

Single-Top-Quark Physics at CDF

Catalin Ciobanu

CNRS/IN2P3/LPNHE / Pierre and Marie Curie University

LPC Seminar, Clermont-Ferrand September 19, 2008

Introduction

Multivariate techniques

Cross section results

Beyond the SM searches

- Tevatron and CDF performance:
 - CDF recorded 4 fb⁻¹
 - Today's analyses use up to 2.7 fb⁻¹

Tevatron Luminosity

٩

En

۵.

Collider Run II Integrated Luminosity

Peak Luminosity • Peak Lum 20x Average

Date

q

b

 $\widehat{}$

- Mostly produced in pairs (7pb):
 - > qq annihilation (85%)
 - gg fusion (15%)
- Also electroweak (single-top):
 - s-channel
 - t-channel
 - Wt associated production
 - 9 0.3pb; neglected

Evidence D0: PRL 98 18102 (2007) Evidence CDF: arXiv 0809.2581 (2008)

s ^{1/2} =1.96TeV	NLO Cross-sections
t-channel	1.98±0.25 pb
s-channel	0.88±0.11 pb

t-channel production (Wg fusion)

B.W. Harris et al.: Phys. Rev. D 66, 054024, Z. Sullivan hep-ph/0408049

Compatible results: Campbell et al, Phys. Rev. D 70, 094012 (2004). N. Kidonakis, Phys.Rev. D 74, 114012 (2006)

$$M_{top} = 175 \text{ GeV/c}^2$$

b

≻ ...

- Predicted by SM we should observe it:
 - > Cross section $\propto |V_{tb}|^2$
 - Test the unitarity of the CKM matrix
 - ➤ 4th generation needed?
 - Source of ~100% polarized top quarks
 - Test of b quark structure function: DGLAP evolution
- Prerequisite for an intermediate mass Higgs at the Tevatron
 - > WH with $H \rightarrow b\bar{b}$ has similar final state
 - Background estimation is crucial
- Test of several new physics phenomena:
 - > Flavor-changing neutral currents: *tug*, *Ztc*, etc
 - Heavy W' (or charged Higgs) production
 - Anomalous W-t-b couplings

- Small cross section 3 pb not the main problem!
- Huge backgrounds. In 1 fb⁻¹:
 - > W \rightarrow l_{V} + 2 jets
 - > W→ℓv + 2 jets +≥1btag:
- S/B=<mark>1/200</mark>, S/√B = 0.6
- S/B=1/15, S/ √B = 1.5 (S~40, B~600)
- > W→ ℓv + 2 jets +≥1btag + discrim: S/B=1/3, S/ \sqrt{B} = 2.5

• Backgrounds:

- > W+heavy flavor (Wbb, Wcc, Wc)
- W+light flavor (mistags)
- Diboson, Z-decays, non-W
- Top pair production
- Signal MC modeling:
 MadEvent+Pythia ~NLO

shysique nucléaire

7

- Three most recent analyses (2.7 fb⁻¹)
 - Likelihood Function
 - t-channel
 - s-channel (extended double tag sample)
 - Matrix Element
 - Neural Networks
 - Boosted Decision Trees
 - > All 4 analyses use common selection criteria (same dataset and MC samples)
 - · Select events with basic features expected of single top events
 - A high-P_T lepton (20 GeV or more)
 - Large Missing- E_T (25 GeV or more)
 - Two or more jets (typically 20 GeV or more) -- Use high-η jets!
 - One or more b-tags
 - Veto Z→leptons, cosmics, conversions

- Three most recent analyses (2.7 fb⁻¹)
 - Multivariate Likelihood Function
 - t-channel
 - s-channel (extended double tag sample)
 - Matrix Element
 - Neural Networks
 - Boosted Decision Trees
 - > All 4 analyses use common selection criteria (same dataset and MC samples)
 - Combination of the analyses in progress
- All analyses use a neural networks b-tag extension
- NN b-tagger applies to secondary vertex tags; uses information such as:
 - Vertex mass, decay length, number of tracks, etc.

Event Yield

Process	Two-jet events	Three-jet events
s-channel	49.3 ± 7.0	16.3 ± 2.3
t-channel	74.3 ± 10.9	22.3 ± 3.2
W+bottom	549.1 ± 165.5	169.8 ± 51.3
W+charm	453.5 ± 139.9	126.7 ± 39.0
W+light	410.7 ± 51.0	125.5 ± 15.8
tt-bar	173.5 ± 24.8	410.5 ± 58.4
Diboson/Z+jets	105.6 ± 12.1	39.0 ± 4.6
Non-W	75.6 ± 30.2	27.4 ± 11.0
Total prediction	1891.6 ± 312.4	937.5 ± 108.3
Observed	1874	902

S/B (3j)=1/24

S/B(3j)=1/24

LF analysis

- Single Top signature: $W(e,\mu+MissET)$ and 2/3 tight jets, \geq 1b-tag
- The Problem: Jet Energies not Well-Measured
 - \succ **E**_T imprecisely measured
 - > Ambiguities in:
 - \succ choosing the Pz(v) solution
 - choosing b quark from top decay (s-channel)
- Use a χ^2 in which we float P_b , $E_T v$, Φv
 - central values = measured values
 - > uncertainties derived from HEPG comparisons with reconstructed values

$$\chi^{2} = \frac{(P_{b} - P_{b}^{obs})^{2}}{\sigma_{P_{b}}^{2}} + \frac{(\not\!\!E_{T} - \not\!\!E_{T}^{obs})^{2}}{\sigma_{\not\!\!E_{T}}^{2}} + \frac{(\not\!\!\Phi_{\nu} - \not\!\!\Phi_{\nu}^{obs})^{2}}{\sigma_{\not\!\!\Psi_{\nu}}^{2}} + \frac{(M_{\ell\nu b} - M_{t})^{2}}{\sigma_{M_{t}}^{2}} + Y(\operatorname{Im}(P_{z}))^{2}$$

- Without looking at the b-tag, minimize χ^2 under four scenarios
 - > 2 choices of which jet is labeled 'b from top decay'
 - 2 neutrino solutions

Form a combined probability:

i: variable index, k: sample index (s or t) ji: histogram bin

Four background classes used: Wbb, tt, Wcc/Wc and mistags

$$p_{ik} = \frac{f_{ij_ik}}{\sum_{m=1}^{5} f_{ij_ik}}$$

$$\mathcal{L}_{k}(\{x_{i}\}) = \frac{\prod_{i=1}^{n_{var}} p_{ik}}{\sum_{m=1}^{5} \prod_{i=1}^{n_{var}} p_{im}}$$

t-channel LF Variables:

- H_T
- χ^2 from kinematic fitter
- $\text{cos}\theta_{\text{lepton,other-jet}}$ in top decay frame
- Q*η
- m_{jj}
- log(ME_{t-chan}) from MADGRAPH
- NN(b); Neural Net b-tag output
- 3 jet variables similar

s-channel LF Variables:

- Mlvb(hybrid,s-chan)
- log(HT*Mlvb)
- $E_{T}(jet 1)$
- log(MEt-chan)
- HT
- NN(b)

CDF Run II Preliminary, L=2.2 fb⁻¹

W+LF

Wc+Wcc Z+jets, Dibosor

25 50 75 100 125 150 175 200 225 250 χ²/DOF=64.5374/40

W+LF

Syst. Error

NonW

Wc+Wcc E Z+jets,Dib

CDF Run II Preliminary, L=2.2 fb⁻¹

Wbb

ttbar

ET,

MET

NonW

Syst. Error

Wbb

ttbar

• Data

KS test: 0.37

Data

s-channel

t-channel

s-channel

Lehannel.

8

jun

a 150

200

175

125

100

75

50

25

225

a 175

200

150

125

100

75

50

25

g

1.25

Its

180

160

140

100

80

60

40

20

ລິ້ 120

20

30

x²/DOF=17.35/20

KS test: 0.954

Data

s-channel

2/DOF=71.5743/40

KS test: 0.194

40 50

60 70 80 90 100

CDF Run II Preliminary, L=2.2 fb⁻¹

Wc+Wcc

100 150 200 250 300 350 400 450 500 550

W+LF

NonW

Z+jets, Dibos

Syst. Error

Ht (GeV)

Wbb

ttbar

CDF Run II Preliminary, L=2.2 fb*

Data. t-chan LF

s-channel

t-channel

Wcc/Wc

mistag

Diboson

Non-W

0.8

0.9

Z+jets

Wbb

ttbar

2-jet t-chan discriminant

SM predictions shown -- no fitting is done. Slight deficit seen in the signal region

P-value: 2.6σ obs 3.8σ median expected

0.6

0.7

C. Ciobanu, page 15

3-jet t-chan discriminant

Test Statistic

- CL_s method used in Higgs searches at LEP
- Test between two hypotheses:
 - H1: Data is described by signal and backgrounds
 - H2: Data is described by backgrounds only.
- Poisson probabilities:

$$P(data \mid H1) = \prod_{i=i}^{N_{bins}} P^{i} = \prod_{i=1}^{N_{bins}} \frac{\mathbf{e}^{n_{i}^{H1}} \cdot (n_{i}^{H1})^{d_{i}}}{d_{i}!}$$

Test statistics Q = - 2log[P(data|H1)/P(data|H2)]

$$Q = const - 2 \cdot \sum_{i=1}^{N_{bins}} d_i \ln \frac{n_i^{H1}}{n_i^{H2}}$$

Exclusion (yellow) and Discovery (blue)

Data. t-chan LF

s-channel

t-channel

Wcc/Wc

mistag

Diboson

Non-W

0.8

0.9

Z+jets

Wbb

ttbar

2-jet t-chan discriminant

SM predictions shown -- no fitting is done. Slight deficit seen in the signal region

P-value: 2.6σ obs 3.8σ median expected C. Ciobanu, page 18

0.6

0.7

3-jet t-chan discriminant

- s-channel and t-channel probabilities:
 - 2(in) + 12(final) = 14 degrees of freedom
 - $3(e) + 4(jet angles) + 3(P_{in}=P_{fin}) + 1(E_{in}=E_{fin}) = 11 constraints$
 - 14 11 = 3 integrals => Integrate over neutrino p_z and jet energy of both jets
 - Change variables p_z →m_W because IMI² is almost negligible, except near the Breit-Wigner poles
 - Both neutrino solutions are considered at each integration step and sum over 2 combinations of jets

$$P(x,\alpha) = \frac{1}{\sigma} \int d\rho_b d\rho_{\overline{b}} dm_W^2 \sum_{comb,\nu} |M(\alpha)|^2 \frac{f(q_1)f(q_2)}{|q_1||q_2|} \phi_4 W_{jet}(x,y)$$

banu, page 19

Transfer Functions

Full simulation vs parton energy:

Double Gaussian parameterization:

$$W_{jet}(E_{jet}, E_{parton}) = \frac{1}{\sqrt{2\pi}(p_1 + p_2 p_5)} \left[\exp\frac{-(\delta_E - p_1)^2}{2p_2^2} + p_3 \exp\frac{-(\delta_E - p_4)^2}{2p_5^2}\right]$$

where: $p_i = a_i + b_i E_{parton}$ $\delta E = (E_{parton} - E_{jet})$

Data Result

Single top like event

• 22 variables (2j); 30 variables (3j)

 3.6σ obs 4.9σ median expected

	2-jets, 1-tag		2-jets, 2-tag	
Rank	Variable	Variable Importance	Variable	Variable Importance
1	KaNN	4.597e-01	mJ1J2	7.453e-02
2	mJ1J2	1.799e-01	Mlnub	6.599e-02
3	QEta	1.077e-01	wmt	6.453e-02
4	Mlnub	4.684e-02	MetJ1DPhi	5.142e-02
5	J1Et	4.570e-02	Mlnuj1j2	4.805e-02
6	wmt	1.890e-02	KaNN	4.656e-02
7	J2Et	1.874e-02	cosLepJ1	4.645e-02
8	LepPt	1.639e-02	J1Eta	4.563e-02
9	cosLepJ1	1.572e-02	J1Et	4.522e-02
10	MetLepDPhi	1.481e-02	J2Et	4.424e-02
11	J2Eta	1.063e-02	LepEta	4.366e-02
12	LepEta	8.744e-03	MetJ2DPhi	4.339e-02
13	Mlnuj1j2	8.106e-03	LepJ2DPhi	4.252e-02
14	Ht	7.755e-03	cosLepJ2	4.249e-02
15	MetJ1DPhi	7.589e-03	MetLepDPhi	4.098e-02
16	LepJ1DPhi	6.232e-03	LepJ1DPhi	3.886e-02
17	cosLepJ2	6.035e-03	LepPt	3.869e-02
18	met	4.676e-03	QEta	3.850e-02
19	MetJ2DPhi	4.174e-03	met	3.840e-02
20	J1Eta	3.922e-03	J2Eta	3.573e-02
21	WEta	3.881e-03	Ht	3.227e-02
22	LepJ2DPhi	3.839e-03	WEta	3.188e-02

Ciobanu, page 26

	3-jets, 1-tag		3-jets, 2-tag	
Rank	Variable	Variable Importance	Variable	Variable Importance
1	KaNN	3.846e-01	QEta	7.785e-02
2	mJ2J3	7.124e-02	Ht	5.032e-02
3	wmt	5.449e-02	Mlnub	4.698e-02
4	mJ1J3	5.358e-02	mJ2J3	4.100e-02
5	Ht	4.978e-02	mJ1J2	3.864e-02
6	QEta	4.729e-02	mJ1J2J3	3.735e-02
7	Mlnub	3.924e-02	MetLepDPhi	3.677e-02
8	mJ1J2J3	2.642e-02	wmt	3.632e-02
9	J3Et	2.609e-02	J1Eta	3.573e-02
10	J2Eta	2.549e-02	cosLepJ1	3.447e-02
11	mJ1J2	2.490e-02	J2Et	3.400e-02
12	cosLepJ1	2.370e-02	J3Et	3.324e-02
13	LepPt	1.910e-02	mJ1J3	3.307e-02
14	LepEta	1.774e-02	J2Eta	3.275e-02
15	MetLepDPhi	1.382e-02	cosLepJ3	3.046e-02
16	J1Eta	1.373e-02	J1Et	3.017e-02
17	LepJ1DPhi	1.223e-02	WEta	2.993e-02
18	cosLepJ2	1.069e-02	MetJ2DPhi	2.988e-02
19	cosLepJ3	9.661e-03	LepJ1DPhi	2.898e-02
20	J1Et	8.641e-03	KaNN	2.894e-02
21	MetJ3DPhi	8.278e-03	LepEta	2.873e-02
22	MetJ2DPhi	8.256e-03	LepJ3DPhi	2.855e-02
23	met	8.141e-03	Mlnuj1j2j3	2.828e-02
24	MetJ1DPhi	7.496e-03	MetJ3DPhi	2.692e-02
25	LepJ3DPhi	6.743e-03	cosLepJ2	2.616e-02
26	J2Et	6.133e-03	LepPt	2.518e-02
27	LepJ2DPhi	6.035e-03	MetJ1DPhi	2.508e-02
28	WEta	5.932e-03	LepJ2DPhi	2.204e-02
29	Mlnuj1j2	5.417e-03	met	2.160e-02
30	Mlnuj1j2j3	5.108e-03	Mlnuj1j2	2.060e-02

High score BDT>0.6

- Similar to the Likelihood Function, but:
 - More input variables
 - Correlation among input variables accounted for

- More challenging (less distinct) than t-channel
- Also smaller rate (1pb)
- Likelihood-type analysis. W+2j double tagged sample

Best Fit Cross Section : $\sigma_s = 0.9$ pb, $\sigma_t = 1.2$ pb.

- Bayesian Technique selected
 - Flat prior in signal cross section σ_{s+t}
 - Integrate out rate and shape uncertainties
 - Check biases with pseudoexperiments with systematics fluctuated.
 - m_{top}=175 GeV assumed.

Linearity checked with systematically varied pseudoexp.

Systematic Uncertainties

Source of Uncertainty	Rate	Shape
Jet Energy Scale	016%	\checkmark
Initial State Radiation	011%	\checkmark
Final State Radiation	015%	\checkmark
Parton Distribution Functions	23%	\checkmark
Monte Carlo Generator	15%	
Event Detection Efficiency	09%	
Luminosity	6%	
Neural Net B-tagger		\checkmark
Mistag Model		\checkmark
Q ² scale in ALPGEN MC		\checkmark
Input variable mismodeling		\checkmark
Wbb+Wcc normalization	30%	
Wc normalization	30%	
Mistag normalization	1729%	
ttbar normalization & m _{top}	23%	\checkmark
Non-W Normalization	40%	
Non-W Flavor Model		\checkmark

- Bayesian posterior marginalized over uncertain nuisance parameters
- Flat prior taken in $\sigma_s + \sigma_t$

Likelihood Function

Matrix Element

Decision Trees

Neural Networks

All Assuming m_t=175 GeV

NN cross section

NN Analysis CDF II Preliminary 2.7 fb⁻¹ 1.2 ± 7.3 3Jet 2Tag EMC $6.0 \pm \frac{4.7}{4.2}$ 3Jet 2Tag TLC $6.1\pm \frac{4.4}{4.0}$ 3Jet 1Tag EMC $2.0 \pm \frac{2.2}{2.0}$ 3Jet 1Tag TLC $9.1\pm \frac{4.1}{3.6}$ 2Jet 2Tag EMC $4.3 \pm \frac{2.8}{2.4}$ 2Jet 2Tag TLC 2Jet 1Tag EMC $0.9 \pm {}^{1.1}_{0.9}$ 2Jet 1Tag TLC $1.8 \pm {}^{0.8}_{0.7}$ $2.1\pm {}^{0.7}_{0.6}$ All Channels 2 6 8 0 4 10 Single Top Production Cross Section [pb]

Template fit (marginalization) is done in 2D. Flat priors taken in the (σ_s, σ_t) plane.

Analysis Combination

- Have 4 different results what do the data actually say?
- Same dataset:
 - Combine analyses rather than results

Initial Configuration:

- NEAT ("Neuro-Evolution of Augmenting Topologies"):
 - is designed to optimize the expected *p*-value (discovery significance).

Data Result

Super-Discriminant

CDF Run II Preliminary, L = 2.2 fb⁻¹ $\sigma_{\rm Single \ Top}$ = 2.2^{+0.7} pb Posterior Probability Density 68% 2 10 Single Top Cross Section [pb] $|V_{tb}| = 0.88 \pm 0.14 \text{ (exp.)} \pm 0.07 \text{ (theory)}$ CDF Run II Preliminary, L = 2.2 fb⁻¹ Density $|V_{tb}| > 0.66 (95\% \text{ C.L.})$ Probability Posterior 95% 68%

0.2

a

0.4

0.6

 $\left|V_{tb}\right|^2$

Observed p-value: 3.7σ **Expected:** 5.1σ

• NEAT gives us 13% better performance in the expected significance with respect to the best analysis.

C. Ciobanu, page 39

0.8

- Search for heavy resonances in W+jets events
- Heavy W' bosons appear in many theories:
 - Additional SU(2)_L sector
 - Or lowest KK mode of the W boson
 - Or left-right symmetric model: broken SU(2)_L x SU(2)_R
 - > Or little Higgs, supersymmetry etc

• Lagrangian:

$$\mathcal{L} = \frac{g}{\sqrt{2}} \overline{f}_i \gamma_\mu (C_{f_i f_j}^R P_R + C_{f_i f_j}^L P_L) W' f_j + \text{H.c.},$$

Will be looking for W'->tb decays (single-top selection!)
 Complimentary to the W'->ev, μv searches

- Invariant mass of the W+jet1+jet2 system and E_T(jet1) provide most sensitivity
- 95%C.L. W' mass limits: 800 GeV and 825 GeV
- g>0.4g_{SM} for the range if masses considered
- D0 limits comparable (740-770 GeV) in PRL 100, 211803 (2008)

• LHC = top quark factory:

> 8 million top pairs per experiment per year (10 fb⁻¹ / year)

- > Some cross section values for $\sqrt{s} = 14$ TeV:
 - top pair production: ~ 800 pb (mostly via gluon-gluon fusion)
 - t-channel single top: 153 (top) and 90 (antitop) = 243 pb

In e.g. per day ~6000 events, at 10³³cm⁻²s⁻¹

 \succ s-channel single top: 6.6 (top) and 4.8 (antitop) = 11 pb

associated Wt production: 50-60 pb

Negligible at the Tevatron

 With 10 fb⁻¹, both experiments should be able to see evidence of t-channel (and Wt?) single top processes

Single Top Production Cross Section (pb)

- A taste of LHC physics!
 - Challenging backgrounds
 - > Pushing the limits on MC modeling (multiple analyses on the same dataset). c. ciobanu, page 43

Artwork credit: Jan Lück

Thanks to the CDF single-toppers!

Combined cross section measurement used as a test statistic. How many background-only pseudoexperiments would fake a signal this large? A: 1.4×10^{-4} of them. $\rightarrow 3.6\sigma$ evidence. Expected in SM: 2.3σ

Cross Section measurements combined with BLUE (Best Linear Unbiased Estimate)