A.Variola (LAL Orsay)

IPNL Lyon
Ecole Internationale de Physique Subatomique EIPS 2014
Particle Accelerators Course

Introduction

ACCELERATORS $=$ PHYSICS

Particle accelerators are extremely sophisticated devices. This implies the application of different concepts and experimental techniques. Accelerator Physics is beteween the most pluridisciplinary physics fields?

- Classical physics
- Classical mechanics
- Electromagnetism
- Relativity
- Quantum mechanics
- High energy physics

Unfortunately we will have a short overview and we will treat only few simple arguments....

- Statistics
- Non-neutral plasma
- Instrumentation.

What is a particle Accelerator?

- Seems trivial: whatever device that accelerate particles and particle beams. Nevertheless, in this definition, an amazing variety of different type of devices, technologies, ideas and applications are included.
- Remember: often the particle physicists ask to the accelerator physicists bemas with X amperes (with X-> infinite) colliding in Y meters (with Y->zero), without noise and in a reliable machine that never stops.
- BUT $1^{\text {st }}$, WHAT IS A BEAM?

Definition: Particle beams $\left.\rightarrow\left\langle v_{\text {long }}\right\rangle>\right\rangle\left\langle V_{\text {trans }}\right\rangle$

$\Delta \dagger$ Bunch length

TRAIN / PULSE (RF)

Particle stream
-Particle Accelerators : History

$1^{\text {st }}$ Accelerator: Cathode Ray Tube

- Electric voltage between two metallic plates
- Heat the cathode --- something emitted
- Proved the existence of electron in 1897 J.J. Thompson
- TV monitor (until some years ago)

Cock-Croft Electro-Static Accelerator

- High voltage by static electricity
- First nuclear transformation by accelerator $\mathrm{H}+\mathrm{Li} \rightarrow 2 \mathrm{He}$
- Cavendish institute in UK, 1932
- 800keV
- Breakdown limit

KEK 750keV CockcroftWalton

Repeated question: How can we go to higher energies?

- reuse possible?

magnet
- use of alternating voltage
- high frequency needed

magnet

Cyclotron

- E.O.Lorence, 1931 Berkeley, California
- Revolution period independent of energy

proton source

Relation : radius - magnetic field - beam energy - revolution time Lorentz Force= Centrifugal Force

- Radius

$$
\rho[\mathrm{m}]=\frac{p[\mathrm{GeV} / \mathrm{c}]}{0.3 B[\mathrm{~T}]}
$$

Magnetic field

- Revolution period (non-relativistic)

$$
T=\frac{2 \pi \rho}{v}=2 \pi \frac{m}{e B}=\mathrm{constant}
$$

RINGS

Synchrotron

- Make orbit radius independent of energy
- Raise magnetic field as acceleration
- Save volume of magnets
- Area of field is proportional to p (momentum), not p^{2}
- Gradient magnet needed for focusing. Dipoles poles modified

- A few GeV proton synchrotrons
- Cosmotron (BNL) 3GeV
- Bevatron (LBL) 6.2GeV
- Magnet size became an issue even for synchotron of a few GeV scale
- Many new particles
- anti-proton, anti-neutron
- $\Lambda, \Sigma, \Xi, \Omega, \ldots$.
- Systematic description introducing "Quarks" by Gell-Mann in 1964

Strong Focusing

- Combination of F-type magnet and D-type can reduce the beam size
- Around 1957
- Quadrupole magnets can also be used
- New issue: accuracy of field and alignment

At present => Rings

- After acceleration, for different goals, a beam can be stored in a ring.
- In a ring the particles are maintained on a orbit by magnetic elements
- DIPOLES guide the beam on a circular orbit, QUADRUPOLES provide focalization and MULTIPOLES are used to correct aberrations
- In the lepton case the energy losses given by the synchrotron radiation are recovered by accelerating RF CAVITIES
- In all the rings (leptons and hadrons) anyway the cavities are required to maintain the beam longitudinal bunching
- Synchronization and stabilization of the orbit are provided by electronic feedbacks.
- An important aspects in rings are provided by INSTABILITIES. These are due to the interaction of a bunch (by means of its associated e.m field) with the environment and with the other bunches. Also in this case feedbacks are used to damp the instabilities.

Storage Ring

- Synchrotron can be used to store beams for seconds to days
- Usage
- Collider

- Synchrotron light source
- Principle same as synchrotron but
- no need of rapid acceleration (even no acceleration)
- longer beam life (e.g., better vacuum)
- insertion structure (IP, insertions, etc)

The beam quality - cooling \& damping rings

- For quite all the applications a good beam must be able to provide a lot of particles in a little space with a little divergence and as monochromatic as possible.
- A parameter, the EMITTANCE, describe the degree of quality of the beam
- Usually the emittance is a motion invariant (the normalized one... we will see what it means), but under special condition it can vary. Usually it increase but some mechanism provides also its reduction. The most important is the synchrotron radiation cooling. Under strong radiation emission the beam reduces its emittance. It is for this reason that in special case (see linear colliders) special rings, called damping rings, are studied to reduce the emittance of the beam.
- The damping rings are special rings where the beam is injected from a linac. Once stored it is forced to strongly emit synchrotron radiation by dipoles and insertions (WIGGLERS, UNDULATORS). In this way the beam emittance it is reduced and the beam can be extracted and send to the interaction point

Light sources - SR rings

- A part form the high energy physics (damping rings) the synchrotron radiation is much more used in the light sources.
- Special rings are studied to emit high brillance photon fluxes by synchrotron radiation. The particular characteristics of spectrum and intensity are extremely attractive for a wide spectrum of physics research fields like the material science, medical science, biology, cristallography etc etc
- Also in this case the use of insertion devices is extremely attractive due to their characteristics in flux and spectrum
- To produce and preserve the light beam also the electron beam characteristics must be performing. Again a little emittance and a strong current is required.

Colliders

- For HEP. Two beams (particle - antiparticle or particle-particle ... see LHC)
- Counter-propagating in two separate rings or in the same ring.
- Same energy or different energy (b factories)
- In a certain region they cross an Interaction Point => Physics
- Usually IP are in the detectors (that usually have solenoids...). Coupling of x / y coordinate ask for special magnets to compensate for the coupling. This is provided by rotated quadrupoles called: skew quadrupoles.
- Also in this case, to increase the luminosity, we need high current and small beam sizes, so little emittances.

- Can be done in one ring for same energy beams and opposite charge (e.g., e+e-, protonantiproton)

.... PETRA, TRISTAN, LEP,
..... Spps, Tevatron
- More freedom with two rings

PEPII, KEKB, LHC, ...

Limitation: Synchrotron Radiation

- Charged particles lose energy by synchrotron radiation
- proportional to $1 / \mathrm{m}^{4}$
- Loss per turn (electron)

$$
U=0.088 \frac{E^{4}[\mathrm{GeV}]}{\rho[\mathrm{m}]}
$$

[MeV]

The First Electron-Positron Collider:

 AdA- First beam in 1961 in Italy
- Moved to Orsay, France
- The first beam collision in 1964
- Orbit radius 65 cm , collision energy 0.5 GeV

Energy of Collider Ring

- Proton/antiproton
- Ring size
- Magnetic field
- Synchrotron radiation (future)
- Electron/positron
- Ring size
- Synchrotron radiation
- Electric power consumption

Era of Huge Ring Colliders:

SPS: Super Proton Synchrotron

- Large proton synchrotron at CERN
- Operation start in 1976
- Reached 500GeV
- Remodeled into the first proton-antiproton collider

TEVATRON

- FNAL
- Proton-antiproton
- circumference 6.3 km
- up to $\sim 1 \mathrm{TeV}$
- Completed in 1983
- Superconducting magnet 4.2 Tesla - 1995 Top Quark
- 2009 shutdown

Main Injector in front and Tevatron hehind

LEP

- LEP (Large Electron-Positron Collider)
- CERN
- Construction started in 1983, operation in 1989
- circumference 27 km
- First target Z^{0} at 92 GeV
- Final beam energy 104.5 GeV
- end in 2000

LHC

- Latest step to higher energies
- Reuse of LEP tunnel
- Circumference 27 km
- 14 TeV proton-proton
- magnetic field 8.33 Tesla
- Higgs

http://athome.web.cern.ch/athome/LHC/lhc.html

LINACS

Linear Accelerator (Linac)

- Drift tube type

- The progress of microwave technology during World War II
- Application to accelerator after WW II

Electron Linac -> riding the wave

- Velocity is almost constant above MeV
- No need of changing tube length
- Resonator type
- $\mathrm{V}_{\mathrm{ph}}=\mathrm{V}_{\text {part }}$ by insertion of iris (if not $\mathrm{v}_{\mathrm{ph}}>\mathrm{c}$...)

Microwave

Acceleration - LINACS

- Particle are accelerated by linear structures (LINACS). Two main technologies
a) Warm (usually @ 3 GHz): high gradient are possible ~ $100 \mathrm{MeV} / \mathrm{m}$ (high power in short trains, high frequency $->10 \mathrm{GHz}$). This only at very reduced duty cycle. It can work in CW with very low gradients ($\sim 1 \mathrm{MeV} / \mathrm{m}$).
Special devices are able to compress the source energy to reduce the pulse length but increase the gradient. These are called the SLED cavities
b) Cold (SC usually @ 1.3 GHz to take into account wake fields): It can accelerate very important average currents with strong gradients (\sim $15 \mathrm{MeV} / \mathrm{m} \mathrm{CW}, \sim 30 \mathrm{MeV} / \mathrm{m}$ pulsed). Gradients are limited by SC state and by critical magnetic field

SLED \longrightarrow

SC example TTF

Linac	TESLA	TTF Linac design/achieved
Accel. grad. [MV/m] with beam	23.4	$15 / 14,19,22$
Unloaded quality factor $\left[10^{10}\right]$	1.0	$0.3 />1.0$
No. of cryomodules	2628	$4 / 3+2$
Energy spread, single bunch rms	5×10^{-4}	$\approx 10^{-3} / 10^{-3}$
Energy variation, bunch to bunch	5×10^{-4}	$\approx 2 \times 10^{-3} / 2 \times 10^{-3}$
Bunch length, rms $\mu \mathrm{m}]$	300	$1000 / 400$
Beam current $[\mathrm{mA}]$	9.5	$8 / 7$
Beam macro pulse length $[\mu \mathrm{s}]$	950	$800 / 800$

Table 1: TESLA-500 - TTF Linac parameters comparison.

Figure 1: Schematic layout of the TESLA Test Facility Linac (TTFL). The total length is about 120 m .

Normal Conductive

Super Conductive

RF BANDS

Band	Frequency range	Origin of name
HF band	3 to 30 MHz	High Frequency
VHF band	30 to 300 MHz	Very High Frequency
UHF band	300 to 1000 MHz	Ultra High Frequency
L band	1 to 2 GHz	Long wave (SC accelerators)
S band	2 to 4 GHz	Short wave (NC accelerators)
C band	4 to 8 GHz	Compromise between S and X
X band	8 to 12 GHz	(CLIC II, NLC)
Ku band	12 to 18 GHz	
K band	18 to 27 GHz	(CLIC I)
Ka band	27 to 40 GHz	
V band	40 to 75 GHz	
W band	75 to 110 GHz	W follows V in the alphabet
mm band	110 to 300 GHz	

Summarizing : Particle Accelerators

- Linacs : Linear Accelerators - Can be pulsed or CW (not in HEP... too much power to dump). Particle are accelerated in straight lines and delivered to a) physics b) rings
- Circular, Rings (colliders, boosters, damping rings, synchrotrons, cyclotrons...). Accelerated particles are injected. They stay on a nominal orbit defined by the ring MAGNETS. The energy lost by synchrotron radiation is recuperated by means of e.m cavities.
- ERL : new concept to allow to run ~quasi linear accelerators in cw regime. This needs (only one ecception) the SuperConductive (SC) technology

Accelerator complex: general scheme

Particle Source Creation and shaping
"preparation" Ring (my definition...) damping ring, boosters

Colliders
IP Physics (for linear colliders)

Accelerator physics basics

What's the accelerator behavior?

A huge and very particular Harmonic Oscillator

Particle transverse motion

- Let's start by tracking one particle
- $1^{\text {st }}$ => chose the good reference system (fundamental)
- For accelerator can be very complex (due to the design geometry) but
- We can define a design trajectory
- We obtain a reference trajectory.
- The goal is to keep all the particle 'confined' in respect to the reference trajectory remember the beam definition..) -> Recall Force

An accelerator is designed around a reference trajectory (design orbit in circular accelerators), which is:

1. Straight line in drift and focusing element (no field on the axe)
2. Arc of circle in dipole magnet, horizontal or vertical (Transfer lines)
3. r is the local radius of curvature

On this trajectory, a particle is represented by a curved abscissa : s

Reference system -> riding the reference particle

So we will describe the particle motion as a little deviation form the reference particle, moving on the reference trajectory in s coordinate: travelling reference system! => Frenet-Serret System
$\vec{u}_{s} \quad$: tangent to the reference trajectory
$\left(\vec{u}_{x}, \vec{u}_{y}, \vec{u}_{s}\right) \quad \vec{u}_{y} \quad:$ vertical
\vec{u}_{x} : in horizontal plan

Recall forces

MAGNETS

- Why magnets ?:
- 1) Not needed to be integrated under vacuum
- 2) Efficiency given by the technological limits:

In theory the magnetic force is efficient at relativistic velocity: $F \downarrow E=\beta F \downarrow B$
But let's take into account the technological limits. Iron saturation is 2 T , Electric field breakdown threshold in vacuum ~ $10 \mathrm{MV} / \mathrm{m}$. So also taking into account $a \beta$ of 0.1 we have:
$F \downarrow E / F \downarrow B=10 M V / m / 2 T * 31018=0.1 \Rightarrow F \downarrow E / F \downarrow B=10 M V / m / 2 T * 0.1 * 310 \uparrow 8=$ 1/6

So already at non relativistic energy B field win!!!

Main type of magnets

- To bend : Dipoles

- To focalise : Quadrupoles
- Chromatic corrections :sextupoles, octupoles

Multipoles

The general equation for B allows us to write the field for any n-pole magnet. Examples of upright magnets:

180° between poles
$n=2$: Quadrupole $n=3$: Sextupole

90° between poles

60° between poles
$n=4$: Octupole

45° between poles

- In general, poles are $360^{\circ} / 2 n$ apart.
- The skew version of the magnet is obtained by rotating the upright magnet by $180^{\circ} / 2 n$.

Dipole

Quadrupole

Sextupole

Equation of motion

- To get a final motion equation we have to transform $r \not p p$ and $v \not p p$ in the lab system, and $\mathrm{d} / \mathrm{d} t$ in d/ds (reference)
- At the end we can plug the components in the equation given by the Lorentz force:
$r=q / m(r \times B)$
This gives the system:

Linearization

$$
\begin{aligned}
& x^{\prime \prime} \dot{s}^{2}+x^{\prime} \ddot{s}-\frac{\dot{s}^{2}}{\rho}\left(1+\frac{x}{\rho}\right)=\frac{q}{m}\left(\dot{s}\left(1+\frac{x}{\rho}\right) B_{y}-y^{\prime} B_{s}\right) \\
& y^{\prime \prime} \dot{s}^{2}+y^{\prime} \ddot{s}-\frac{\dot{s}^{2}}{\rho}\left(1+\frac{x}{\rho}\right)=\frac{q}{m}\left(-\dot{s}\left(1+\frac{x}{\rho}\right) B_{x}+\dot{s} x^{\prime} B_{s}\right)
\end{aligned}
$$

We are looking for linear motion: we need to linearize.
Our Approximations:

1) Velocity effect in the magnet negligible (vs \gg vtrans) $->\ddot{s}=0$
2) $\vec{B}=\left(B_{x}, B_{y}, 0\right) \quad$ (almost true)
3) $\frac{\mathrm{v}}{\dot{s}}=\sqrt{\left(1+\frac{x}{\rho}\right)^{2}+y^{12}+x^{\prime 2}} \approx\left(1+\frac{x}{\rho}\right) \quad$ (little deviations in transverse plane)
4) $\frac{\mathrm{p}_{0}}{\mathrm{p}} \cong\left(1-\frac{\Delta p}{p}\right) \quad$ little momentum deviations
5) $\frac{\mathrm{q}}{\mathrm{p}} B_{y} \approx k x-\frac{1}{\rho}$ and $\frac{\mathrm{q}}{\mathrm{p}} B_{x} \approx k y$ Espansions of the B field up to the linear term (Qpoles). Little deviations

HILL's equation

- After the substitution (ref) in the equations we get to the linear equations of motion

$$
\begin{aligned}
& x \uparrow^{\prime \prime}-(k-1 / \rho \upharpoonright 2) x=1 / \rho \Delta p / p \downarrow 0 \\
& y \uparrow^{\prime \prime}+k y=0
\end{aligned}
$$

- Harmonic oscillators but k and r are $k(s)$ and $r(s)!!!!!!!!$
- In general the Hill's equation will be
$\mathrm{x} \lambda^{\prime \prime}+k(s) \mathrm{x}=a(s)$

Homogeneous solutions

- Being solution of a $2^{\text {nd }}$ order differential equation the solution will be oscillatory.....we call it Sin Like and Cos like: S(s), C(s)
- They obviously satisfy:
$\mathrm{S} \downarrow H \gamma^{\prime \prime}(s)+k(s) \mathrm{S} \downarrow H(s)=0$
$\mathrm{C} \downarrow H \uparrow^{\prime \prime}(s)+k(s) \mathrm{C} \downarrow H(s)=0$
For every transport element...so knowing $k(s)$ we can find S and C...but we also know that from the general solution:

$$
\begin{aligned}
& x(s)=A C(s)+B S(s) \\
& x \uparrow^{\prime}(s)=A C \uparrow^{\gamma}(s)+B S \uparrow^{\prime}(s)
\end{aligned}
$$

Imposing * $C(0)=1, C^{\prime}(0)=0, S(0)=0, S^{\prime}(0)=1$
$x(s)=C(s) x \downarrow 0+S(s) x \downarrow 0 \uparrow^{\prime}$
$x \uparrow^{\prime}(s)=C \uparrow^{\prime}(s) x \downarrow 0+S \uparrow^{\top}(s) x \downarrow 0 \uparrow^{\prime}$

$$
\text { So in matrix form : } \quad\left(■ x @ x r^{\prime}\right)=\left(\square C \& S @ C r^{\prime} \& S r^{\prime}\right)\left(\square x \downarrow 0 @ x \downarrow 0 r^{\prime}\right)
$$

Like in the general case...!!!
So: $x(s)=x \downarrow 0 C(s)+x \downarrow 0 \uparrow^{\prime} S(s)+N H$ solution

Non Homogeneous Solutions

$x(s)=x_{H}(s)+x_{N H}(s):$
$\mathrm{x} \downarrow N H \uparrow^{\prime \prime}(s)+k(s) \mathrm{x} \downarrow N H(s)=1 / \rho(s) \Delta p / p \downarrow 0$

In a beam (particle ~ at the same momentum) $\Delta \mathrm{p} / \mathrm{p}_{0}$ is supposed to be a constant. So we can normalize the non homogeneous solution. The normalized solution will be the Dispersion function $D(s)$:
$D(s)=x \downarrow N H(s) / \Delta p / p \downarrow 0$
So the general solution will be : $x(s)=x \downarrow 0 \mathrm{C}(\mathrm{s})+x \downarrow 0 \uparrow^{\prime} \mathrm{S}(\mathrm{s})+p(s) \Delta p / p \downarrow 0$
Green=Homogeneous / Bleu=Non Homogeneous
Physical meaning: The dispersion function give the deviation from the reference orbit due to a difference in the reference momentum. Since it is a deviation its dimensions are [m]

Summarizing

- Tracking (for sake of simplicity we took only the horizontal component, the plane of motion...in y usually $D=0$)

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
\frac{\Delta p}{p_{0}}
\end{array}\right)_{s}=\left(\begin{array}{ccc}
C(s) & S(s) & D(s) \\
C^{\prime}(s) & S^{\prime}(s) & D^{\prime}(s) \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
x_{0}^{\prime} \\
\frac{\Delta p}{p_{0}} @_{0}
\end{array}\right)
$$

C, S, D defined by the Hill's equations solutions in each element. After that we have the matrix with each element we can multiply them to define a line or a ring for LINEAR particle tracking

Back to accelerators and particles

- x,y transverse coordinates in respect the reference particle
- x^{\prime}, y^{\prime} can be angles defining the TRACE SPACE (x, x^{\prime}) or momenta defining the PHASE SPACE (x, P_{x})
- The vector $\left(x, x^{\prime}\right)$ represent the dynamical state of the particle
- In complex transport system, in linear approximation, we can solve the equations for each part of the trajectory obtaining $M_{1}, M_{2} \ldots M_{n}$.
- The final particle state will be represented by $r_{f}=$ $M_{n} \cdot M_{n-1} \cdot \ldots M_{1} \cdot r_{0}$ with $r=\left(x, x^{\prime}\right)$
- M coefficients COS AND SIN like -> H oscillator

NOW:

1) Let's see the application to accelerators
(coordinates transformation, eq of motion, recall forces...)
2) Also after this the problem is not solved : N particles (10^{10} in a bunch), N turns, N elements/ turn, collective effects....
....impossible to design with tracking...we need parametrization

Periodic focusing (PF) : solutions

$$
\begin{array}{lll}
u^{\prime \prime}+K(s) \cdot u=0 \quad \text { With : } & K(s+S)=K(s) \\
\text { Hill equation } & S: \text { focusing period }
\end{array}
$$

ANSATZ COS like Solution : Given by the Floquet theorem

$$
u(s)=\sqrt{\varepsilon \cdot \beta(s)} \cdot \cos (\phi(s))
$$

$\beta(s+S)=\beta(s) \quad$ The beta function at position s

$$
\mu\left(s / s_{0}\right)=\phi(s)-\phi\left(s_{0}\right)=\int_{s_{0}}^{s} \frac{d s}{\beta(s)}
$$

The phase advance between s_{0} and s For one turn $=Q=$ TUNE
($\varepsilon=$ EMITTANCE and invariant given by particle initial conditions)
The motion is then a pseudo-harmonic oscillation with varying amplitude and frequency. This transverse motion is called the betatron oscillation.

PF : Courant-Snyder parameters

Let's define:

$$
\alpha(s)=-\frac{\beta^{\prime}(s)}{2} \quad \gamma(s)=\frac{1+\alpha(s)^{2}}{\beta(s)}
$$

α, β and γ are the Courant-Snyder parameters of the motion

It is easy to show that :

$$
\gamma \cdot u^{2}+2 \cdot \alpha \cdot u \cdot u^{\prime}+\beta \cdot u^{\prime 2}=U
$$

This is an ellipse equation.

Particle is moving on an ellipse whose shape is given by Courant-Syder parameters.
$U=\varepsilon$ is the courant-Snyder invariant linked to a particle

- Particle
..... Particle ellipse

Phase-space trajectory
Phase-space periodic looks

Defoc				
	duad midd			
	\ddots			
		\ddots		

$\mathrm{a}:=1$

Let's calculate the transfer matrix $M\left(s / s_{0}\right)$ from s_{0} to s.

$$
\begin{aligned}
& u(s)=\sqrt{\frac{\beta}{\beta_{0}}} \cdot\left(\cos \mu+\alpha_{0} \cdot \sin \mu\right) \cdot u\left(s_{0}\right)+\sqrt{\beta \beta_{0}} \cdot \sin \mu \cdot u^{\prime}\left(s_{0}\right) \\
& u^{\prime}(s)=-\left(\frac{\alpha-\alpha_{0}}{\sqrt{\beta \beta_{0}}} \cdot \cos \mu+\frac{1+\alpha \alpha_{0}}{\sqrt{\beta \beta_{0}}} \cdot \sin \mu\right) \cdot u\left(s_{0}\right)+\sqrt{\frac{\beta_{0}}{\beta}} \cdot(\cos \mu-\alpha \cdot \sin \mu) \cdot u^{\prime}\left(s_{0}\right)
\end{aligned}
$$

m is the phase advance from s_{0} to s.
$M\left(s / s_{0}\right)=\left(\begin{array}{cc}\sqrt{\frac{\beta}{\beta_{0}}} \cdot\left(\cos \mu+\alpha_{0} \cdot \sin \mu\right) & \sqrt{\beta \beta_{0}} \cdot \sin \mu \\ \frac{\alpha_{0}-\alpha}{\sqrt{\beta \beta_{0}}} \cdot \cos \mu-\frac{1+\alpha \alpha_{0}}{\sqrt{\beta \beta_{0}}} \cdot \sin \mu & \sqrt{\frac{\beta_{0}}{\beta}} \cdot(\cos \mu-\alpha \cdot \sin \mu)\end{array}\right)$

Transfer matrix of 1 period

$$
M\left(s_{0}+S / s_{0}\right)=\left(\begin{array}{cc}
\cos \mu+\alpha_{0} \cdot \sin \mu & \beta_{0} \cdot \sin \mu \\
-\gamma_{0} \cdot \sin \mu & \cos \mu-\alpha_{0} \cdot \sin \mu
\end{array}\right)
$$

If M is the matrix of one period (or lattice) from s_{0} to $s_{0}+S$:

$$
\left\{\begin{aligned}
\cos \mu & =\frac{1}{2} \cdot\left(M_{11}+M_{22}\right) \\
\beta_{0} & =\frac{M_{12}}{\sin \mu} \\
\gamma_{0} & =-\frac{M_{21}}{\sin \mu} \\
\alpha_{0} & =\frac{M_{11}-M_{22}}{2 \cdot \sin \mu}
\end{aligned}\right.
$$

Errors

- Impulsional D errors in s_{0} can be expressed in the form of the Green functions:

$$
X_{c o}(s)=G\left(s, s_{0}\right) \theta\left(s_{0}\right)
$$

With $\quad \mathrm{G}(s, s \downarrow 0)=\sqrt{ } \beta \beta \downarrow 0 / 2 \sin \pi Q \cos (\pi Q-/ \varphi(s)-\varphi(s \downarrow 0) /)$ (believe me...)

So the orbit response is the product of the Green function by the kick itself. Q at denominator!!!!!!!!!!!!!!

Tune diagram

Resonance:

$$
n_{x} \cdot Q_{x}+n_{y} \cdot Q_{y}=n
$$

Resonance's order:

$$
\left|n_{x}\right|+\left|n_{y}\right|
$$

Emittance and Twiss parameters

The best ellipse fitting the particle distribution is:

$$
\gamma_{t u} \cdot u^{2}+2 \cdot \alpha_{t u} \cdot u \cdot u^{\prime}+\beta_{t u} \cdot u^{\prime 2}=A_{u}
$$

Such as:

$$
\begin{aligned}
& \beta_{t u}=\frac{u_{r m s}^{2}}{\varepsilon_{u, r m s}}=\frac{\sigma_{u}}{\varepsilon_{u, r m s}} \\
& \gamma_{t u}=\frac{u_{r m s}^{\prime 2}}{\varepsilon_{u, r m s}}=\frac{\sigma_{u}^{\prime}}{\varepsilon_{u, r m s}} \\
& \alpha_{t u}=-\frac{u u_{r m s}^{\prime}}{\varepsilon_{u, r m s}}=-\frac{\sigma_{u u^{\prime}}}{\varepsilon_{u, r m s}}
\end{aligned}
$$

are the beam Twiss Parameters

Sigma matrix : definition

Let's concentrate on ellipse :

$$
\gamma_{t} \cdot u^{2}+2 \cdot \alpha_{t} \cdot u \cdot u^{\prime}+\beta_{t} \cdot u^{\prime 2}=\varepsilon_{u, r m s}
$$

It can be also written :

$$
U^{T} \cdot[\sigma]^{-1} \cdot U=I
$$

$U=\binom{u}{u^{\prime}}$ is a vector given the particle position in phase-space
$[\sigma]=\left(\begin{array}{cc}\sigma_{u} & \sigma_{u u^{\prime}} \\ \sigma_{u u^{\prime}} & \sigma_{u^{\prime}}\end{array}\right)=\left(\begin{array}{cc}\beta_{t u} & -\alpha_{t u} \\ -\alpha_{t u} & \gamma_{t u}\end{array}\right) \cdot \varepsilon_{u, r m s} \quad$ is a beam sigma matrix

- We described the accelerators with parameters: we can describe the general behavior and FITT!!!!!
- $\alpha, \beta, \gamma, Q, D,($ Accelerator)
- ε, σ (Beam)

The statistical emittance : Beam RMS (Root Mean Square) dimensions. Covariance ellipse of the particle distribution. Liouville Theorem

Average of function $A\left(\vec{r}, \vec{r}^{\prime}\right)$ on the beam :

$$
\left\langle A\left(\vec{r}, \vec{r}^{\prime}\right)\right\rangle=\frac{1}{n} \cdot \sum_{i=1}^{n} A\left(\vec{r}_{i}, \vec{r}_{i}^{\prime}\right)=\frac{1}{N} \cdot \iint f\left(\vec{r}, \vec{r}^{\prime}\right) \cdot A\left(\vec{r}, \vec{r}^{\prime}\right) \cdot d \vec{r} \cdot d \vec{r}^{\prime}
$$

Ex:C.o.g. position :

$$
\left(\langle u\rangle,\left\langle u^{\prime}\right\rangle\right)
$$

RMS Size:

$$
u_{r m s}=\sqrt{\sigma_{u}}=\sqrt{\left\langle(u-\langle u\rangle)^{2}\right\rangle}
$$

RMS Divergence :

$$
u_{r m s}^{\prime}=\sqrt{\sigma_{u^{\prime}}}=\sqrt{\left\langle\left(u^{\prime}-\left\langle u^{\prime}\right\rangle\right)^{2}\right\rangle}
$$

Coupling term :

$$
u u_{r m s}^{\prime}=\sigma_{u u^{\prime}}=\left\langle(u-\langle u\rangle) \cdot\left(u^{\prime}-\left\langle u^{\prime}\right\rangle\right)\right\rangle
$$

RMS emittance :

$$
\varepsilon_{u, r m s}=\sqrt{u_{r m s}^{2} \cdot u_{r m s}^{\prime 2}-\left(u u_{r m s}^{\prime}\right)^{2}}
$$

Longitudinal plane:
 Same big H Oscillator but:

1) The recall force is given by a RF Cavity
2) Due to 1) non linearities
$f_{1} \quad-$ The particle is accelerated

- The particle arrives earlier - tends toward f_{0}

The cavity acts as a

longitudinal lens

Synchrotron oscillations
$f_{2} \quad-$ The particle is decelerated

- The particle arrives later - tends toward f_{0}

For small phase oscillation in the phase space (phase,energy) We can get again to a second order differential equation (damped Harmonic oscillator....)

$$
\begin{aligned}
& \ddot{\varphi}+2 \tau \dot{\varphi}+\Omega^{2} \varphi=0, \quad \text { Let's think to a very slow damping so } \tau=0 \\
& \text { with } \varphi=\Psi-\Psi_{s}, \tau=\text { damping decrement, } \Omega^{2}=\text { synchrotron frequency } \\
& \text { if the accelerating potential is RF (sinusoidal) } \Omega^{2}=\frac{c k \eta_{c}}{c T_{0} p_{0}} q \hat{V} \operatorname{Cos} \Psi_{\mathrm{s}} \\
& \text { with } \mathrm{T}_{0}=\text { time of flight }=\mathrm{L}_{0} / c \beta, \widehat{V}=r e f \text { potential } \mathrm{V}=\widehat{V} \sin \Psi \\
& \text { if } \mathrm{f}_{\mathrm{rf}}=h f_{r e v}(\mathrm{~h}=\text { integer }) \quad \Omega^{2}=\omega_{r e v}^{2} \frac{h \eta_{c}}{2 \pi \beta c p_{0}} q \widehat{V} \operatorname{Cos} \Psi_{\mathrm{s}} \\
& \text { similar to betatron motion we have a syncrotron tune } v_{\mathrm{s}}=\frac{\Omega}{\omega_{r e v}}
\end{aligned}
$$

- So also for the longitudinal coordinates (phase space) the particle follow an oscillatory motion characterized by a frequency (a wavelength for β) and a tune.
- The area of the longitudinal phase space that represent a stable motion is called "bucket"
- Before we neglect the τ. But this is important (cooling). This is possible if the energy loss is dependent from the particle energy itself.
$\tau=-\left(1 / 2 T_{0}\right)(d U / d E)_{E_{0}}$
Synchroton and Betatron motion are damped by synchrotron radiation emission!!!!!!

Energy loss per turn and related parameters for various electron storage rings

	E (GeV)	ρ (m)	L (m)	$\mathrm{T}_{\mathbf{0}}$ $(\mu \mathbf{s})$	$\mathbf{U}_{0, \text { dip }^{*}}$ $\left(\mathrm{MeV}^{*}\right.$
Adone	.51	5	105	.35	.001
DAФNE	.51	1.4	98	.31	.004
PEP B LE	3.1	30.5	2200	13.6	.27
PEP B HE	9.0	165	2200	13.6	3.5
LEP	100.	3100	3104	89	2855

The same quantities for the LHC proton storage ring

	E	$\mathrm{\rho}$	L	$\mathrm{~T}_{0}$	$\mathrm{U}_{0, \text { dip }}$
LHC	(GeV)	(m)	(m)	(s)	(MeV)
	7700	2568	3104	89	.011

* dip = from dipoles, excluding contributions from wigglers

Synchrotron Cooling (heating?)

- Without energy losses the 6D emittance is an invariant of motion
- But particle loose energy by synchrotron radiation. This energy is restored in the RF cavities by a longitudinal field
- In longitudinal motion higher energy particles lose more energy than the lower energy ones. They recover energy with the same field -> The motion is damped -> cooling
- In transverse space the synchrotron radiation is emitted in a $1 / \gamma$ cone. Loss of transverse momentum. The energy is recovered longitudinally \rightarrow Angle damping, position unchanged \rightarrow cooling

Longitudinal damping

- (longitudinal motion)
$d \uparrow 2 \tau / d t \uparrow 2+2 \alpha \downarrow E d \tau / d t+\omega \downarrow s \uparrow \uparrow 2 \tau=0$
with $\alpha \downarrow E=W / 2 T \downarrow 0, W=d U / d E \mid \downarrow E=E \downarrow 0, U=$ synchrotron radiated energy, $\omega \downarrow_{s} \uparrow=-\alpha \downarrow_{c} q V / E T \downarrow 0, \alpha \downarrow_{c}=m o m e n t u m$ compaction

Damped solution: $\tau(t)=A e \uparrow-\alpha \downarrow E t \cos (\omega \downarrow s t-\varphi \downarrow 0)$

Transverse Damping, Vertical motion

Effect of energy loss due to photon emission and energy gain in the RF cavity

z. Energy gain in r.f. cavity:

In the vertical plane the particle undergoes Betatron oscillations. So the vertical displacement will be $y=A \sqrt{ } \beta \cos \theta, y \uparrow^{\prime}=-A / \sqrt{ } \beta$ $\sin \theta$ where the amplitude A is given by the Courant Snyder invariant $A \uparrow 2=\gamma y \uparrow 2+2 \alpha y y \uparrow^{\prime}$ $+\beta y \uparrow 2$

For every turn the lost energy (SR with $1 / \gamma$ angle) is restored by the RF cavity (zero angle).
This change the longitudinal momentum. For the zero synchrotron amplitude particle :
$\Delta p / p=\Delta y^{\prime} / y^{\prime}=U / E$ with $U \rightarrow$ energy lost by $S R$ and E-> nominal energy.
AVERAGE EFFECT: Using the Amplitude definition it is possible to demonstrate that after many kicks, in average,
(averaged on all the betatron phases) the amplitude to the first order will vary as : $\langle\Delta A\rangle / A=-U / 2 E$ So we will have that $d A / d t=-U / 2 E T \downarrow 0 \quad A$ with a damped solution $A e \uparrow-t / \alpha \downarrow y$ with $a t y=U / 2 E T \downarrow 0 \rightarrow$ damping decrement.

Can we go to zero emittance?

- NO
- Why?
- Photons are stochastically emitted in a very short time $\sim \rho / c \gamma$
- This is much shorter than the revolution period. So emissions are instantaneous.. In this Δt the particle makes a discontinuous energy jump. Emissions are independent so the obey the Poisson distribution. These emissions perturb the particle orbit adding a random noise spread, so increasing the average oscillations.
- Equilibrium is attained when the quantum fluctuation rate equals the radiation damping

Quantum excitation

- In the energy domain a particle with ΔE in respect to the nominal energy undergoes to synchrotron oscillations with amplitude A.
- If at t_{1} a photon with energy u is emitted ΔE will be
$\Delta E=A \downarrow 0 e \uparrow j \omega(t-t \downarrow 0)-u e \uparrow j \omega(t-t \downarrow 0)=A e \uparrow j \omega(t-t \downarrow 0)$ with $A \uparrow 2=A \downarrow 0 \uparrow \uparrow 2+u \uparrow 2-2 A \downarrow 0 \uparrow \mathrm{u} \cos \omega(t-t \downarrow 0)$

Since the emission is independent \dagger is equally distributed in time and in average the oscillatory term will disappear giving:
$\delta A \uparrow 2=\langle A \uparrow 2-A \downarrow 0 \uparrow \uparrow 2) \downarrow t=u \uparrow 2$
So we will have:
$\mathcal{N}=$ emission rate

$$
\langle d A \uparrow 2 / d t\rangle=d\langle A \uparrow 2\rangle / d t=\mathcal{N} u \uparrow 2 \text { with }
$$

COLLISIONS

Collisions energy in a collider

The frame of the center of mass for a system of particle is defined as the frame in which the momenta sum is zero

Let's take a head-on collision, the invariance requires:

For two particles: $\frac{\left(E_{1}^{C M}+E_{2}^{C M}\right)^{2}}{c^{2}}=\frac{\left(E_{1}+E_{2}\right)^{2}}{c^{2}}-p_{1}^{2}-p_{2}^{2}-2 p_{1} p_{2}$
But if relaticistic $p \sim m c=E / c$ and taking $\Rightarrow p_{1}=-p_{2}$
Substituting we obtain: $\quad E_{1}^{C M}+E_{2}^{C M}=2 \sqrt{E_{1} E_{2}}$

Cross section

Let's first take into account a Fixed target of length I and infinite size. The target has density n.

The cross section will measure the number of interactions per particle and unit density \& interaction length

$$
\begin{aligned}
& N=\sigma \times n \times 1 \\
& \sigma=N /(n \times l)
\end{aligned}
$$

Cross Section [cm²]

So if we have 1 particle crossing a target of 1 cm with a density of $1 \times \mathrm{cm}^{-3}$ we will obtain σ interactions.
o DEPEND ON THE CONSIDERED EVENTS!!!
Unit = barn (symbol b) Système international, $10^{-28} \mathrm{~m}^{2}$.

Luminosity

- Let's take into account a beam with Np particles per second impinging on our target. The Rate will be:
- $R=d N / d t=\sigma n N p I=\sigma L$ (with $L=n N p l)$

Luminosity $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right.$]:
Luminosity is the event rate per unit cross section
Usually
Istantaneous L =Inverse Barn s ${ }^{-1}$
Integrated L=Inverse Barn
So if we have cross section = 1 we will count L events per second Independent from physics...depends on the machine

Example

- Single Bunch
- Head-on Collision
- Counter-rotating Beams with Longitudinal Speed v
- Revolution Frequency f_{R}

$$
L=2 v f_{R} \iiint \int d x d y d z d t n_{+}(x, y, z, t) n_{-}(x, y, z, t)
$$

MAXIMIZE THE EXPLOITABLE LUMINOSITY IS THE GOAL OF WHATEVER COLLIDER....

Gaussian beams, crossing angle, no hourglass

- L=frep $N \downarrow 1 N \downarrow 2 / 2 \pi 1 / \sqrt{ } \sigma \downarrow y 1 \uparrow 2+\sigma \downarrow y 2 \uparrow 21 / \sqrt{ }(\sigma \downarrow x 1 ~ \uparrow 2$ $+\sigma \downarrow x 2 \uparrow 2) \operatorname{Cos} \vartheta+(\sigma \downarrow z 1 \uparrow 2+\sigma \downarrow z 2 \uparrow 2) \operatorname{Sin} \vartheta \downarrow$

If beam sizes are the same and the crossing angle is little
$L=$ frep $N \downarrow 1 N \downarrow 2 / 4 \pi 1 / \sigma \downarrow y 1 / \sqrt{\sigma} \downarrow x 12+$
$(\sigma \downarrow z \vartheta) 12 \downarrow=$ frep $N \downarrow 1 N \downarrow 2 / 4 \pi 1 / \sigma \downarrow x$
$\sigma \downarrow y 1 / \sqrt{1}+(\sigma \downarrow z / \sigma \downarrow x \vartheta) \uparrow 2=\downarrow$
$\mathrm{L}=$ cost/Area $1 / \sqrt{1}+\varphi \uparrow 2 \Rightarrow \varphi=\sigma \downarrow z / \sigma \downarrow x \quad \vartheta=$ PIWINSKI ANGLE \downarrow

What are the luminosity limits?

Geometrical effects

Hourglass Effect:

Too small beta reduce the "good" interaction point longitudinal region...

Final focus and Hourglass

Physical effects

Beam-beam effects: the beam

Beam-beam effects

- Different effects:
- 1)Increase luminosity (focusing (pinch) effect)
- 2)Disruption (no re-using)
- 3)Tune shift (spread....), luminosity decrease

$$
\begin{aligned}
& \begin{array}{c}
\text { Beam-Beam } \\
\text { Deflection } \\
\text { (off-center particles) }
\end{array} \\
& \Delta y \ll \sigma_{y}^{*} \quad \Delta x \ll \sigma_{x}^{*} \\
& \Delta y^{\prime} \cong-\frac{1}{f_{y}} \Delta y \quad f_{y}^{-1}=\frac{2 N r_{e}}{\gamma \sigma_{y}^{*}\left(\sigma_{x}^{*}+\sigma_{y}^{*}\right)} \\
& \Delta x^{\prime} \cong-\frac{1}{f_{x}} \Delta x \quad f_{x}^{-1}=\frac{2 N r_{e}}{\gamma \sigma_{x}^{*}\left(\sigma_{x}^{*}+\sigma_{y}^{*}\right)}
\end{aligned}
$$

Linear Beam-Beam Tune Shift

$$
\xi_{y}^{+}=\frac{N_{-} r_{e} \beta_{y}^{*+}}{2 \pi \gamma \sigma_{y}^{-}\left(\sigma_{y}^{-}+\sigma_{x}^{-}\right)}=\Delta Q_{y} \quad \xi_{x}^{+}=\frac{N_{-} r_{e} \beta_{x}^{*+}}{2 \pi \gamma \sigma_{x}^{-}\left(\sigma_{y}^{-}+\sigma_{x}^{-}\right)}=\Delta Q_{x}
$$

Pinch Enhancement

- During collision, the bunches focus each other (f-focusing or pinching) leading to an increase in luminosity
- Luminosity enhancement factor : $H_{D}=\frac{L}{L_{0}}=\frac{\sigma_{x 0} \sigma_{y 0}}{\sigma_{x} \sigma_{y}}$
- Very few analytical results exist on this parameter.
- Empirical fit to beam-beam simulation results gives

$$
H_{D_{x, y}}=1+D_{x, y}^{1 / 4}\left(\frac{D_{x, y}^{3}}{1+D_{x, y}^{3}}\right)(\begin{array}{c}
\uparrow
\end{array}\left(\sqrt{D_{x, y}}+1\right)+2 \underbrace{2 \ln \left(\frac{0.8 \beta_{x, y}}{\sigma_{z}}\right)})
$$

Only a function of disruption parameter $D_{x, y}$
Hour glass effect

Disruption

Let's take a test particle crossing the opposite beam:

- Opposite bunch => Gaussian
-Test particle $\Delta y \ll \sigma_{y}$ (particle near the axis)
-Initial $\mathrm{P}_{\mathrm{T}}=0$
-We have seen the deflection angles
-We introduce $D_{x, y}=\sigma_{z} / f_{x, y}$
$-D \ll 1=>$ the beam is a thin lens
-D>>1 long focalizing lens. The particle trajectory follows an oscillatory path inside the bunch.

BeamStrahlung

Particles travel on curved trajectories
Synchrotron radiation \rightarrow in beam-beam interaction called beamtrahlung
Quantum recoil -> Energy losses and spread
Particles collides at different energies than the reference one
Physics cross section are affected with threshold scans
Particles with large energy loss cannot circulate around the ring (momentum bandwidth) = > Affects the beam life time

- The critical energy is characterized by the upsilon parameter

$$
\begin{aligned}
\Upsilon \equiv & \frac{2}{3} \frac{\hbar \omega_{c}}{E}=\frac{\lambda_{e} \gamma^{2}}{\rho}=\gamma \frac{2 B}{B_{c}}=\frac{e}{m^{3}} \sqrt{\left|\left(F_{\mu \nu} p^{\nu}\right)^{2}\right|} \\
& B_{c}=m^{2} / e \approx 4.4 \mathrm{GTeslas} \quad \quad \Upsilon_{\text {average }}=\frac{5}{6} \frac{N r_{e}^{2} \gamma}{\alpha \sigma_{z}\left(\sigma_{x}+\sigma_{y}\right)}
\end{aligned}
$$

- ~0.1 for 500GeV collider

Luminosity and Beamstrahlung, why flat beams?

- Beamstrahlung causes a spread in the center of mass energy of $e^{-} e^{+}$. This effect is characterized by the parameter $\delta_{B S}$.
- Limiting the beamstrahlung emission is of great concern for the design of the interaction region.

Low energy regime,
団 $\rightarrow 0$

$$
\delta_{B S} \approx 0.86 \frac{e r_{e}^{3}}{2 m_{0} c^{2}}\left[\frac{E_{C M}}{\sigma_{z}}\right] \frac{N^{2}}{\left(\sigma_{x}+\sigma_{y}\right)^{2}}
$$

$$
\text { Luminosity : } \quad \mathcal{L}=\frac{n_{b} N^{2} f_{r e p}}{4 \pi \sigma_{x} \sigma_{y}} H_{D}
$$

we would like to make $\sigma_{x} \sigma_{y}$ small to maximise Luminosity.
BUT keep $\left(\sigma_{x}+\sigma_{y}\right)$ large to reduce $\delta_{S B}$.

$$
\text { Using flat beams } \sigma_{x} \gg \sigma_{y} ; \quad \delta_{B S} \propto\left[\frac{E_{C M}}{\sigma_{z}}\right] \frac{N^{2}}{\sigma_{x}^{2}}
$$

Set σ_{x} to fix $\delta_{S B}$, and make σ_{y} as small as possible to achieve high luminosity.

The last idea on the market How to reach 10 36?

- The crab waist

1) Standard short bunches

Overlapping
Both cases have the same luminosity,
(2) has longer bunch and smaller σ_{x}

Crossing angle concepts

In a ring is not difficult to have little emittances. Sigma x is usually big due to the tune shift. With large crossing angle X and Z requirements are swapped:

But not only crossing angle......
Large Piwinski angle $\quad \Phi=\frac{\sigma_{z}}{\sigma_{x}} \operatorname{tg}\left(\frac{\vartheta}{2}\right) \quad \Rightarrow$ (so long bunches and little H emittances).
Luminosity \& IP parameters for a circular collider (beam re-used)

+ crossing angle \& beam-beam

$$
\begin{aligned}
& \left.L \propto D \frac{f_{r} N^{2}}{\left(\sigma_{x} \sigma_{y}\right.}\right) \frac{1}{\sqrt{1+\Phi^{2}}} \\
& \Phi=\frac{\sigma_{z}}{\sigma_{x}} \operatorname{tg}\left(\frac{\vartheta}{2}\right)
\end{aligned}
$$

Working with large Piwinski angle decreases the L but: WE CAN WORK WITH VERY SMALL BETA !!!
from Hourglass effect $\Rightarrow \beta_{y} \geq \sigma_{z}$

- So the first assumption for CW scheme is to collide with large Piwinski angle

1) Large Piwinski angle - high σ_{z} and collision angle. (slight L decrease) \Rightarrow allows to work with small beta \& decreases the disruption due to the effective z overlap \& minimises parasitic collision. The ring stability profits from long bunches (CSR, HOM...) but
Introduces B-B and S-B resonances (strong coordinates coupling).
2) Extremely short $\beta^{\star}{ }_{y}$ - so little σ_{y}^{*} (high L gain...)
3)Small horizontal emittance (horizontal tune compensated by large Piwinski angle)
3) Small disruption (or same D increasing N) without luminosity loss. The beam can be re-utilised in an accumulation ring $\Rightarrow>$ High repetition frequency and charge per bunch (High L gain)

.... crab the waist:

Why? Crabbed waist removes betratron coupling resonances introduced by the crossing angle (betatron phase and amplitude modulation)

Summarizing => Large angle and waist is crabbed in the IP (slight gain L, very good for S-B B-B resonances suppression)

Resonances:

- The large collision angle and the short β^{*} introduce strong amplitude and phase modulation of the V beam kick as a function of the H coordinate. The crab waist strongly suppresses these resonances.

Horizontal Collision

Vertical collision

No crossing angle,
$\varepsilon_{\text {yout }} / \varepsilon_{\text {yin }}=200 y / 10 x$

Horizontal Plane

Vertical Plane

Another example: Collisions with uncompressed beams Crossing angle = 2*25mrad.
Relative Emittance growth per collision about 2.5*10-3 $\varepsilon_{\text {yout }} / \varepsilon_{\text {yin }}=1.0025$

What's next?

- Hadron Colliders
- Lepton Colliders
- e+e-
- Linear
- Ring
- $\mu+\mu^{-}$
- $\gamma \gamma$
- New acceleration mechanism

Hadron Collider

- Hadron (proton/antiproton) is easier to accelerate to high energies owing to the absence of synchrotron radiation
- Already 14 TeV will be reached in a few years (LHC)
- Events are complicated because proton is not an elementary particle
- $p=$ uud
- Very high event rate: most of them are unnecessary
- Higher energies are possible only by
- Higher magnetic field
- or larger ring
- Increasing the energy also SR losses start to play a role

HELHC: Higher Energy LHC

- proposed after the luminosity upgrade to HL-LHC
- Upgrade the magnets of LHC
- 8.33 Tesla $\rightarrow 20$ Tesla?
- Em 33 TeV
- According to the present price of magnet (if possible), 80 km ring is cheaper

Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)

international collaboration to study:

- pp-collider (FCC-hh) defining infrastructure requirements
~16 $\mathrm{T} \Rightarrow 100 \mathrm{TeV}$ pp in 100 km
~20 $\mathrm{T} \Rightarrow 100 \mathrm{TeV}$ pp in 80 km
- $e^{+} e^{-}$collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option
- 80-100 km infrastructure in Geneva area

Physics Parameters

| | LHC | HL-LHC | HE-LHC | FCC-hh |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Cms energy $[\mathrm{TeV}]$ | 14 | | 33 | 100 |
| Luminosity $\left[10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$ | 1 | 5 | 5 | 5 |
| Bunch distance $[\mathrm{ns}]$ | | 25 | | $25(5)$ |
| Background events/bx | 27 | 135 | 147 | $170(34)$ |
| Bunch length $[\mathrm{cm}]$ | 7.5 | 7.5 | 7.5 | 8 |

- Two main experiments sharing the beam-beam tuneshift
- Two reserve experimental areas not contributing to tuneshift
- Currently assume 25ns as baseline
- May be able to reduce bunch spacing and background
- Might be able to increase bunch length
- Will explore this if experiments find it useful
- 80% of circumference filled with bunches

Electron-Positron Collider

- Ring collider is limited due to synchtrotron radiation (\rightarrow later slides)
- LEP ended at $E_{c m}=209 \mathrm{GeV}$
- Beyond the radiation limit, the only possibility is linear collider
- First key issues of linear collider are
- Acceleration gradient
- Luminosity because of single-pass

ILC: International Linear Collider

- Key technology: superconducting RF cavities
- Average accelerating gradient 31.5 MV/m

ILC Layout

CLIC: Compact Linear Collider

- Two-beam scheme
- Accelerate long train of electron beam to GeV
- lead it to decelerating structure (PET: Power Extraction Structure)
- transfer the generated microwave to linac (normal conducting) side by side with PET
- Huge klystron
- First proposed at CERN in 1987(?)
- New scheme proposed by R. Ruth
- Manipulation of long bunch train
- Frequency determined by drive bunch interval and PET

CLIC (CERN Linear Collider)

Revival of e+e-Ring Colliders?

- To create Higgs by e+e- \rightarrow ZH requires $\mathrm{E}_{C M} \sim 240 \mathrm{GeV}$
- This is not too high compared with the final energy 209 GeV at LEP

FNAL site filler

$e^{-} e^{+}$Higgs Factory
CHF (China) (50km, 70km)

Gamma-Gamma Collider

- electron-electron collider
- irradiate lasers just before ee collision
- create high energy photons, which made to collide
- no need of positrons

CP : conversion point
IP : interaction point

Kinetics of gamma conversion

- maximum photon energy

$$
\omega=\frac{x}{1+x+\xi^{2}} E_{e}, \quad x \equiv \frac{4 E_{e} \omega_{L}}{m^{2}}
$$

- electron polarization (longitudinal) is essential to create sharp photon energy spectrum

- required laser flush energy to convert most of the electrons is a few (5-10) Joules (weakly depends on electron bunch length)

Muon Collider

- Properties of muons are quite similar to electron/positron
- What can be done in e+e- can also be done in $\mu^{+} \mu^{-}$
- but mugn is $200 \times$ heavier \rightarrow can be accelerated to high energies in circular accelerator
- $\mu^{+} \mu^{-}$collider is much cleaner than $e+e$ - (beamstrahlung negligible)
- except the problem of background from muon decay
- But muons do not exist naturally
- need cooling like antiproton
- "Jonization cooling" invented by Skrinsky-Parkhomchuk 1981, Neuffer 1983

Ionization cooling test at MICE

Create and Cool Muon Beam

- Can be created by hadron collision
- Muons decay within $2 \mu s$ in the rest frame
- must be accelerated quickly
- Long way to collider

Plasma Accelerator

- Linac in the past has been driven by microwave technology
- Plane wave in vacuum cannot accelerate beams: needs material to make boundary condition
- Breakdown at high gradient
- binding energy of matter: eV/angstrom $=10 \mathrm{GeV} / \mathrm{m}$
- Need not worry about breakdown with plasma
- can reach > $10 \mathrm{GeV} / \mathrm{m}$

Plasma Wave

- Plasma is a mixture of free electrons and nucleus (ions), normally neutral
- By perturbation, electrons are easily moved while nuclei are almos \dagger sitting, density modulation created.
- The restoring force generates plasma wave
- Charged particles on the density slope are accelerated, like surfing.
- Plasma oscillation frequency and wavelength are given by

$$
\begin{gathered}
\omega_{p}=\sqrt{\frac{e^{2}}{\epsilon_{0} m_{e}} n_{0}}, \quad \lambda_{p}=\frac{2 \pi c}{\omega_{p}}=\frac{3.3 \times 10^{4}}{\sqrt{n_{e}\left[\mathrm{~cm}^{-3}\right]}} \quad[\mathrm{m}] \\
n_{e}=\text { plasma density }
\end{gathered}
$$

$e^{-} \quad e^{-}$

How to Generate Plasma Wave

- PWFA (Plasma Wakefield Accelerator)
- Use particle (normally electron) beam of short bunch
- LWFA (Laser Wakefield Accelerator)
- Use ultra-short laser beam
- In both cases the driving beam
- determines the phase velocity of plasma wave, which must be close to the velocity of light
- must be shorter than the plasma wavelength required
- can also ionize neutral gas to create plasma

LWFA

- Laser intensity characterized by the parameter a_{0}
- $a_{0}<1$: linear regime
- $a_{0}>1$: blow-out regime

$$
a_{0} \approx 8.5 \times 10^{-10} \lambda_{L}[\mu \mathrm{~m}] I^{1 / 2}\left[\mathrm{~W} / \mathrm{cm}^{2}\right]
$$

- Accelerating field

$$
\begin{aligned}
E= & E_{0} \frac{a_{0}^{2} / 2}{\sqrt{1+a_{0}^{2} / 2}} \\
& E_{0}=c m_{e} \omega_{p} / e=96 n_{0}^{1 / 2}\left[\mathrm{~cm}^{-3}\right]
\end{aligned}
$$

Blowout and Linear Regime

The gradient can be higher in the blowout regime but

- difficult to accelerate positron
- very narrow region of acceleration and focusing

Concept of LWFA Collider. VFF (very far future)

Example Laser Parameters of $1 / 10 \mathrm{TeV}$ Collider

Case: CoM Energy (Plasma density)	$\mathbf{1 ~ T e V}$ $\left(10^{17} \mathrm{~cm}^{-3}\right)$	$\mathbf{1 ~ T e V}$ $\left(2 \times 10^{15} \mathrm{~cm}^{-3}\right)$	$\mathbf{1 0} \mathbf{T e V}$ $\left(10^{17} \mathrm{~cm}^{-3}\right)$	$\mathbf{1 0 ~ T e V}$ $\left(2 \times 10^{15} \mathrm{~cm}^{-3}\right)$
Wavelength ($\mu \mathrm{m}$)	1	1	1	1
Pulse energy/stage (kJ)	0.032	11	0.032	11
Pulse length (ps)	0.056	0.4	0.056	0.4
Repetition rate (kHz)	15	0.3	15	0.3
Peak power (PW)	0.24	12	0.24	12
Average laser power/stage (MW)	0.48	3.4	0.48	3.4
Energy gain/stage (GeV)	10	500	10	500
Stage length [LPA + in-coupling] (m)	2	500	2	500
Number of stages (one linac)	50	1	500	10
Total laser power (MW)	48	3.4	480	34
Total wall power (MW)	160	23	960	138
Laser to beam efficiency (\%) [laser to wake 50\% + wake to beam $40 \%]$	20	20	20	20
Wall plug to laser efficiency (\%)	30	30	50	50
Laser spot rms radius (μm)	69	490	69	490
Laser intensity (W/cm ${ }^{2}$)	3×10^{18}	3×10^{18}	3×10^{18}	3×10^{18}
Laser strength parameter a_{0}	1.5	1.5	1.5	1.5
Plasma density (cm $\left.{ }^{-3}\right)$, with tapering	10^{17}	2×10^{15}	10^{17}	2×10^{15}
Plasma wavelength (mm)	0.1	0.75	0.1	0.75

From ICFA Beamdynamics News Letter 56

What's Needed for Plasma Collider

- High rep rate, high power laser
- Beam quality (fundamental limitations?)
- Small energy spread << 1%
- emittance preservation
- High power efficiency from wall-plug to beam
- Wall-plug \rightarrow laser
- Laser \rightarrow plasma wave
- plasma wave \rightarrow beam
- Staging
- laser phase
- beam optics matching
- Very high component reliability
- Low cost per GeV
- Colliders need all these, but other applications need only some of these
- Application of plasmas accelerators would start long before these requirements are established

Piramid of Accelerators

- END
- THANKS to the school organization for this possibility!
- Thanks also to all the slides 'borrower'...K. Yokoya, N Pichoff, F.Sannibale, M.Biagini....

SR Properties

- INTEGRATING in $\mathrm{d} \omega$ => Angular distribution
$d P / d \Omega=7 q \uparrow 2 / 96 \pi c \in \downarrow 0 \gamma \uparrow 2 \omega \downarrow c /(1+X \uparrow 2) \uparrow 5 / 2 \quad(1+5 X \uparrow 2 / 7(1+X \uparrow 2))$
- And INTEGRATING on the full angular range => Energy flux
$I(\omega)=2 q \uparrow 2 \gamma / 9 \epsilon \downarrow 0 c S(\omega / \omega \downarrow c)$, with $S(x)=9 \sqrt{3} / 8 \pi x \int x \uparrow \infty \quad K \downarrow 5 / 3$ (j)dj $\quad \int 0 \uparrow \infty=S(x) d x=1$
- The energy flux gives the instantaneous radiated power:
$P \downarrow \gamma=1 / 2 \pi \rho \int 0 \nexists \infty \infty I(\omega) d \omega=4 q \uparrow 2 \gamma \omega \downarrow c / 36 \pi \rho \epsilon \downarrow 0$ or in a more convenient form:
$P \downarrow \gamma=c C \downarrow \gamma / 2 \pi E \uparrow 4 / \rho \uparrow 2 \sim E \uparrow 2 B \uparrow 2$ with $C \downarrow \gamma=8.8510 \uparrow-5[\mathrm{~m} /(\mathrm{GeV}) \uparrow 3]$
The critical photon energy is $\quad \hbar \omega_{c}=0.665 \mathrm{E}^{2}[\mathrm{GeV}] \mathrm{B}[]$
The total energy radiated in one revolution is: $\quad U \downarrow 0=E \uparrow 4 C \downarrow \gamma / 2 \pi \oint \uparrow=d s / \rho \uparrow 2$
and for an isomagnetic ring $\rightarrow \quad U \downarrow 0=E \uparrow 4 C \downarrow \gamma / \rho$, average power $->\langle P \downarrow \gamma\rangle=U \downarrow 0 / T \downarrow 0=c C \downarrow \gamma / 2 \pi E \uparrow 4 / R \rho \uparrow \quad\left(T_{0}=\right.$ $\beta c / 2 \pi R=$ revolution period)

Twiss vector transport

The beam can also be represented by a vector made of the Twiss parameters:

$$
\left(\begin{array}{l}
\beta_{t} \\
\alpha_{t} \\
\gamma_{t}
\end{array}\right)
$$

With a transfer matrix :

$$
M\left(s / s_{0}\right)=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)
$$

The Twiss vector is transported with a transport matrix:

$$
\left(\begin{array}{l}
\beta_{t}(s) \\
\alpha_{t}(s) \\
\gamma_{t}(s)
\end{array}\right)=\left(\begin{array}{ccc}
C^{2} & -2 S C & S^{2} \\
-C C^{\prime} & S^{\prime} C+S C^{\prime} & -S S^{\prime} \\
C^{\prime 2} & -2 S^{\prime} C^{\prime} & S^{\prime 2}
\end{array}\right) \cdot\left(\begin{array}{l}
\beta_{t}\left(s_{0}\right) \\
\alpha_{t}\left(s_{0}\right) \\
\gamma_{t}\left(s_{0}\right)
\end{array}\right)
$$

Collider (B.Touscheck)

- What matters in physics is the Center-of-Mass energy

Fixed targe \dagger

$$
E_{C M} \approx \sqrt{2 E m}
$$

Collider

$E_{C M} \approx 2 E$

- Energy of each beam can be lower in colliding scheme for given $E_{C M}$
- Colliding scheme much better in relativistic regime
- e.g., for electrons, collision of 1 GeV electrons is equivalent to 1 TeV electron on sitting electron

Beamstrahlung

- Synchrotron radiation during collision due to the field by the on-coming beam
- Causes
- spread in the collision energy
- background to the experiment
- The critical energy is characterized by the upsilon parameter

$$
\begin{aligned}
& \Upsilon \equiv \frac{2}{3} \frac{\hbar \omega_{c}}{E}=\frac{\lambda_{e} \gamma^{2}}{\rho}=\gamma \frac{2 B}{B_{c}}=\frac{e}{m^{3}} \sqrt{\left|\left(F_{\mu \nu} p^{\nu}\right)^{2}\right|} \\
& B_{c}=m^{2} / e \approx 4.4 \mathrm{GTeslas}
\end{aligned}
$$

Factor 2 in front of B comes from the sum of electric and magnetic fields

- Expressed by the beam parameters

$$
\Upsilon_{\text {average }}=\frac{5}{6} \frac{N r_{e}^{2} \gamma}{\alpha \sigma_{z}\left(\sigma_{x}+\sigma_{y}\right)}
$$

- Order of 0.1 in 500 GeV collider

Energy loss and number of photons by beamstrahlung

- Average number of photons per electron

$$
\begin{aligned}
n_{\gamma} \approx & 1.08 \frac{2 N r_{e} \alpha}{\sigma_{x}+\sigma_{y}} U_{0}(\Upsilon) \\
& U_{0}(\Upsilon) \approx \frac{1}{\sqrt{1+\Upsilon^{2 / 3}}}
\end{aligned}
$$

- Average energy loss

$$
\begin{aligned}
\delta_{E}=\left\langle-\frac{\Delta E}{E}\right\rangle & \approx 0.209 \frac{N^{2} r_{e}^{3} \gamma}{\sigma_{z}}\left(\frac{2}{\sigma_{x}+\sigma_{y}}\right)^{2} U_{1}(\Upsilon) \\
U_{1}(\Upsilon) & \approx \frac{1}{\left[1+(1.5 \Upsilon)^{2 / 3}\right]^{2}}
\end{aligned}
$$

- Average photon energy

$$
\left\langle\frac{\omega}{E}\right\rangle= \begin{cases}0.462 \Upsilon & (\Upsilon \rightarrow 0) \\ 16 / 23=0.254 & (\Upsilon \rightarrow \infty)\end{cases}
$$

2 Aspects of Synchrotron Radiation Loss

- Energy loss by individual particles must be compensated for

$$
U=0.088 \frac{E^{4}[\mathrm{GeV}]}{\rho[\mathrm{m}]} \quad[\mathrm{MeV}]
$$

- This (almost) determines RF voltage per turn
- $\sim 7 \mathrm{GeV}$ in LEP tunnel
- Still possible owing to the improvement of superconducting cavity technology
- But, to get required electric power, you must multiply the beam current
- Real limitation comes from the wall-plug power
- Reduce the beam current
- Small beam size for high luminosity

Luminosity Scaling of $e^{+} e^{-}$Ring Colliders

V. Telnov, arXiv:1203.6563v, 29 March 2012

- For given Upsilon, the momentum band width must be

$$
\eta \equiv[\Delta p / p]_{\max } \gtrsim 15 \Upsilon
$$

- Then, the luminosity at beamstrahlung limit and tune-shift limit is aiven by

$$
\mathcal{L} \propto \frac{\rho P_{S R}}{E^{13 / 3}}\left(\frac{\xi_{y} \eta^{2}}{\varepsilon_{g, y}}\right)^{1 / 3}
$$

$P_{S R}$: syn.rad.power
ρ : bending radius
ξ_{y} : tune-shift
$\varepsilon_{g, y}:$ geometric emit.

Luminosity vs. Energy

Key parameters

- momentum band width
- vertical emittance
- beam-beam tune-shift
- Ring Collider can be a choice?
if $e+e$ - at $>\sim 350 \mathrm{GeV}$ is not needed at all
example with
- $\eta=2 \%$
- $\xi_{y}=0.15$
- $\varepsilon_{\mathrm{gy}}=0.1 \mathrm{~nm}$

