Evolution des couches et les effets des collectivité dans les noyaux riches en neutrons

G. Duchêne, R. Lozeva et F. Didierjean

Contact : **Duchêne Gilbert ou Radomira Lozeva (thèse) et/ou F. Didierjean (stage M2)** Téléphone : 03 88 10 66 12 ou 03 88 10 63 78 E-mail : <u>gilbert.duchene@ires.in2p3.fr</u> ou <u>radomira.lozeva@iphc.cnrs.fr ou francois.didierjean@iphc.cnrs.fr</u> Batiment 27 (bureau 205 ou 214) Laboratoire d'accueil : Institut Pluridisciplinaire Hubert Curien (IPHC), Departement de Recherches Subatomiques (DRS), Equipe : Couches et Aimants dans le Noyaux (CAN), Adresse : 23, rue du Loess, BP 28 – 67037 Strasbourg CEDEX 2

Physique du processus r en astrophysique

A la fin de la combustion du fuel nucléaire des étoiles massives, le coeur de ⁵⁶Fe collapse en une étoile à neutron ou un trou noir :

- flux de neutrons extrêmement élevé pendant un temps très bref

 après "freeze out" on obtient la courbe d'abondance

Production des éléments lourds par captures neutron et décroissances β successives

La moitié des éléments au-dessus du Fe sont créés par le processus r, l'autre moitié par capture lente de neutrons.

Le chemin du processus r dépend des conditions astrophysiques (température, densité,..) et de la structure nucléaire des noyaux produits (énergie de liaison des neutrons, demivie, états excités de basse énergie et états isomères, émission Pn,...)

Supernovae de type II

Implication en astrophysique

Explosion de supernovae :

le chemin du processus r passe le long de la fermeture des couches N=50 et N=82

Modèle en couches

Structure en couches

- Pour les protons
- ...et les neutrons

Excitation de nucléons

- D'une couche à l'autre énergie nécessaire importante
 - -> gap en énergie
- Au sein d'une même couche énergie nécessaire modérée

Autres effets

 La déformation et la collectivité du noyau...

-> ouvre à de nombreux sujets intéressants en physique nucléaire expérimentale

Riches en neutrons au-delà de N=50 : évolution des gaps en énergie

Prédiction de Winger :

- HFB + SkO_T incluant des termes tenseurs
- Affaiblissement gap N = 50 pour Z < 28 et ouverture nouveau gap N = 58

vd_{5/2}-vd_{3/2} gap increases, Z<28, repulsion forming gap

Apparition gap N=56 pour Z > 28

vd_{5/2}-vs_{1/2} gap increases, Z>28, repulsion forming gap

Qq données expérimentales contradictoires :

⁸¹₃₀Zn₅₁ (1/2⁺ état fondamental) : ouverture plus forte pour Z plus élevé du gap N = 58 PRC 76, 054312 (2007)

 ⁸¹₃₀Zn₅₁(5/2⁺ état fondamental) : contradiction! Gap N=56 se ferme à Z = 30 ou 32 ?
PRC 82, 064314 (2010)

D'autres études sont nécessaires...

Etats fondamentaux

Structure nucléaire des isotopes riches en neutrons

Mesurer les caractéristiques des transitions de basse énergie

pour en déduire les propriétés du noyau : Collectivité, moment d'inertie et déformation

- Structure à particules indépendantes,...

Ouverture du gap N=90 : noyaux Sn, Sb, Te, I... autour de ¹³²Sn (magique p et n) Effective single-particle energies [MeV Prédictions de différentes descriptions théoriques: 13/2 0 --1 Interactions entre nucléons : fort impact sur la structure 1h_{9/2} -2 nucléaire, l'ordre et le croisement des orbitales, les 3p_{3/2} fermetures de couches,... -3 N=90 gap 4 Realistic (CWG) Empirical (SMPN) 82 90 84 86 88 3-body - Ca **Neutron number** Oexp Snexp Phys. Rev. C 78, 024308 (2008) $v1d_{5/2}$ 6000 SnSMPN SnCWG $v1f_{7/2}$ Oxygen (O) E(2⁺₁) (keV) 4000 2-body ■Calcium (Ca) 1.5 E(MeV) $\nu 2f_{_{7/2}}$ 2000 Tin (Sn) 0.5 NO YES 0.0 0 134 136 138 140 0 8 А Prog. Part. Nucl. Phys. 62, 135 (2009) Valence Neutron Number (n)

Phys. Rev. C81, 064328 (2010)

EXILL = EXOGAM à l'ILL

Nuclear reactor with highest n- flux ($5 \times 10^{14} \text{ n cm}^{-2} \text{ s}^{-1}$) \rightarrow ballistic neutron guide \rightarrow PF1b zone ($2 \times 10^{10} \text{ n cm}^{-2} \text{ s}^{-1}$)

Reactor hall ILL 5 Experimental level (C)

Exemples

Neutron guide hall - IL Chartreuse side (EAST)

Etude des produits de fission

autour de Ni et autour de Sn

- Les fragments de fission sont riches en neutrons et placés aux environs du chemin du processus r
- Cibles radioactives (²³⁵U, ²⁴¹Pu)
- Haut flux de neutrons
- Sections efficaces élevées -> fort taux de comptage, taux coincidence élevé

EXILL multidetector system @ ILL ->> FIPPS

- 16 détecteurs GeHP: 10 Clovers + 6 coaxiaux (46 cristaux de Ge)
- Combinés avec scintillateurs LaBr₃(Ce) pour mesure de temps ultra-rapide
- Electronique numérique, acquisition sans déclenchement (triggerless)

Expérience déjà réalisée et données disponibles (stage M2)

Perspectives :

- future installation FIPPS à l'ILL d'ici 2015-2016
- Expériences complémentaires prévues

Continuation dans le cadre des expériences auprès d'ALTO ->> DESIR @ Spiral2

BEDO

Thèse

Etudes décroissance βγ (détecteur BEDO) et/ou neutrons (détecteurs TETRA)

autour de Ni et autour de Sn: expériences prévues en 2015 ! UNE USINE À NOYAUX EXOTIQUES

Méthode de production La fission de l'uranium **Cible de production** est induite par des photons générés à La photofission a lieu dans partir d'un faisceau une cible épaisse de carbure intense d'électrons. d'uranium (UC) et les produits de réaction, très riches en neutrons, se diffusent hors de la cible e-LINAC grâce à un chauffage à plus de 2000°C. Préparation et purifi-Cible d'uranium cation du faisceau • noyaux riches en neutrons Le faisceau exotique est décroissance β, structure purifié par différentes Les «yeux» du techniques de séparation nucléaire, Pn, T physicien isotopique en ligne (ISOL): ionisation résonante par Les noyaux exotiques laser (RIALTO), séparation en ainsi produits sont masse (PARRNe)... • 5 détecteurs Ge HP + LEPS (χ) étudiés grâce à des détecteurs sensibles scintillateurs plastique (β) à différents types de rayonnement. En haut: RIALTO •TETRA cube (détection n) En bas: PARRNe BEDO

Thèse en physique nucléaire expérimentale

- Explorer les noyaux riches en neutrons
 - autour de N=50 ⁷⁸Ni (Ge, As, Se...)
 - ¹³²Sn (Sb, Te, I...) autour de N=82 vers N=90
- Expériences auprès
 - de l'ILL à Grenoble -> fission induite par neutrons thermiques EXILL perspectives
 - -> continuation possible auprès de FIPPS à l'ILL
 - d'ALTO à Orsay -> décroissance β
 - perspectives -> continuation possible auprès de SPIRAL2 DESIR à Caen

Thèse

- Calculs théoriques avec le modèle en couches
- Interprétation des données et publication scientifiques
- perspectives Préparation d'expériences auprès d'ALTO, Spiral2, ISOLDE, RIKEN ...

M2 en physique nucléaire expérimentale

Explorer les noyaux riches en neutrons

• autour de N=50⁷⁸Ni (Ge, As, Se...) ou autour de N=82 (Sn, Sb, Te...)

Stage M2

- Expériences auprès
 - de l'ILL à Grenoble -> fission induite par neutrons perspectives thermiques **EXILL**

-> continuation possible par une thèse

Interprétation des données

