Minutes of the working meeting 2014/08/12

Chairman: Adam His secretary: Eric

Analysis strategy (talks postponed during the last meeting)

Analysis strategy for single top [Jeremy] https://indico.in2p3.fr/getFile.py/access?contribId=1&resId=0&materialId=slides&confId=10360

- Processes are sorted by number of leptons and number of jets in the final state.
- Some processes could be ignored:
 - 0 lepton processes for obvious reason (trigger, large QCD bkg) Benjamin's question: what is the MET threshold in trigger @ 13TeV? We don't know. Threshold larger than the one used in 8 TeV: 150-200 GeV
 - Low cross-section values. Except for 5 leptons because SM bkg is rare.
- Jeremy's proposal of list of channels to study is available on the next slide.

Comments:

- Adam: can we handle H→gamma gamma? Specfic background, depending on Delphes realism → "Try and see".
- Eric: tZ with invisible Z needs Z →NuNu background. Some samples will be generated (exclusive prod up to 3 extra jets for the moment).
- Jeremy: processes involving gamma will be difficult because generating gamma+jet takes a lot of time.
- Adam suggests we should split this sample list in 3 main tasks.

njet – nlept	0	2	4	6
0				
		tZ->b+ 2nu (0.1pb) QCD, Zjets		000 ,11
1	tH(bb)->3b+nu (0.1pb)	tZ->b+nu (0.1pb)	tH(WW)->b+nu (0.1pb)	
	t->b+nu (0.1pb)	Single top (4pb),	tH(ZZ)->b+nu (0.1pb)	
	tZ->b+3nu (0.01pb)	tt (160 pb)	Single top (4pb),	
	Single top (4pb), tt (160 pb)		tt (160 pb)	
2		tZ->b (0.01pb)		
		tH(WW)->os(<u>ss</u>)+b+nu	Interesting	
		(0.01pb)	S/B ?	
		tt(32pb),ttV(0.25pb)		
3	tZ->b+nu (0.1pb)			
	tH(WW)->b+3nu (0.01pb)			
	VVjets(6pb),			
	ttV(0.013pb)			
4				
		VVjets(0.012pb)		
		ttV(10-4)		
5	tH(ZZ)->b+			

Possible channels

- · For gqt anomalous couplings :
 - pp->t->l+jets.
- For tZq anomalous couplings:
 - pp->tZ->3leptons,
 - pp->tZ->2leptons,
 - pp->tZ->2neutrinos,
- For tHq anomalous couplings:
 - pp->tH(WW)->same sign dilepton,
 - pp->tH(bb)->l+jets,
 - pp->tH(ZZ)->4l+1b+2j,
 - pp->tH($\gamma\gamma$)->1I+1b+nu,
- For tyq anomalous couplings:
 - pp->tγ->1l+1b+nu,
 - pp->ty->2j+1b, (issue with QCD background)

• Analysis strategy for ttbar [Kevin]

https://indico.in2p3.fr/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=10360

- Processes are sorted by number of leptons, number of photons and number of b-jets in the final state.
- Some of these processes are already investigated in the CMS framework
 @ 8 TeV, and results are propagated @ 13 TeV.
 In these studies, anomalous coupling value = current limit.
 We know which process could be promising, which process could be ignored.

Comments:

- Jeremy: overlap is possible between tt and single top signal. Some extra cut are maybe needed to avoid it. Ex: cut on bb invariant mass for H→bb
- Jeremy: we need to keep in mind that more than one coupling could be activated. In this case, how could we disentangle the different contributions? → try to find signatures specific to one kind of coupling.
- Jeremy: if we have several couplings values which satisfy several analyses, the limits to these coupling values will satisfy a system of equations. We need to think about it.
- Mis-identification of the lepton sign should be implemented in DelphesMA5tune [To do Eric]
- Lorenzo: why tZq is negligible with respect to thq for Z,h →b. Suspicious. Please have a second look.
- Eric: does the slide 9 suggest to not do an exhaustive study of anomalous coupling in ttbar?
 → Other processes must be covered. But the list of possible analyses will be shorter than the one devoted to the single top.

Event categories

SM top decay	2 Y	Y	3 b-tag	
leptonic	t→cH(γγ)	t→cγ	t→cH(bb)	
hadronic	t→cH(Y Y)	t→cγ	t→cH(bb)	

	y 01	17	21			
SM top decay			same sign	opp. sign	31	≥41
leptonic		$t \rightarrow cH(V_hV_h)$ $t \rightarrow cH(\tau_h\tau_h)$	t→cH(W _i W _h) t→cH(τ _i τ _h)		$t \rightarrow cH(W_1W_1)$ $t \rightarrow cH(Z_1Z_h)$ $t \rightarrow cZ_1$	t→cH(V _i V _i)
hadronic	t→cH t→cZ t→cg			$t \rightarrow cH(W_1W_1)$ $t \rightarrow cH(Z_1Z_2)$ $t \rightarrow cZ_1$		t→cH(V _i V _i)

Jeremy's proposal for next meeting

- Take time to digest these information.
- It is important to come back with suggestion, feedback or advices.
 To be sure that everybody agree with the relevance of these channels.
- Volunteers for tacking one are several analyses are welcome.

Production

- Production status @ IIHE
 - Trouble with tth gridpacks. They are still running.
 - Signal (BSM tt) is ongoing. Adam's comment: be careful with MadSpin. Make sure MadSpin computes properly the BR of the BSM top decay.
 - $Z \rightarrow LL10-50$: 4 jets still running. Adam will have a look on this problem.
- Production status @ IPHC
 - Very bad news: gridpacks and files have been deleted by mistake
 - (Re)Generation ongoing.
 - New samples requested by Jeremy (TZ dileptonic&monoleptonic, ZToNuNu) put in the to-do list.
 - New scripts for facilitating the life of analyzer @ Strasbourg. Need of the new hard disk is urgent.
 - Jeremy: we have the new hard disk and IT people have just to implement it.
 - Eric's comment for Jeremy: he was very happy by the validation work of WToLNu. Could Jeremy share his script/files for validating the other exclusive production ?

• Computation of cross sections

- Computation of LO and NLO cross sections for WToLNu and ZToLL
- 3 generators to compare: MG5_aMC@NLO, FEWZ and MCFM.
- Consistent results for WToLNu and ZToLL with no cut on Mll
- Problems appear if cut on MII
 - No agreement between MG5_aMC@NLO and FEWZ/MCFM
 - LO cross section computed by FEWZ and MCFM totally off.

How to fix the problem? No clue. Lorenzo is a little bit discouraged. Asking for help to authors seems the only option.

For the moment, if we need to take a value \rightarrow choose the MG5_aMC@NLO one.

Eric's request: NLO cross section for ZToNuNu

 \rightarrow Lorenzo will try to get a number although FEWZ is not designed for it.