

università degli studi FIRENZE

Dynamical generation of the weak and Dark Matter scales

Oleg Antipin

Based on: arxiv 1410.1817 [hep-ph] in collaboration with A. Strumia and M.Redi

CoDyCE 3, Lyon - November 5, 2014

Outline

- Introduction to electroweak-preserving strong sector
- Electroweak symmetry breaking
- Phenomenological constrains and LHC signals
- Predictions for Dark Matter
- In progress: Hyperquark masses and θ -angle
- Conclusions

TC - QCD

<u>2 Dirac flavors</u>

 $\mathcal{L}_{\text{fermion}} = i \bar{\boldsymbol{u}}_{\boldsymbol{L}} \gamma_{\mu} D^{\mu} \boldsymbol{u}_{\boldsymbol{L}} + i \bar{\boldsymbol{d}}_{\boldsymbol{L}} \gamma_{\mu} D^{\mu} \boldsymbol{d}_{\boldsymbol{L}} + i \bar{\boldsymbol{u}}_{\boldsymbol{R}} \gamma_{\mu} D^{\mu} \boldsymbol{u}_{\boldsymbol{R}} + i \bar{\boldsymbol{d}}_{\boldsymbol{R}} \gamma_{\mu} D^{\mu} \boldsymbol{d}_{\boldsymbol{R}}$ $D^{\mu} = \partial^{\mu} - ig A^{\mu}$

Lagrangian has $SU(2)_L \times SU(2)_R$ chiral symmetry $\bar{q}_L = (\bar{u}_L, \bar{d}_L)$ and $\bar{q}_R = (\bar{u}_R, \bar{d}_R)$

When the QCD gauge $\langle \bar{q}_L q_R \rangle \neq 0$ coupling becomes strong:

 $\langle \bar{q}_L q_R \rangle \neq 0$ breaks $SU(2)_L \times SU(2)_R \to SU(2)_{L+R}$

 $\bar{q}_L q_R$ pions are associated <u>Goldstone bosons</u>

But $\bar{q}_L = (\bar{u}_L, \bar{d}_L)$ is electroweak doublet while \bar{u}_R, \bar{d}_R are electroweak singlets

 $\langle \overline{q_L q_R} \rangle \neq 0$ electroweak symmetry is broken

 $SU(2)_L \times SU(2)_R \to SU(2)_{L+R} \quad (SU(2)_L \times U(1)_Y \to U(1)_{\rm EM})$

Pions belong to the "coset space"

$$\frac{G}{H} = \frac{SU(2)_L \times SU(2)_R}{SU(2)_{L+R}}$$

and are "eaten" by $W \mbox{ and } Z$

<u>Higgs is the composite scalar resonance</u>

Next, idea of Goldstone boson Higgs appeared

Electro-weak scale determined by vacuum alignment.

- Hard to construct UV theories.

Typically postulate effective theories with correct features.

We consider different paradigm...

Electroweak-preserving strong sector

For 2 Dirac flavors

Kilic, Okui, Sundrum '09

 $\bar{q}_L = (\bar{u}_L, \bar{d}_L)$ and $\bar{q}_R = (\bar{u}_R, \bar{d}_R)$

are **both** electroweak doublets now

<u>Higgs is massless and elementary</u> and couples to the strong sector with renormalizable interactions:

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4 g_{TC}} G^a_{\mu\nu} G^{a\,\mu\nu} + i \bar{\Psi} \gamma_\mu (\partial_\mu - i A_\mu - i G_\mu) \Psi$$

Additional assumption: no hyperquark mass terms

Electroweak-preserving strong sector

For 2 Dirac flavors

Kilic, Okui, Sundrum '09

 $\bar{q}_L = (\bar{u}_L, \bar{d}_L)$ and $\bar{q}_R = (\bar{u}_R, \bar{d}_R)$

are <u>both</u> electroweak doublets now

<u>Higgs is massless and elementary</u> and couples to the strong sector with renormalizable interactions:

For example, Yukawa couplings

Mixing induces negative Higgs mass

$$m_H^2 \approx -\frac{y^2 N}{(4\pi)^2} \frac{m_\rho^4}{m_\pi^2} \sim \Lambda_{TC}^2 \blacksquare$$

for measured Higgs mass, strong scale is in the multi-TeV range

Phenomenology and Constraints

Experimental bounds are weak:

- Precision tests are OK
- LHC: "strong" resonances in the multi-TeV range

Interesting phenomenology:

- Plausible at LHC13
- Automatic dark matter candidates
- Can generate the electro-weak scale
- Simple UV models

COLLIDER SIGNATURES

Vector resonances with SM quantum numbers predicted

Decay to hidden pions and back to SM gauge bosons,

Pions can also be stable or long lived.

SU(N) gauge theory with NF flavors Techni-quarks are vectorial with respect to SM.

Fermions	SM	SU(N)
Ψ_L	$\sum_i r_i$	n
Ψ_R	$\sum_i \bar{r}_i$	$ar{n}$

Spontaneous symmetry breaking respects electro-weak. Massless Goldstone bosons: $N_F^2 - 1$

 $\frac{SU(N_F) \times SU(N_F)}{SU(N_F)}$

DM candidates

 $m_B \sim N m_{\rho}$

Baryons are products of **n** quarks symmetric in flavor and spin("eightfold way").

DM candidates

Pions

Bai, Hill '10

Pions can be stable due to G-parity:

$$\psi \to S \, \psi^C$$

 $W^a_\mu J^a \to W^a_\mu J^a$
 $A^a t^a \to A^a (-t^a)^*$

 $\pi^0 \not\to \gamma\gamma \qquad \Pi^J \to (-1)^J \Pi^J$

 $\Pi^{J} \to (-1)^{J} \Pi^{J} \qquad \begin{array}{l} J^{=} \text{ total weak isospin} \\ \text{of the pion multiplet} \end{array}$

 $S^{\dagger}J^{a}S = -J^{a*}$

- Techni-pion singlets under SU(2)_L are G-even, do not acquire masses from SM gauge interactions and can have anomalous couplings to SU(2)_L vectors: they are excluded in our framework unless Yukawa couplings make them massive. They are absent if techni-quarks fill a single irreducible representation of SU(2)_L.
- Techni-pions in the 5 of SU(2)_L are G-even and are heavier, m_{π₅} ≈ √3m_{π₃}: they undergo anomalous decays into electro-weak vectors, π₅ → WW.
- Techni-pions in higher representations of SU(2)_L, if present, decay into lighter technipions respecting G-parity by emitting two SU(2)_L vectors, e.g. π₇ → π₃WW.

Example		number of	N =	3						
N=NF=3		techni-flavors	Yukawa	TCb	$TC\pi$					
		$N_F = 3$		8		under TC-flavor SU(3)				
		model 1: $Q = 1_Y + 2_{Y'}$	1	1	no	DM, under $SU(2)_L$				
		model 2: $Q = 3_{Y=0}$	0	3	3	DM, under $SU(2)_L$				
Q=3	•	$SU(2)_L \subset SU(3)_F$								
$J = \begin{bmatrix} 1 & 2 \\ 8 = 3 + 5 \end{bmatrix}$										
	Sca	alar triplet is stable an	id is dom	ninant da	ark ma	atter. $m_{\pi^0} \sim 2.5 ~{ m TeV}$				
Q=2+1	•	$SU(2)_L \times U(1)_Y \subset SU$	$(3)_F$							
		3 =	$2_{\frac{1}{2}} + 1_{-1}$							
	Sa	me as QCD quantum	numbei	rs.						
		$egin{aligned} 8 &= 2(\mathrm{p,n}) + 3(\mathrm{x}) \ 8 &= 2(\mathrm{K}^0,\mathrm{K}^+) + 2(\mathrm{x}) \ 8 &= 2(\mathrm{K}^0,\mathrm{K}^+) \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ $	$\Sigma^{\pm,0}) + 2(3)$ $3(\pi^{\pm,0}) + 3$	$\Xi^0, \Xi^-) + 2(K^-, ar{K}^0)$	$egin{array}{c} 1(\Lambda_0) \) + 1(\eta) \end{array}$					

Quantum numbers allow for Yukawa interactions. Singlet GB acquires mass and triplet decays.

Dark matter is a technibaryon.

 $m_{\Lambda^0} \sim 200 \text{ TeV}$

Lambda

SU(N) gauge theory with NF flavors Techni-quarks are vectorial with respect to SM.

	Fermi	ons SN	I SU	(N)				
	Ψ_L	\sum_{i}	r_i r_i	ı	-	- <u>></u>	$d[r_i] = N_F$	
$\Psi_R \qquad \sum_i$			$ar{r}_i$ $ar{n}$			i		
			1		1			
	number of		N =	3	N =	4		
	techni-flavors	Yukawa	TCb	$TC\pi$	TCb	$TC\pi$		
	$N_F = 2$		2	3	1	3	under TC-flavor $SU(2)$	
	model 1: $Q = 2_{Y=0}$	0	charged	3	1	3	DM, under $SU(2)_L$	
	$N_F = 3$		8	8	$\overline{6}$	8	under TC-flavor $SU(3)$	
	model 1: $Q = 1_Y + 2_{Y'}$	1	1	no	1	no	DM, under $SU(2)_L$	
	model 2: $Q = 3_{Y=0}$	0	3	3	1	3	DM, under $SU(2)_L$	
	$N_F = 4$		$\overline{20}$	15	20'	15	under TC-flavor $SU(4)$	
	model 1: $Q = 4_{Y=0}$	0	charged	3	1	3	DM, under $SU(2)_L$	
	$N_F = 5$		$\overline{40}$	24	$\overline{50}$	24	under TC-flavor $SU(5)$	
	model 1: $Q = 2_Y + 3_{Y'}$	1	1	no	charged	no	DM, under $SU(2)_L$	
	model 2: $Q = 5_{Y=0}$	0	3	3	1	3	DM, under $SU(2)_L$	

In the models with single SU(2) $\$ reps DM has two components (TB and Tpions) The I+2 and 2+3 models allow to write Yukawa interactions and DM is only TB

Direct detection of Dark Matter

Strumia, Cirelli '05

 $m_{J=1} \sim 2.5 \,\mathrm{TeV}$

Behave as Minimal DM

 $\sigma_{SI} = 0.12 \pm 0.03 \times 10^{-46} \, \mathrm{cm}^2$

Direct detection of Dark Matter

Baryons-anti-baryon annihilate mostly into pions

$$\langle \sigma^{ANN}_{B\bar{B}} v \rangle \sim \frac{4\pi}{m_B^2}$$

THERMAL ABUNDANCE $m_B \sim 50 - 100 \,\text{TeV}$

An electric dipole moment needs CP-violation. In our context, techni-quarks are strictly massless, such that the CP-violating techni-strong θ term is not physical. A small g_E could be generated if techni-quark masses are included.

In progress: Hyperquark masses

$$M = M^{\dagger} = diag(m_u, m_d, m_s, ...)$$

Mass of the pions:

 $Tr[MU + M^{\dagger}U^{\dagger}]$

Mass of the baryons:

$b_1 Tr[\bar{B}MB] + b_2 Tr[\bar{B}BM]$

Baryons also get mass from the strong interactions

Example:	number of techni-flavors	Yukawa	N = 3 TCb TC π		
N=NF=3	$=3$ $N_F = 3$		8	8	under TC-flavor SU(3)
	model 1: $\mathcal{Q} = 1_Y + 2_{Y'}$	1	1	no	DM, under $SU(2)_L$
	model 2: $Q = 3_{Y=0}$	0	3	3	DM, under $SU(2)_L$

Q=2+1: we can write <u>two</u> masses (doublet + singlet) $m_u = m_d = m$ $m_{\pi^+} = m_{\pi^0}^2 = \frac{4v}{F_{\pi}^2}[m_u + m_d]$,

• Pions Tr[MU +

 $Tr[MU + M^{\dagger}U^{\dagger}]$

 $m_{\pi^{+}}^{2} = m_{\pi^{0}}^{2} = \frac{1}{F_{\pi}^{2}} [m_{u} + m_{d}],$ $m_{K^{+}}^{2} = \frac{4v}{F_{\pi}^{2}} [m_{u} + m_{s}],$ $m_{K^{0}}^{2} = \frac{4v}{F_{\pi}^{2}} [m_{d} + m_{s}],$ $m_{\eta^{0}}^{2} = \frac{4v}{F_{\pi}^{2}} \left[\frac{4m_{s} + m_{d} + m_{u}}{3}\right],$

 $\mathbf{U} = \begin{pmatrix} \pi^0 / \sqrt{2} + \eta_0 / \sqrt{6} & \pi^+ & K^+ \\ \pi^- & -\pi^0 / \sqrt{2} + \eta_0 / \sqrt{6} & K^0 \\ K^- & \bar{K}^0 & -2\eta_0 / \sqrt{6} \end{pmatrix}$

• Baryons $b_1Tr[\bar{B}MB] + b_2Tr[\bar{B}BM]$ • $B = \begin{pmatrix} \Sigma^0/\sqrt{2} + \Lambda/\sqrt{6} & \Sigma^+ & P \\ \Sigma^- & -\Sigma^0/\sqrt{2} + \Lambda/\sqrt{6} & N \\ \Xi^- & \Xi^0 & 2\Lambda/\sqrt{6} \end{pmatrix}$ $m_p = b_2 m + b_1 m_s$ $m_{\Xi} = b_1 m + b_2 m_s$ $m_{\Sigma} = (b_1 + b_2) m$ $m_{\Lambda} = 1/3(m + 2m_s)(b_1 + b_2)$

	number of	N = 3			
	techni-flavors	Yukawa	TCb	$TC\pi$	
Evample	$N_F = 3$		8	8	under TC-flavor SU(3)
	model 1: $Q = 1_Y + 2_{Y'}$	1	1	no	DM, under $SU(2)_L$
N=NF=3	model 2: $Q = 3_{Y=0}$	0	3	3	DM, under $SU(2)_L$

Q=3 we can write only <u>one</u> (triplet) hyperquark mass m 8 = 3 + 5• Pions $M_{\pi_3}^2 = M_{\pi_5}^2 \sim mF_{\pi}$

• Baryons $M_{B_3} = M_{B_5} \sim m(b_1 + b_2)$

θ -angle

We have to account for axial anomaly

$$L = \frac{F_{\pi^2}}{2} \left(\operatorname{Tr} \partial_{\mu} U \partial_{\mu} U^{-1} + (\operatorname{Tr} MU + \operatorname{Tr} MU^{\dagger}) - \frac{a}{N} (-i \ln \det U - \theta)^2 \right).$$

Minimizing potential energy with: $\langle U \rangle = diag(e^{-i\phi_1}, e^{-i\phi_2}, e^{-i\phi_3}, ...)$

$$V(\phi_i) = F_{\pi^2} \left(-\sum \mu_i^2 \cos \phi_i + \frac{a}{2N} \left(\sum \phi_i - \theta \right)^2 \right)$$

$$\mu_i^2 \sin \phi_i = \frac{a}{N} \left(\theta - \sum \phi_j \right)$$

θ -angle

Rotate to the physical basis: $\langle V \rangle = diag(e^{i\phi_1}, e^{i\phi_2}, e^{i\phi_3}, ...)U$

Expand around the vacuum: $V = e^{iT^a \pi^a}$

$$\mathcal{L} = 2 Tr[\mu_i^2 \cos \phi_i \cos T^a \pi^a] + \frac{a}{N} Tr(T^a \pi^a)^2 + \cdots$$

Quadratic terms define the masses of the Goldstones:

 $T^{a}\pi^{a} = \pi^{d}_{a} \times \text{(diagonal generator)}_{a} + \pi^{nd}_{a} \times \text{(non-diagonal generator)}_{a}$

$$M_{\pi_{i}^{d}}^{2} = \begin{pmatrix} \mu_{u}^{2} \cos \phi_{u} & \dots & 0 \\ \vdots & \dots & \vdots \\ 0 & \dots & \mu_{N_{F}}^{2} \cos \phi_{N_{F}} \end{pmatrix} + \frac{a}{N} \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \dots & \vdots \\ 1 & \dots & 1 \end{pmatrix}$$
$$(M_{\pi_{i}^{nd}}^{2})_{\alpha\beta} = \frac{1}{2} (\mu_{\alpha}^{2} \cos \phi_{\alpha} + \mu_{\beta}^{2} \cos \phi_{\beta})$$
need to diagonalize

	number of	N = 3			
	techni-flavors	Yukawa	TCb	$TC\pi$	
Evample	$N_F = 3$		8	8	under TC-flavor SU(3)
LAampie.	model 1: $Q = 1_Y + 2_{Y'}$	1	1	no	DM, under $SU(2)_L$
N=NF=3	model 2: $Q = 3_{Y=0}$	0	3	3	DM, under $SU(2)_L$
				μ_{i}	$\phi_i^2 \sin \phi_i = \frac{\alpha}{N} \left(\theta - \sum \phi_j \right)$

Q=3 $\mu^2 \sin \phi = \frac{a}{N} (\theta - 3\phi)$ Solve for angle φ

Physical "diagonal" $(\mu^2 \cos \phi, \mu^2 \cos \phi, 3a/N + \mu^2 \cos \phi)$ pions masses:

Q=2+1 $\mu^2 \sin \phi = \frac{a}{N}(\theta - 2\phi - \phi_s)$ $\mu_s^2 \sin \phi_s = \frac{a}{N}(\theta - 2\phi - \phi_s)$ Solve for angles ϕ and ϕ s Physical "diagonal" pions masses: μ^2 and $\frac{1}{2}(3a/N + \mu^2 + \mu_s^2 \pm \sqrt{9a^2/N^2 + 2a\mu^2/N + \mu^4 - 2(a/N + \mu^2)\mu_s^2 + \mu_s^4})$

In conclusions...

- We discussed electroweak-preserving strong sector
- We showed that these theories naturally lead to EWSB, have interesting collider signatures at LHC 13 and feature DM candidates to be probed in the next round of DM experiments
- Hyperquark masses and θ-angle can modify the spectrum and therefore change predictions!