CCD as low energy threshold particle detectors for direct Dark Matter searches, and more...

Xavier Bertou

Centro Atómico Bariloche (CNEA/CONICET)

Dark Matter @ LPNHE 22 September 2014

Low mass WIMP sector

Low mass WIMP sector and experiments

DAMIC: Dark Matter in CCDs

DAMIC Collaboration

International collaboration: 7 institutions from 5 countries

DAMIC

Argentina: Centro Atómico Bariloche

Mexico: Universidad Nacional Autónoma de México

Paraguay: Universidad Nacional de Asunción

Switzerland: Universität Zürich (UZH)

United States: Fermilab, U. Chicago, U. Michigan

CCD as low energy threshold particle detectors

Charge-coupled device

Pixel size: $15 \mu m \times 15 \mu m$

of pixels: 2000 x 4000

CCD Thickness: 250 µm

CCD Mass: 1 gram

Operation Temp: 150 K

• Readout noise ~ 2.5 electrons RMS

 \bullet Detector Threshold < 50 eV $_{\rm ee}$

Diffusion → 3D reconstruction

→ surface event rejection

Charge movement and CCD readout

- Charges moved by adjusting P_i (then H_i) voltages
- System capacitance set by the SN: $C=0.05\,\mathrm{pF}\to3\,\mu\mathrm{V/e^-}$

Charge collection in a WIMP interaction

- Fully depleted silicon
- Charge collected in electric potential wells $(15 \times 15 \times 250 \,\mu\text{m}^3)$

Typical (surface) CCD image

Energy calibration of CCDs

Electron energy scale calibrated down to $280\,\mathrm{eV},\,63\,\mathrm{eV}$ RMS @ $6\,\mathrm{keV}$

Depth measurement by diffusion

Width of energy deposit gives depth of interaction

Measuring diffusion with muons

Direct measurement of diffusion effects using muons

Measuring diffusion with muons

DAMIC in the lab

DAMIC at SNOLAB

DAMIC at SNOLAB

Spatial coincidences

Sequence of βs starting in the same pixel of the CCD in different images

³²Si: <2.6 mBq/kg ²¹⁰Pb: <0.6 mBq/kg

DAMIC-100 expectations

Next step: reduce readout noise (to sub-electron)

Main (only) remaining source of noise:

low frequency baseline shift in readout

Software: Digital Low Frequency Noise Reduction

Hardware: Skipper CCD

- Baseline is read first
- Then charge is moved to sensor node
- Charge is then read

- Charge is moved back and forth to SN
- Baseline and Charge read in sequence

Skipper CCD: noise vs integration time

Skipper CCD: noise vs integration time

Other use: neutrino nucleus coherent scattering

50 g of DAMIC-CCD, 30 m away from Angra, 3.95 GW thermal power

Conclusions

- CCD interesting particle detector for rare events
- current efforts in DAMIC 100, upping the mass
- next effort: going to sub-electron readout noise
- possible use in other experiments (ex:CONNIE)

DAMIC, CONNIE small collaborations, very open to participation

References

- DAMIC: arXiv 1310.6688
- DAMIC-SNOLAB: arXiv 1407.0347
- Skipper CCD: arXiv 1106.1839
- CONNIE: arXiv 1405.576

A busy field → Spin dependent? Directional? Axions?

