ATLAS Software & Distributed Computing Readiness for LHC Run2

L. Poggioli, LAL, Orsay

LCG-FR, 1/12/2014

Run1 Grid Activity

L. Poggioli, LAL

- 350M jobs in 2013
 - Analysis jobs > 50%
- 80 pB disk, 70 pB tape
 - 1.2EB data read-in
 - > 82% by analysis

Analysis: Main driver of storage & I/O capacity

Run2 Challenges

- Flat budget constraints
 - h/w increase from Moore's law gain
 Estimated factors of 1.2/year for CPU & 1.15/yr for disk & tape
- Data from Run-1
 - Proper data preservation

- · LHC operation
 - HLT rate x 2.5
 - Pile-up > 30
 - -> Reco time x 2-2.5
 - 25ns bunch spacing
 - c.m. energy x 2
- 'New' detector
 - To be integrated in simul & reco

With shrinking manpower (-10% in 2013)

Limitations of current model & tools

- Partitioning of resources

 Analysis vs Central Production T1s versus T2s
- Data distribution management & Production systems limits to scale to new conditions
- Memory increase of MC pile-up digi & reco
- Multitude of data format for analysis
- -> Gain needed in Simulation (CPU), Reconstruction (CPU, memory), Analysis (Data format, disk space, CPU)

Run2: Extrapolation & extension of end of Run1 framework

ATLAS Challenges

Software

- Get Integrated Simulation Framework (ISF) in prod
- Speedup reconstruction by a factor 2-3
- Migration to new data format xAOD readable both from Athena and ROOT and new Analysis model
- Changes/Upgrade of the infrastructure : ROOT6, CMake, Tag Collector, JIRA...

Computing

- New data management system : Rucio
- New production system : ProdSys2
- New data management strategy : each dataset has a lifetime (disk & tape)

Software

Improvements Technical

- 32->64 bits, faster vectorized maths library, algebra package CLHEP->Eiger
- Track seeding
 - From strips + IBL use
- -Backtracking w/RoI seeds
 - In TRT only w/EM calo deposits
- Gain
 - -Reconstruction time
 - -Pile-up & Tracking efficiency

Memory saving with MultiCore jobs (1)

- Multi-Process Athena (AthenaMP)
 - Event parallelism to reduce memory footprint
 - For Simulation & Reconstruction jobs (not Analysis)

Memory saving with MultiCore jobs (2)

- In FR-cloud
 - Started late but OK now
 - Mostly static (CCIN2P3, Tokyo, RO-07)
 - Dynamic (LAPP scheme: LAPP, CPPM, LPSC, LPC)
 - IRFU: Also test ARC-CE + HTCondor

LCG-FR, 1/12/2014

L. Poggioli, LAL

Fast Simulation

- Take advantage of fast sim when appropriate
- Tradeoff accuracy for speed: Smearing, Frozen Showers, Parametric techniques
- Integrated Simulation Framework (ISF): clever mixing of fast and full simulation within same evnt
 - Keep high precision for some particles and regions
 - Use fast simulation in areas that are not so important
 - x100 speed ups possible with much better results than normal fast simulation

Data Processing

- Flexibility to be introduced
 - Some T2s are equivalent to T1s in disk & CPU
- Operational load of many 'small' sites
 - Less & larger sites be better
- Data processing

- Optional extension of 1st pass processing from TO to T1s in case of resource shortage at TO
- T1s & some T2s used for most demanding wkflows high memory and I/O intensive tasks

• Data reprocessing & MC reco also done at some T2s LCG-FR, 1/12/2014 10

Storage management

- Saturation of T1s DATADISK
 - -Lot of primary space occupied by unused data
 - -'Less' critical for T2s

Very agressive dataset policy being set up

 Each DS -> lifetime (disk&tape) & retention policy
 Tape more used for Run2
 LCG-FR, 1/12/2014
 L Poggioli, LAL

Data Management System

- New system: Rucio to replace DQ2
 - New scalable architecture
 - File level functionality instead of dataset
 - Built-in data replication policy for space and network optimisation

150 PB

800 users

files per day

130 grid sites

+40 PB per year

+1 M files per year

0.6 M downloaded

- Multi-protocol
- Status
 - WebDAV deployed for data renaming
 - No more LFC
 - Final migration DQ2-> Rucio NOW!

LCG-FR, 1/12/2014

L. Poggioli, LAL

Grid usage (PB)

The current DDM system Don Quijote 2 (DQ2) has demonstrated very large scale data management

160

140

120

100 80

60

40 20

0

DQ2 will simply not continue to scale for LHC Run-2

Long Shutdown I (LSI)

Data taking

to scale

New production system: ProdSys2

- Same engine for analysis
 & production
 2M pending jobs
 - PanDA+JEDI+DEfT
 - Current analysis vs prod.
 shares managed by sites
 - Better reactivity to Ana. loads
 - Job <-> resource optimized
- Status
 - Moved to JEDI for Analysis in August
 - Tested against most workflows
 - New BigPandaMonitoring in place
 - Final migration NOW

Analysis bursts Aunning jobs 426 Days from Week 22 of 2012 to Week 30 of 2013

Remote Data Access

- Networking keeps on progressing fast
 - x10 every 4.25 yrs / Already 100Gb/s among US
- -> Jobs can access data remotely via network
 - Allows better usage of storage resources
 - Breaks the 'jobs go to data' Grid paradigm!!
 - Better suited to Analysis jobs
- Protocols
 - http: Allows direct download files from Grid to local: Not in quality production today
 - Xrootd: Allows direct data acces in ROOT & analysis s/w

LCG-FR, 1/12/2014

XrootD/FAX

FAX

 >96% data coverage. All French sites OK (+Tokyo)
 Overflow tested in US (CPU eff. to be improved)

xrootd

- Monitoring: WLCG dashboard
 - Allows to choose FTS/XrootD & Xrootd remote/local
- Goal: 10% max access via FAX to protect sites

LCG-FR, 1/12/2014

New Analysis Model

- Common analysis data format: xAOD
 - replacement of AOD & group ntuple of any kind
 - Readable both by Athena & ROOT

Data reduction framework

- AthenaMP to produce group data sample
 - Centrally via Prodsys
- Based on train model
 - one input, N outputs
 - from PB to TB

- Status (tested on DC14)
 - 57 defined (ongoing), data will go to DATADISK
 - Total space for all derived datasets ~ 2x primary xAOD size
 - Dieting campaign on xAOD size ongoing

LCG-FR, 1/12/2014

L. Poggioli, LAL

Opportunistic resources: Virtualization

Ask for resources thru interface and get access & control of (virtual) machine, i.e. job slot on Grid

- High Level Trigger (HLT)
 - Use resource between fills
 - CPU power ~T1 or big T2
- Clouds usage
 - Academic (focus on OpenStack @ CERN)
 - Commercial (Amazon AWS, Google GCE)
 - Use image distribution service (addition to OpenStack, GLINT)
 - 1.2M jobs (Jan-Sep 2014)
 - 1core & Mcore

Opportunistic resources: HPC

- From Peta to ExaFLOPS
 - Large # CPU cycles used parasitical
 - eg MC simulation (10% Grid production, 10-20k cores)
 - Issues: I/O & outbound connectivity

Oak Ridge Titan System	
Architecture:	Cray XK7
Cabinets:	200
Total cores:	299,008 Opteron Cores
Memory/core:	2GB
Speed:	20+ PF
Square Footage	4,352 sq feet

- Natural interface to HPC: ARC-CE
 - Handles I/O, integrated into ATLAS prod via aCT

24h test at Oak Ridge Titan system (#2 world HPC machine, 299,008 cores). ATLAS event generation: 200,000 CPU hours on 90K parallel cores (equivalent of 70% of our Grid resources)

Mira@ARGONNE: Sherpa Generation using 12244 nodes with 8 threads per node, so 97,952 parallel Sherpa processes.

• In France : IDRIS (100k cores, 1.2pFlops) LCG-IT: 1/See also F. Derue' talkgioli, LAL

Opportunistic resources: ATLAS@Home

20% Failure vs 5% on Grid

Volunteer Computing using BOINC + ArC CE

Job statistics

Free!! (install Boinc + VirtualBox)

- Solution for Institute desktop clusters
- Can work at event level (Cf. Event Service

Extra-unpledged resources at sites

eg T3s resources,
 opportunistic, as in Run1

CPU consumption above pledges both at $\ensuremath{\mathsf{T1s}}$ and $\ensuremath{\mathsf{T2s}}$

Billiock HEPSPECOG Hours

19

Beyond Run2

LCG-FR, 1/12/2014

L. Poggioli, LAL

Preparing for Run3 – a multi-year software effort

- Re-engineer for future (or even current) computer architectures: vectorization, multithreading,...
- Make Software Quality an integral part of software development and maintenance
- Define strategy for reconstruction and simulation of high pileup events
- Ensure that software packages on which we depend are compatibly re-engineered (Geant4, Root, Eigen, ...)
- Collaboration and cooperation with external projects

Summary

- Run2 is an evolution of Run1
- Many ideas investigated for Run2
 - Cf. LHC Computing Model Update document
 - Role of Tiers, use of network, data federation, clouds, opportunistic resources
 - Big efforts by experiments to optimize & gain in resource (CPU, memory, storage)
 - All these ideas being tested at full scale
- Run3 & Run4
 - Needs & solutions already under study
- Manpower is an issue

LCG-FR, 1/12/2014

L. Poggioli, LAL

FR-Cloud: Warmest thanks to

- Site admins
 - Interaction via LCG-TECH (Frédérique, Catherine)
- CAF members
 - Sites-ATLAS interaction, Eric
- Shifters
 - ADCoS (Edith Knoops, Claire Adam)
 - DAST (Laurent Duflot), AMOD
- French Cloud Squad support
 - Sabine Crépé-Renaudin, Emmanuel le Guirriec
- Support at T1
 - Essential role of Emmanouil Vamvakopoulos
 - His dedication & expertise has to be perpetuated