensitivity

This should be considered the maximum sensitivity managing to go to zero background in the region 100um and 5m with $10^{13} Z^0$ <u>A. Blondel, E. Graverini, N.S. and M. Shaposhnikov arxiv:1411.5230</u>

FCCee sensitivity

Assuming zero background in the region 10cm and 5m with $10^{13} \, Z^0$

- The lower line depends on the decay volume and the number of Z⁰

- The higher line depends on the minimum distance from PV and the number of Z⁰

A. Blondel, E. Graverini, N.S. and M. Shaposhnikov arxiv:1411.5230

Conclusions

- Right-handed (i.e. sterile) neutrinos are a natural way of explaining neutrinos via the seesaw mechanism
- Strong physics case for sterile neutrinos below the EW scale
- They could play a crucial role in cosmology, i.e. explaining Dark Matter and/or baryon-antibaryon asymmetry
- Direct searches have been performed for several decades, but in the next decades we will have the chance to touch the bottom of U² with a range of experiments:
 - Beam dump for D- and B-meson produce with masses below few GeV (e.g. SHiP)
 - W and Z factories for higher masses (e.g. ATLAS/CMS, IHEP and FCCee)

Backup

Magnets

Tau neutrino physics

- So far 4 ν_{τ} events observed by OPERA and 9 by DONUT
- We expect between 3000-4000 reconstructed ν_{τ} per 2×10^{20} POT
- Physics goals:
 - First observation of $\overline{\nu}_{\tau}$, which has never been observed
 - $-\tau_{\nu}$ and $\overline{\nu}_{\tau}$ cross section measurements
 - Charm physics with τ_{ν} and $\overline{\nu}_{\tau}$
 - $-\nu_e$ cross section at high energy to measure charm hadron production (possible normalization for HNLs)

Tau neutrino detector

• ν_{τ} target: Opera-like bricks, laminated lead and nuclear emulsions (for micrometric resolution)

- 750 Opera-like bricks, to be replaced 10 times
- Muon spectrometer to measure charge and momentum and give time stamp

		2014	2015	2016	2017	20	018	2019	2020	2021	2022	2023	2024	2025	2026	
Activity		Q1 Q2 Q8 Q4	0,1 0,2 0,3 0,4	Q1 Q2 Q3 Q4	0,1 0,2 0,8 0,4	c1 02	03 04	0,1 0,2 0,3 0,4	0,1 0,2 0,8 0	4 03 02 03 04	Q1 Q2 Q3 Q4	0, 0, 0, 0, 04	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	
	LHC operation															
	SPS operation															
Operation	Facility HW commissioning/dry runs on availability															
	SHIP facility commissioning with beam									1		— ,		Ļ		
	SHIP facility operation															
Detector	SHIP Technical Proposal															
	SHIP Project approval															
	Technical Design Reports and R&D															
	TDR approval															
	Detector production															
	Detector installation		↓ .													
Civil gineering	Pre-construction activities(Design, tendering, permits)															
	CE works for extraction tunnel, target complex															
	CE works for TDC2 junction cavern															
En	CE works for filter tunnel and detector hall						lî .									
Infrastructure Systems	Installation in TT20 (150m)															
	Installation for new beam line to target															
	Installation in target complex, filter tunnel															
	Installation in detector hall															
Beam Line	Design studies, specs and tender docs									1						
	Integration studies									1	l l				İ	i
	Technical Design Report															
	Manufacturing new components							-								
	Refurbishment existing components					,										
	TT20 dismantling (150m)							1	-							
	TT20 re-installation and tests															
	New beam line to target installation and tests															
	Muon filter installation															Ĺ
Target complex/Target	Target complex design studies, specs and tender docs															
	Target complex integration studies															
	Target complex services - design and manufacturing		¥													
	Target studies and prototyping															
	Target production and installation															i

Working hypotheses

- Detector located ~60m from the proton target
- Charm production cross-sections in p-W affected by large uncertainties
- Compare with DONUT to extrapolate the expected numbers
- Energy dependence of σ_{cc} and v_{τ} cross-section, acceptance: production ~ 0.36, detector acceptance ~ 0.2, energy dependence of the v_{τ} cross-section ~0.52 \rightarrow DONUT/SHIP ~ 26
- 2 x 10²⁰ pot for SHIP compared to 3.6 x 10¹⁷ DONUT → ~ 550 in favour of SHIP
- Overall rate SHIP/DONUT ~ 20
- DONUT observed 9 events with a background of $1.5 \rightarrow 7.5\pm3$ (40% error)
- 150 events expected with the same mass (260 kg)
- Measurement of v_{τ} and anti- v_{τ} cross-section, including the study of structure functions sets the scale for the mass: ~ 6 tons for ~ 3400 v_{τ} interactions
- Assume OPERA-like bricks (8.3 kg) and wall target structure: ~ 750 bricks

Sterile neutrino DM search

✓ There are also recent papers on non-detection of dark matter sterile neutrino candidates:

M.E.Anderson et. al. (1408.4115) D.Malyshev et.al. (1408.3531)

- ✓ Ongoing discussions on reliability of the signal ...
- Accuracy of the measurements limited by systematics

Possible Calorimeter

The spiral Shashlik ECAL

Uniformity few %, time resolution σ_{-1} ns and $\sigma(E)/E=6.5\%/\sqrt{E}\oplus1\%$

✓ Discovery of the 126 GeV Higgs boson → Triumph of the Standard Model The SM may work successfully up to the Planck scale !

