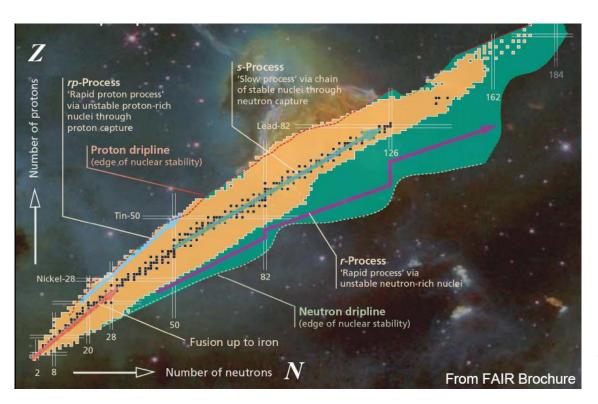


Contact: Duchêne Gilbert ou Radomira Lozeva (thèse) et/ou F. Didierjean (stage M2)


Téléphone : 03 88 10 66 12 ou 03 88 10 63 78

E-mail: gilbert.duchene@ires.in2p3.fr ou radomira.lozeva@iphc.cnrs.fr ou francois.didierjean@iphc.cnrs.fr

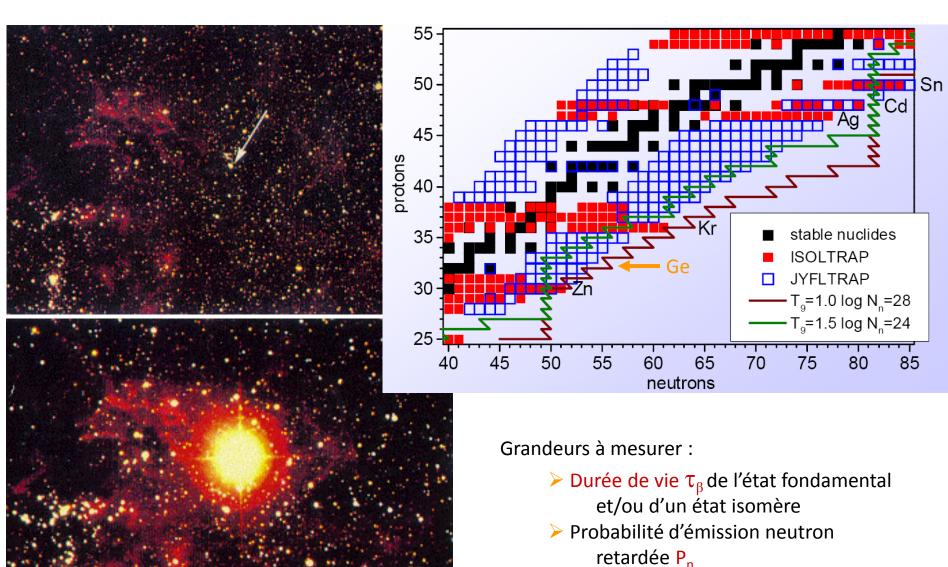
Batiment 27 (bureau 205 ou 214)

Laboratoire d'accueil : Institut Pluridisciplinaire Hubert Curien (IPHC), Departement de Recherches Subatomiques (DRS), Equipe : Couches et Aimants dans le Noyaux (CAN), Adresse : 23, rue du Loess, BP 28 – 67037 Strasbourg CEDEX 2

Physique du processus r en astrophysique

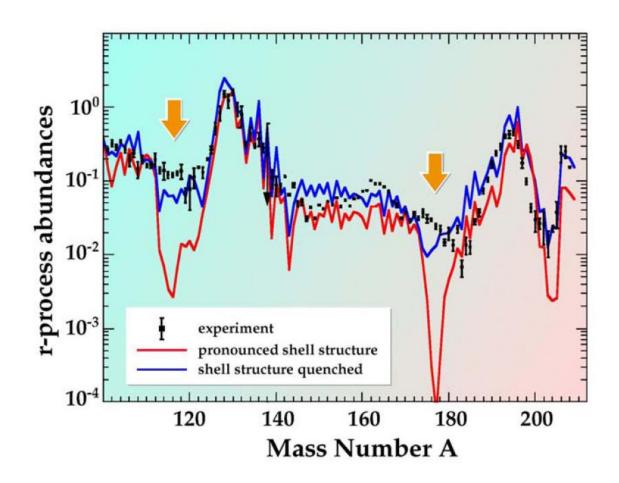
A la fin de la combustion du fuel nucléaire des étoiles massives, le coeur de ⁵⁶Fe collapse en une étoile à neutron ou un trou noir :

- flux de neutrons extrêmement élevé pendant un temps très bref
- après "freeze out" on obtient la courbe d'abondance



Production des éléments lourds par captures neutron et décroissances β successives

La moitié des éléments au-dessus du Fe sont créés par le processus r, l'autre moitié par capture lente de neutrons.


Le chemin du processus r dépend des conditions astrophysiques (température, densité,...) et de la structure nucléaire des noyaux produits (énergie de liaison des neutrons, demivie, états excités de basse énergie et états isomères, émission Pn,...)

Supernovae de type II

Supernovae explosion (Crabe)

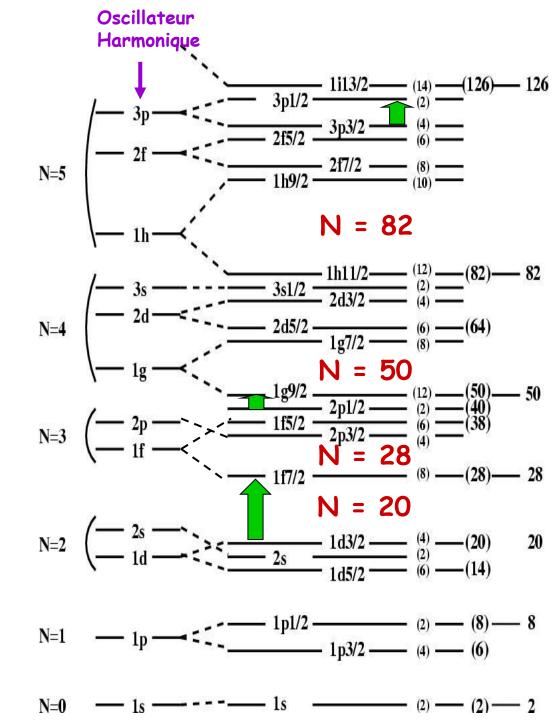
Implication en astrophysique

Explosion de supernovae :

le chemin du processus r passe le long de la fermeture des couches N=50 et N=82

Modèle en couches

Structure en couches


- Pour les protons
- ...et les neutrons

Excitation de nucléons

- D'une couche à l'autre énergie nécessaire importante
 - -> gap en énergie
- Au sein d'une même couche énergie nécessaire modérée

Autres effets

- La déformation et la collectivité du noyau…
- -> ouvre à de nombreux sujets intéressants en physique nucléaire expérimentale

Riches en neutrons au-delà de N=50 : évolution des gaps en énergie

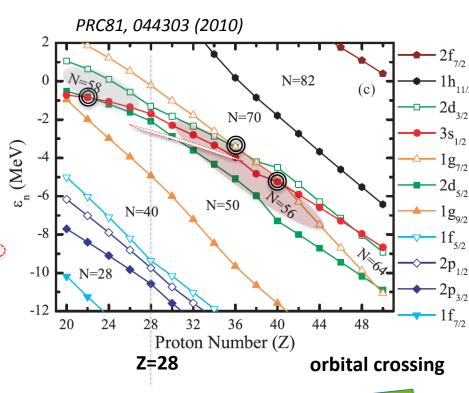
Prédiction de Winger:

- HFB + SkO_T incluant des termes tenseurs
- Affaiblissement gap N = 50 pour Z < 28 et ouverture nouveau gap N = 58</p>

vd_{5/2}-vd_{3/2} gap increases, Z<28, repulsion forming gap

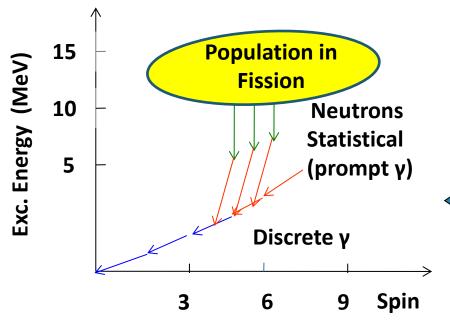
Apparition gap N=56 pour Z > 28

vd_{5/2}-vs_{1/2} gap increases, Z>28, repulsion forming gap


Qq données expérimentales contradictoires :

- **Standard (1/2* état fondamental) : ouverture plus forte pour Z plus élevé du gap N = 58

 **PRC 76, 054312 (2007)
- $^{81}_{30}$ Zn₅₁(5/2+ état fondamental): contradiction! Gap N=56 se ferme à Z = 30 ou 32? PRC 82, 064314 (2010)


D'autres études sont nécessaires...

Etats fondamentaux

Not scary !!! just looks complicated ©

Structure nucléaire des isotopes riches en neutrons

Addition de neutrons: affecte la surface

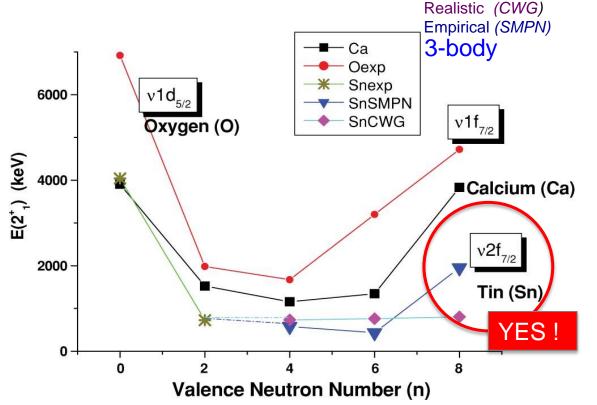
nucléaire

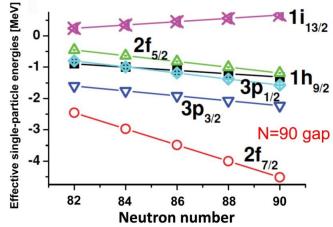
Consequence probable: affecte la force

de spin-orbite

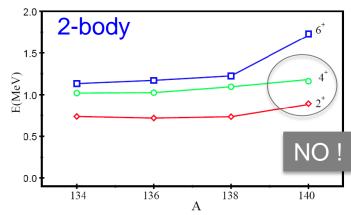
$$V_{ls}(r) \propto \frac{1}{r} \frac{dV(r)}{dr}$$

-> forte influence sur la fermeture des couches


Mesurer les caractéristiques des transitions de basse énergie pour en déduire les propriétés du noyau :

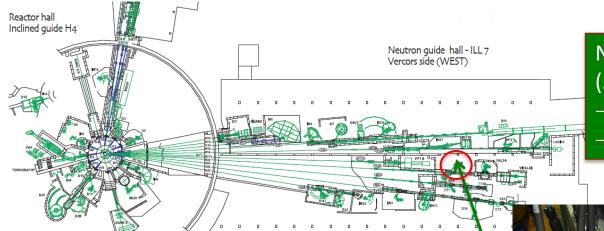

- Collectivité, moment d'inertie et déformation
- Structure à particules indépendantes,...

Ouverture du gap N=90 : noyaux Sn, Sb, Te, I... autour de ¹³²Sn (magique p et n)


Prédictions de différentes descriptions théoriques:

Interactions entre nucléons : fort impact sur la structure nucléaire, l'ordre et le croisement des orbitales, les fermetures de couches,...

Phys. Rev. C 78, 024308 (2008)


Prog. Part. Nucl. Phys. 62, 135 (2009)

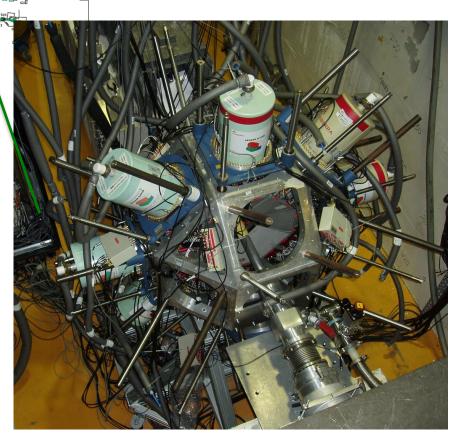
Reactor hall ILL 5 Experimental level (C)

EXILL multidetector system @ ILL

EXILL = EXOGAM à l'ILL

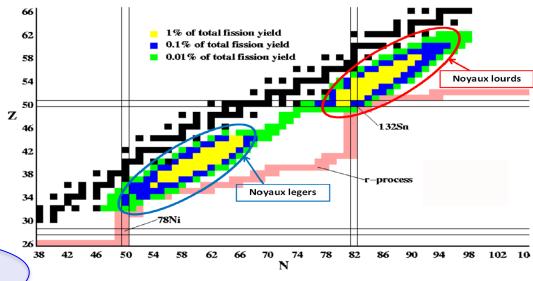
Neutron quide hall - IL

Chartreuse side (EAST)


Nuclear reactor with highest n- flux (5×10¹⁴ n cm⁻² s⁻¹)

- → ballistic neutron guide
- \rightarrow PF1b zone (2×10¹⁰ n cm⁻² s⁻¹)

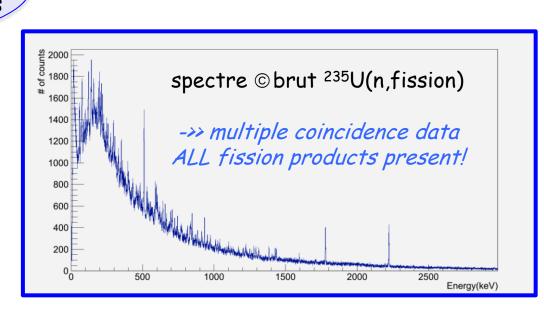
Etude des produits de fission


autour de Ni et autour de Sn

- Les fragments de fission sont riches en neutrons et placés aux environs du chemin du processus r
- Cibles radioactives (²³⁵U, ²⁴¹Pu)
- Haut flux de neutrons
- Sections efficaces élevées -> fort taux de comptage, taux coincidence élevé

EXILL multidetector system @ ILL ->> FIPPS

- 16 détecteurs GeHP: 10 Clovers + 6 coaxiaux (46 cristaux de Ge)
- Combinés avec scintillateurs
 LaBr₃(Ce) pour mesure de temps
 ultra-rapide
- Electronique numérique, acquisition sans déclenchement (triggerless)



Expérience déjà réalisée et données disponibles (stage M2)

Perspectives:

- future installation FIPPS à l'ILL d'ici 2015-2016
- Expériences complémentaires prévues

Thèse et/ou Stage M2

Continuation dans le cadre des expériences auprès d'ALTO ->> DESIR @ Spiral2 Thèse

Etudes décroissance βγ (détecteur BEDO) et/ou neutrons (détecteurs TETRA)

autour de Ni et autour de Sn: expériences prévues en 2015!

UNE USINE À **NOYAUX EXOTIQUES**

Méthode de production

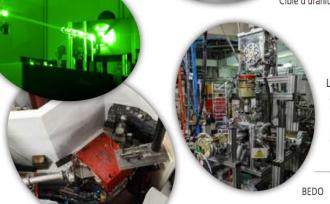
La fission de l'uranium est induite par des photons générés à partir d'un faisceau intense d'électrons.

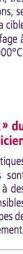
Préparation et purification du faisceau

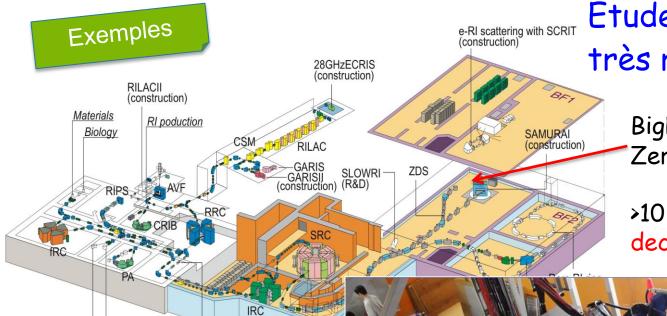
Le faisceau exotique est purifié par différentes techniques de séparation isotopique en ligne (ISOL): ionisation résonante par laser (RIALTO), séparation en masse (PARRNe)...

> En haut: RIALTO En bas: PARRNe

La photofission a lieu dans une cible épaisse de carbure d'uranium (UC) et les produits de réaction, très riches en neutrons, se diffusent hors de la cible grâce à un chauffage à plus de 2000°C.




Les noyaux exotiques ainsi produits sont étudiés grâce à des détecteurs sensibles à différents types de rayonnement.


• noyaux riches en neutrons

BEDO

- décroissance β, structure nucléaire, Pn, T
- 5 détecteurs Ge HP + LEPS (γ)
- scintillateurs plastique (β)
- •TETRA cube (détection n)

Etudes des noyaux très riches en neutron

BigRIPS a RIKEN
ZeroDegreeSpectrometer

>10 pnA, ²³⁸U fission@Be decay spectroscopy

decay setup:

Space

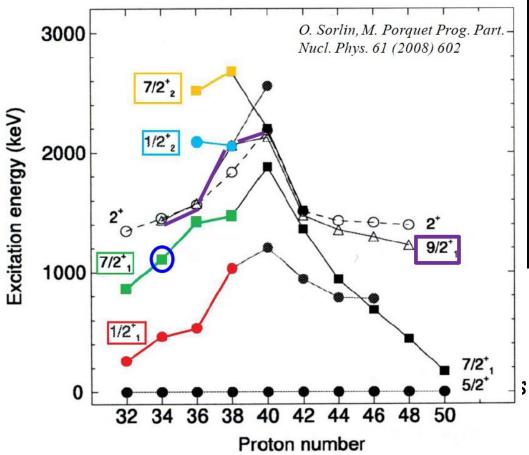
Multi-RI Production

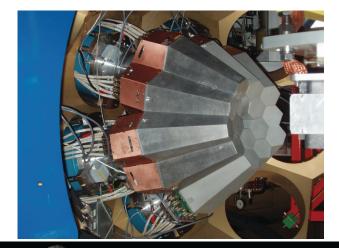
 4π Ge Cluster detectors LaBr3 detectors Si DSSD implantation station Plastics veto/validation detectors

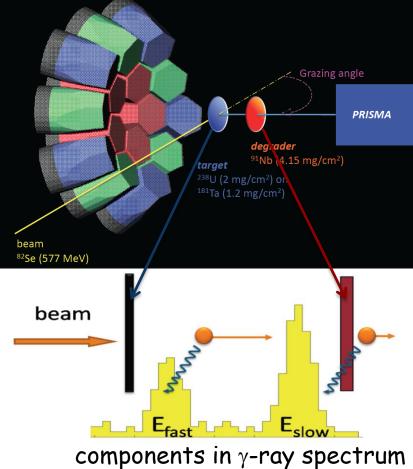
Return BT

(design)

ID setup:


Variable degraders
IC (MUSICS) PPACS
TOF plastics




Spectroscopie et mesure de durées de vie avec AGATA

Exemples

- LNL (2010-2011)
- GSI (2012-2013)
- GANIL (2014-...)

Thèse en physique nucléaire expérimentale

Explorer les noyaux riches en neutrons

 autour de N=50 ⁷⁸Ni (*Ge*, *As*, *Se...*)

¹³²Sn (Sb, Te, I...) autour de N=82 vers N=90

Expériences auprès

 de l'ILL à Grenoble -> fission induite par neutrons thermiques EXILL perspectives

-> continuation possible auprès de FIPPS à l'ILL

d'ALTO à Orsay -> décroissance β

perspectives -> continuation possible auprès de SPIRAL2 DESIR à Caen

Calculs théoriques avec le modèle en couches

Interprétation des données et publication scientifiques

perspectives Préparation d'expériences auprès d'ALTO, Spiral2, ISOLDE, RIKEN ...

Bat 27/2 bureau 214 03 88 10 63 78

Contacter nous pour en discuter:

gilbert.duchene@iphc.cnrs.fr

radomira.lozeva@iphc.cnrs.fr

Thèse

Bat 27/2 bureau 205 03 88 10 66 12

M2 en physique nucléaire expérimentale

- Explorer les noyaux riches en neutrons
 - autour de N=50 78Ni (Ge, As, Se...) ou autour de N=82 (Sn, Sb, Te...)
- Expériences auprès
 - · de l'ILL à Grenoble -> fission induite par neutrons thermiques EXILL
 - -> continuation possible par une thèse

perspectives

Stage M2

Interprétation des données

Contacter nous pour en discuter:

francois.didierjean@iphc.cnrs.fr

radomira.lozeva@iphc.cnrs.fr

Bat 27/2 bureau 210 03 88 10 66 72

Bat 27/2 bureau 214 03 88 10 63 78