

First studies of the

anode deck structure

(Thermal and mechanical simulations)

Visio-conference - 27th of February, 2014

G. Deleglise, D. Duchesneau, N. Geffroy

FEA assumptions 1/2

G10 properties :

- E = 24.000 MPa
- v = 0,3
- ρ = 1850 kg/m³
- α = 1,5.10⁻⁵ K⁻¹

Stainless steel properties :

- E = 210.000 MPa
- v = 0,3
- ρ = 7850 kg/m³
- $\alpha_{304L} = 1,7.10^{-5} \text{ K}^{-1}$
- $\alpha_{316L} = 1,6.10^{-5} \text{ K}^{-1}$

Added mass :

- 10 kg/m² over 36 m² for electronics, mesh and tensioning system
- Distributed on CRP

27/02/2014

<u>NB:</u>	
• E:	Elastic Modulus
• v :	Poisson coefficient
• ρ :	Density
• a:	Thermal expansion coefficient

FEA assumptions 2/2

Boundary conditions:

- Z motion fixed for cables anchoring locations
- X and Y motions free for all the structure

Static loading:

• Gravity acting along –Z direction

Thermal loading:

- The second second
- Thermalization of the structure (same temperature on all nodes)
- From 22°C to -186° C, imposed on the whole model

Comments on assumptions

G10 properties :

- E = 24.000 MPa
- v = 0,3
- ρ = 1850 kg/m³
- α = 1,5.10⁻⁵ K⁻¹

Stainless steel properties :

- E = 210.000 MPa
- v = 0,3
- ρ = 7850 kg/m³
- $\alpha_{304L} = 1,7.10^{-5} \text{ K}^{-1}$
- α_{316L} = 1,6.10⁻⁵ K⁻¹

Added mass :

- G10 considered <u>isotropic</u>
- All values (E, v, α) <u>at 22°C</u>
- Large range of α values for stainless steel
- > Added mass <u>roughly estimated</u> (as suggested)
- Mesh tensioning system has no influence on the structure
- 10 kg/m² over 36 m² for electronics, mesh and tensioning system
- Distributed on CRP

Goal to reach

The objective is to find a structure whose deformations, occurring during data taking phases, respect the criterion:

"The CRP displacements of any node cannot exceed +/- 0,5 mm along the vertical direction"

(ie perpendicularly to the LAr free surface)

Which is similar to:

The peak to peak value **IIDzII** of the CRP displacements must fulfil :

<u>||Dz|| < 1mm</u>

27/02/2014

Short description:

- Baseline design
- CRP and Connection structure made of G10
- Mechanical structure made of 316L stainless steel (closest thermal expansion coefficient wrt G10 one)
- Hanging system = 3 cables

Amplitude of 3 displacements (dX, dY, dZ)

Huge change of shape !

Non negligible influence of *thermal bi-material effect*

27/02/2014

Displacements of CRP along Z direction

	Step 1		St		
	[Dz _{min} ; Dz _{max}]	Dz	[Dz _{min} ; Dz _{max}]	Dz	Model mass
<u>Simulation 1</u> G10 + SSteel / 3 cables	[-21 ; 12,2]	33,2 mm	[-5 ; 15,3]	<u>20,3 mm</u> (>1mm)	1868 kg

27/02/2014

Prototype meeting

Nicolas Geffroy

Short description:

- Baseline design
- All the structure made of G10
- Hanging system = 3 cables

Amplitude of 3 displacements (dX, dY, dZ)

Step 1: gravity ONLY

No change of shape

Thermal effect negligible on this full G10 structure

27/02/2014

Displacements of CRP along Z direction

Step 1: gravity ONLY **Step 2:** gravity + ΔT (+22° to -186°C) 13.202 Max 13.676 Max 7.6721 8.1398 2.142 2.6041 -3.388 -2.9317 -8.4675 -8.9181 -14.003 -14.448 -19.539 -19.978 -25.075 -25.508 -30.611 -31.038 -36.146 Min -36.569 Min 4e+003 (mm) e+003 (mm)

	Step 1		Step 2		
	[Dz _{min} ; Dz _{max}]	Dz	[Dz _{min} ; Dz _{max}]	Dz	Model mass
Simulation 2 G10 / 3 cables	[-36,6 ; 13,2]	49,8 mm	[-36,2 ; 13,7]	<u>49,9 mm</u> (> 1 mm)	1167 kg

27/02/2014

First comparison

	gravity ONLY		gravity + ΔT (+22° to -186°C)		
	Step 1		Step 2		
	[Dz _{min} ; Dz _{max}]	Dz	[Dz _{min} ; Dz _{max}]	Dz	Model mass
<u>Simulation 1</u> G10 + SSteel / 3 cables	[-21 ; 12,2]	33,2 mm	[-5 ; 15,3]	<u>20,3 mm</u> (> 1mm)	1868 kg
Simulation 2 G10 / 3 cables	[-36,6 ; 13,2]	49,8 mm	[-36,2 ; 13,7]	<u>49,9 mm</u> (> 1 mm)	1167 kg

<u>Step 1:</u>

> Full G10 structure is obviously less stiff than G10 + Stainless steel

Full G10 structure has a "neutral" behavior on thermal loading (CRP deformations = in plane deformations !)

Prototype meeting

<u>Step 2:</u>

Change of boundary conditions

Let's change the boundary conditions:

- by using <u>4 cables instead of 3</u>
- by fixing these cables *at the tips of a square*

27/02/2014

Prototype meeting

Nicolas Geffroy

Short description:

- Baseline design
- CRP and Connection structure made of G10
- Mechanical structure made of 316L stainless steel (closest thermal expansion coefficient wrt G10 one)
- Hanging system = 4 cables

NB : same than simulation 1 with 1 more cable !

27/02/2014

Amplitude of 3 displacements (dX, dY, dZ)

Step 1: gravity ONLY

<u>Big reduction of displacements</u> (compared to the same solution with 3 cables)

27/02/2014

Displacements of CRP along Z direction

Step 1: gravity ONLY

Step 2: gravity + ΔT (+22° to -186°C)

	Step 1		Step 2		
	[Dz _{min} ; Dz _{max}]	Dz	[Dz _{min} ; Dz _{max}]	Dz	Model mass
<u>Simulation 3</u> G10 + SSteel / 4 cables	[-0,7 ; 0,7]	1,4mm	[-2,6 ; 8]	<u>10,6</u> (> 1 mm)	1868 kg

27/02/2014

Still thermal bi-material effect non negligible

Prototype meeting

Nicolas Geffroy

Short description:

- Baseline design
- All the structure made of G10
- Hanging system = 4 cables

NB : same than simulation 2 with 1 more cable !

27/02/2014

Amplitude of 3 displacements (dX, dY, dZ)

Step 1: gravity ONLY

<u>Big reduction of displacements</u> (compared to the same solution with 3 cables)

27/02/2014

Displacements of CRP along Z direction

	Step 1		Step 2		
	[Dz _{min} ; Dz _{max}]	Dz	[Dz _{min} ; Dz _{max}]	Dz	Model mass
Simulation 4 G10 / 4 cables	[-1,8 ; 2,2]	4mm	[-0,9 ; 3,2]	<u>4,1</u> (> 1 mm)	1167 kg

"neutral" behavior on thermal loading

Second comparison

	<u>Step 1:</u> gravity ONLY		<u>Step 2:</u> gravity + ΔT (+22° to -186°C)		
	Step 1		St	Step 2	
	[Dz _{min} ; Dz _{max}]	Dz	[Dz _{min} ; Dz _{max}]	Dz	Model mass
<u>Simulation 1</u> G10 + SSteel / 3 cables	[-21 ; 12,2]	33,2mm	[-5 ; 15,3]	<u>20,3</u>	1868 kg
Simulation 2 G10 / 3 cables	[-36,6 ; 13,2]	49,8mm	[-36,2 ; 13,7]	<u>49,9 mm</u>	1167 kg
<u>Simulation 3</u> G10 + SSteel / 4 cables	[-0,7 ; 0,7]	1,4mm	[-2,6 ; 8]	<u>10,6</u>	1868 kg
Simulation 4 G10 / 4 cables	[-1,8 ; 2,2]	4mm	[-0,9 ; 3,2]	<u>4,1</u>	1167 kg

<u>A cables help a lot</u> to drastically decrease the CRP displacements

Full G10 structure seems to be a <u>promising option</u>

27/02/2014

Comments

- Full G10 structure has a very interesting thermal behavior
- It is nevertheless less stiff than associated with stainless steel

Why not keep the *full G10 option*

&

try to find a stiffer design (for static loading) ?

27/02/2014

New design proposal

Based on "<u>Adamo design"</u> (same structure thickness), the use of a "closing plate" could improve the static behavior of the structure

Short description:

- Baseline design + belt + closing plate
- All the structure made of G10
- Hanging system = 4 cables

Amplitude of 3 displacements (dX, dY, dZ)

<u>Step 1:</u> gravity ONLY

<u>Small static displacements and</u> <u>homogeneous structure expansion</u>

27/02/2014

Displacements of CRP along Z direction

	Step 1		Step		
	[Dz _{min} ; Dz _{max}]	Dz	[Dz _{min} ; Dz _{max}]	Dz	Model mass
<u>Simulation 5</u> G10 / 4 cables / closing plate	[-0,44 ; 0,05]	0,5mm	[0,5 ; 1]	<u>0,5</u>	1600 kg

This model fulfills the "1mm max" requirement !

Prototype meeting

Nicolas Geffroy

In the previous simulations, the thermal loading is extremely simple: <u>+22°C to -186 °C</u> is applied to all the structure.

In reality, a thermal gradient can happen due to:

- Temperature variation as a function of altitude / LAr free surface: $\Delta T = f(z)$?
- Thermal flux (heat source) coming from electronics & power/data cables
- Thermal flux (heat source) coming from chimneys / supporting cables
- Thermal radiation from insulating walls

A more realistic simulation would take into account these loadings

? ?

?

As a result a thermal gradient would appear in the structure

In order to illustrate the behavior of the structure, a temperature gradient has been applied *thanks to a surface flux*.

This thermal loading is <u>arbitrary</u>. It will nevertheless help us to understand how behaves the anode deck structure.

Note that:

- > The arbitrary surface flux is applied to the closing plane (to simplify).
- The flux is a parameter which varies between [0; 1.10⁻⁷ W/mm²]
- > For zero flux, the results are the same than for simulation #5.

27/02/2014

For the max. heat flux, we observe a 16°C gradient

It is maybe overestimated but it is useful to understand this parametric study

27/02/2014

NB: Cutting planes are used to illustrate the temperature gradient.

Prototype meeting

Nicolas Geffroy

Structure displacements resulting from the 16°C gradient

5mm peak to peak displacement for the CRP

Prototype meeting

27/02/2014

Nicolas Geffroy

31

By varying the heat flux ([0 ; 1.10⁻⁷ W/mm²]) to get a given gradient, we calculate the peak to peak displacements of CRP

||Dz|| as a function of the thermal gradient

By varying the heat flux ([0; 1.10⁻⁷ W/mm²]) to get a given gradient, we calculate the peak to peak displacements of CRP

||Dz|| as a function of the thermal gradient

27/02/2014

For the TDR:

We would like to detail the model corresponding to *simulation #5 which fulfils the 1mm requirement*

provided that all the structure is thermalized to the same temperature !

Simulation #5 :

- Baseline design + belt + closing plate
- All the structure made of G10
- Hanging system = 4 cables

27/02/2014

Structure is sensitive to thermal gradient

For the next studies:

We have to discuss about *thermal inputs*

- to go further into details
- to implement realistic loadings.

27/02/2014