

01010111011010000111100100100000011100110110101011101101000011110010010000001110011011
01000011011110111010101101100011001000010000100001101111011101010110110001100100001000
00011101110110010100100000011001000110100100001110111011001010010000001100100011010010
11100110110001101110101011100110111001100101110011011000110111010101110011011100110010
00000110000101100010011011110111010101110100000011000010110001001101111011101010111010
00010000001100011011011110110110101110000010001000000110001101101111011011010111000001
11010101110100011010010110111001100111000011101010111010001101001011011100110011100001

1010000101010100001010

Problems have been observed/reported by many of us:
Slowness running on UIs (intensive proof usage)
Local disks saturated
…
=> Need a feedback (survey) to know which problems should be tackle !

With the restart of the LHC, the volume of data (lumi+PU) to be treated will
increase

Developments have been made by CMS collaboration:
miniAOD
New CMSSW version (99.3% parallelized)
CRAB3
…

Problem of communication btw us & IT group

As we are in a period in between publication & restart, it's a window
opened to review/change our usage of computing & our tools

Why should we discuss about computing ?Why should we discuss about computing ?

Goals of today's meetingGoals of today's meeting

Survey of the current problems encountered
Discuss about possible solutions that could be investigated
Define how we could share the efforts
Define a roadmap for the incoming months

(@least adapt code to miniAOD)
Discuss about the interaction with our IT group

No out-of-the-box solutions
Overview of the problematics
Discuss about technical possibilities

Simplicity
Reliability

Speed-up the workflow
Data volume reduction

Redundancy (data)
Monitoring tools

Available resources (cpu+disks)
Maintenance/Uniformisation of the UIs

Code/tools development
Maintenance

Policy
Interactions with IT

Many questions
To be answered !

Wishes box

Implications

Many usage of our computing resourcesMany usage of our computing resources

Analysis
(Mainly based on NTuple) Service work

(b-tagging, trigger, aligment ...)

Event generation

Limits computation

Multi-parametric problemsMulti-parametric problems

Data volume

I/O speed

Large scale computation

CPU intensive computation

Software environment

(Job) management

Several applications
Several kind of problems
Dedicated solutions

Madgraph
RooFit/RooStat
MC toys
CLs limits

Running on the whole
MC& CMS data

Plots made from
flat root-trees

TMVA
C&C optimization

(Job) management

Job frequency
Importance of

having a prompt output

Use the “power”
of the distributed jobs

(big data & large scale jobs)

Simplification of
the full analysis chain

(skip some steps)

Adapt our framework
according to the

dev. of various tools

Parallelize could be
an option to speed-up

Code execution

Better management
of our local resources

UIs + storage

Review the data format
to speed-up
the reading

(saving space ?)

(re-)optimization
of the code

Modification of codesChange of usage

Develop tools
to make life easier

for users

dpm:
Large volume
Can be access through grid, cluster, or ui through xrootd
dpm-> ui: 40 MB/s (read) + time for connexion (stability?)

Avoid small files
Tools for management ?
merging, recursive cp, listing, size evaluation, bkp management ...

nfs mounted disk:
Allow sharing of volumes across the Uis
Performances close to local disk !!
We use nfs-v3 (nfs-v4 exist and is supposed to be faster ?!)
Read: ~ 400 MB/s (random)
Write: ~ 6MB/s

local disk:
Cannot be shared
Could be use as scratch
Supposed to be faster: Read: ~450 MB/s (random)
Write: ~6/7 MB/s

SSD disk:
More expensive
Faster
Not more than 550 MB/s for random access

Current storage solutionsCurrent storage solutions

CE: ~ 1.5 k nodes SE: >500 TB

11 Uis (7 accessible for CMS)
124 nodes (74)
16 modes max/UI

Computing resourcesComputing resources
T

IE
R

 II
U

I

> 33 TB

TIER II is more suitable for some kind of jobs:
Big data jobs
Large scale computation

Could we benefit more often & user-friendlyCould we benefit more often & user-friendly
The TIER II ?The TIER II ?

Running on the grid via crab:
Need data to be published
Example: Lighter Minitree (= Ntuple) & running Ntuple analysis on the grid:

Skimming, cut-flow, babytuple production, ...
Running with the use of Proof-on-Demand:

Data stored on dpm
Difficulties: loading the librairies
Could be helpful to extend current intensive usage of Uis
Extend/maintain Kirill's effort

WMS jobs (cf Kirill):
Need job monitoring

Running on a batch system: pbs
pbs is a system recognized by many software to use parallelization
MadEvent/MadGraph, Theta, ...

Which solution(s) should we try/use/maintain ?
Could we define benchmarks to help user to decide which solution to use ?
Do we have a list of questions to the IT group ?
Do we have requirements ? (pbs, disk accessible via the worker nodes & Uis,...)
Monitoring tools would be helpful !!

#nodes Disk (GB) Use(%)

ui1 8 2x900 10%

ui2 8 2x900 75%

ui3 4 2x400+900 65%

ui4 16 900 99%

ui5 16 900 95%

ui6 16 800 98%

ui7 (gd-est) 16 2x900 80%

ui8 8 2x900 90%

ui9(gd-est) 8 2x400 55%

ui10(gd-est) 16 800 6%

ui11(alice) 16 90 1%

« Status » of the UIs« Status » of the UIs

“Large” resources:
CPU:

76 nodes (124 all included)
Storage:

“Local disk”: 10 TB
Safe 1: 4.5 TB (99%)
data2@ui5: 8.5 TB (99%)
data1@sbgse24: 8.5 TB (38%)

Our usage
CPU:

In average under used (even in peak ?)
Storage:

“we are using” ~ 23 TB !!
equivalent to ~ 4E9 Ntuple events …
Safe1 full ! (code saving …)
Many of disk ~ full !

mailto:data1@sbgse24

Toward a “more efficient” usage of UI ?!Toward a “more efficient” usage of UI ?!

UI sharing ?
7 UIs:

We could dedicate some of them to a dedicated activity
The jobs could as much as possible use the local disk (0.8 to 1.8 TB)

Faster access
Avoid to saturate safe1/sbgse24 access

Do we need to keep all those data
on those disks ?

Deletion:
Avoid many-duplication

If needed, dedicate a data volume
Moving files (from disk to disk)

● Use archive on dpm

Use free UI ?
Connexion to a generic UI:

Having a script which allow to connect to a machine
depending on the current usage using an alias (as for lxplus)

Could we develop tools to help ?

Monitor disk usage
I/O access monitoring
Help deletion (check unread files)
Help archive (tarball ? - recursive cp, …)

NB: exisiting tools – adapt them ?!

Do we need tools ?

CPU/RAM monitoring
Alias sbgui

Use priority policy (via script)
nice
ionice

AOD

MiniTree

NTuple

NTuple “XXTuple” Histograms

CMSSW

CMSSW

MiniTreeAna

NTupleAnalysis

User framework

“Macros”

Final Results (Physician's grail !)

Data format Computing
resourcesData format Storage

SE of
Tiers

IPHC
dpm

dpm
nfs disks:
safe1, sbgse24, ..
local disks

IPHC
dpm

PATuple
CE of Tiers

IPHC CE

IPHC CE
UIs

IPHC CE
UIs

Comments based on the surveyComments based on the survey

IF some jobs are performed only once a month &
IF the time needed is not crucial …
THEN it might be better to run over dpm files rather than spending time through rfcp …

Avoid to overload the local disks
Gain using local disk is valuable only if the jobs are performed often
Use our cluster (Tier 2/3, via crab/pod/wms …) to increase the #nodes (→ speed-up)

IF some jobs are running locally but take hours &
IF a prompt feedback would be needed
THEN you could speed-up things using the // (Proof, scripts with job splitting (/files),
std::thread,...)

IF some local jobs using proof are limited to the use of 8-10 nodes *
IF more nodes would be helpful
THEN there are some direction to investigate

Use local disk to avoid “job concurrency” (try to improve the linearity of the speed-up)
Split the dataset into 2 disks and run 2 proof executable (deal about merging @ the end)

Remark: possibility to use POD-ssh: use several UI at once

MiniAOD: 30-50 kB/evt
Max 600 kevts/min = 36 Mevts/hour
(If stored on a given HD & if not computation …)

Ntuple: 5-10 kB/evt
Could still gain x5 (or more)

Babytuple: 0.2 kB/evt
Analyze@max O100Kevts/sec

How can we improve ??
I/O access:

use local disk
reduce data size (/evt)
Use a skimming (branches/evts)

ROOT management:
Do not load useless branches
Read on demand
Buffer size (config)
Compression (config)
Splitting (config)
Data format (faster if simple) DEV
Unzipping (could be parallelized)

Reading tree : bottleneck in analysis jobsReading tree : bottleneck in analysis jobs

Problem:
A large fraction of most of our analysis jobs is spend in the line:

tree->GetEntry(i)
It can represent btw 10 to 90% of the job's time !

What is done “behind” that line ?
I/O access
Management of the data by ROOT (CPU usage)

Do we review our data format ?
Do we invest time to optimize tree
reading ?

mailto:Analyze@max

Welcome to the realm of parallel computingWelcome to the real of parallel computingWelcome to the real of parallel computing

Vector processor

Multi-threading

Cluster: many machines I – Many machines
Splitting of jobs per file:

Ex: wms jobs
Might require job managements via scripts

Splitting of jobs per event:
Ex:PROOF (Pod - Pod-ssh)

II- Multi-threading
Tools: std:thread (c++11) or open-mp
Applications:

Parallelization of algorithms:
Jets, electrons, muons … selections done in //
Operation on objects of a collections done in //:
Ex: Applying correction to jets

III Vectorialization:
Computation of functions

Ex: sqrt, cos, ...
Treating vector of bool/int/float/double

Operation in // (cache line)
X double (X=2 to 8)
2X float or int
4X short
8X bool

““the roadmap”the roadmap”

Survey of the current usage & the problems that need to be “solved”
Define list of priorities

Define how we share the efforts
Common data-format
Common analysis framework (or block of software tools)
Common scripts

Thibaut can help us in part of those tasks !

Usage of UI:
Do we agree on a new way to use the resources ? (cpu+disk)

Increase the usage of TIER II/III:
Which solutions to tests ? (PoD, pbs, ...)
Which tools are needed ?

Define how we want to interact with IT group in the future
Define a list of request we have for the IT group

““the roadmap”the roadmap”
On the analysis side

MiniAOD:
Who will follow MiniAOD dev ?

 Who will adap the framework ?
 Do we still need MiniTrees ?

Which scheme to adapt ? (MiniAOD,MiniTree, Ntuple, …)

Do we need to revisit the data format ?
Need time, development, modification of current macros (? not necessarily)
We could hopefully same a lot of time @ analysis level

Do we want to share analysis tools ?
How to maintain them ? (documentation ?)
Do we need a policy for code-development

Do we want to improve code efficiency ?
Need code profiling
Requirement: keeping tools user-friendly
Providing guidelines to all code-developers

g

Ex: TLorentzVector is not efficient
We're using Pt() & Eta() which need computations:
sqrt(Perp2)
0.5*log((m+fZ)/(m-fZ))

Developments would/will take time

… and maintenance looks like running a marathon ..

10 times faster

20 times faster

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

