Improving Estimates for (g-2)_μ: Can One trust Results from Effective Lagrangians & Global Fits?

> M. Benayoun LPNHE Paris 6/7

OUTLINE

- HVP Evaluations & Effective Lagrangians
- The HLS Model, its Breaking & Scope
- The VMD Strategy for HVP Evaluations : Global Fits
- Issues with the Global Fit Method
 - $>\chi^2$: How to deal with spectrum scale uncertainties?

>An Iteration Method and its Monte Carlo Checking

- Updated Global Fits to e⁺e⁻ Annihilations
- > Updated Evaluations of NP Contributions to HVP
- \succ Updated Evaluations of the (g-2)_µ Discrepancy
- Conclusions

HVP Estimates & Effective Lagrangians

• Non Perturbative contributions to Hadronic VP :

 $a_{\mu}(H_i) = \frac{1}{4\pi^3} \int_{s_{th}}^{s_{cut}} ds \, K(s) \, \sigma(e^+e^- \to H_i, s) \longleftarrow \text{Measured Xsection}$

- Effective Lagrangians imply physics correlations among the $e^+e^- \rightarrow H_i$ (i=1,....)
- EL cross-sections : fed through a global fit
 → (param. values & error covariance matrix) :

Measured Xsection

Model Xsection

The HLS Model & Breaking

e⁺e⁻ data handling framework : HLS Lagrangian

M. Harada & K. Yamawaki Phys. Rep. 381 (2003) 1

- equiped with two breaking schemes:
- **BKY mechanism :**
 - (SU₂ & SU₃ brk)

M.Bando et al. Nucl. Phys. B259 (1985) 493

M.Benayoun *et al.* Phys. Rev. D58 (1998) 074006 M.Hashimoto Phys. Rev. D54 (1996) 5611

- vector meson mixing : (s-dependent)
- Latest Model Status :

M.Benayoun et al. EPJ C55 (2008) 199

M.Benayoun et al. EPJ C65 (2010) 211

M.Benayoun et al. EPJ C72 (2012) 1848

HLS : A Global VMD Model (I)

- The (Broken) Hidden Local Symmetry (BHLS) model :
 - Unified VMD framework which encompasses
 - e⁺e⁻ → π π /KKbar /π γ /η γ /π π π & τ→ππ ν_τ & PVγ, Pγγ decays & η/η' → γπ π/γγ & ...
 - > BHLS :: (almost) an empty shell :

 [α_{em}, G_F, f_π, V_{ud}, V_{us}, m_π's, m_K's, m_η, m_{η'}]

 > Main Limitation :
- ✓ Up to the $\approx \phi$ mass region (≈ 1.05 GeV)

HLS : A Global VMD Model (I)

The (Broken) Hidden Local Symmetry (BHLS) model :

Unified VMD framework which encompasses

e⁺e⁻ \rightarrow π π /KKbar /π γ /η γ /π π π & τ \rightarrow ππ ν_τ & PVγ, Pγγ decays & η/η' \rightarrow γπ π/γγ & ...

> BHLS :: (almost) an empty shell :

 $[\alpha_{em}, G_F, f_{\pi}, V_{ud}, V_{us}, m_{\pi}'s, m_K's, m_{\eta}, m_{\eta'}]$

Main Limitation :

✓ Up to the $\approx \phi$ mass region (≈ 1.05 GeV)

HLS : A Global VMD Model (I)

The (Broken) Hidden Local Symmetry (BHLS) model :
> Unified VMD framework which encompasses
e⁺e⁻ → π π /KKbar /π γ /η γ /π π π & τ→ππ ν_τ & PVγ, Pγγ decays & η/η' → γπ π/γγ & ...
> BHLS :: (almost) an empty shell : [α_{em}, G_F, f_π, V_{ud}, V_{us}, m_π's, m_K's, m_n, m_{n'}]

 $\stackrel{\text{Lorem}}{\rightarrow} \text{Main Limitation:} \qquad \text{M.Benayoun et al. EPJ C72 (2012) 1848}$

Up to the $\approx \phi$ mass region (≈ 1.05 GeV)

HLS : A Global VMD Model (II)

- BHLS correlates several physics channels :
- $e^+e^- \rightarrow \pi \pi / KKbar / \pi \gamma / \eta \gamma / \pi \pi \pi \& \tau \rightarrow \pi \pi v_{\tau}$
- & PVy, Pyy decays & $\phi \rightarrow \pi\pi$ (Br ratio and phase)
- 1. BHLS : *overconstrained* & numerically driven by *more than 40 data sets*
- 2. New paradigm : statistics on any channel $(\pi^0\gamma, \tau) \approx$ additional statistics for any other $(\pi^+\pi^-/\eta\gamma)$
- 3. All available exp. data sets about these channels are not necessarily consistent within BHLS

VMD Strategy for HVP Estimates

Perform a global fit :: if successful then
 1/ VMD correlations are fulfilled by DATA

> 2/ HLS form factors & fit parameters values & errors covariance matrix should lead to better estimates of HVP contributions to g-2 for $\pi^+\pi^-/K^+K^-/K_LK_S/\pi\gamma/\eta\gamma/\eta\gamma/\pi\pi\pi$ up to 1.05 GeV

VMD Strategy for HVP Estimates

> Perform a global fit : if successful then

> 1/ VMD correlations are fulfilled by DATA

> 2/ HLS form factors & fit parameters values & errors covariance matrix should lead to better estimates of HVP contributions to g-2 for $\pi^+\pi^-/K^+K^-/K_LK_S/\pi\gamma/\eta\gamma/\eta'\gamma/\pi\pi\pi$ up to 1.05 GeV

Can One trust Global Fits?

- Outcome of a Minimization Tool : χ² (& MINUIT)
 implemented using *assumptions* on :
- Error Covariance Matrices (metrics of χ² distance)
- Global Scale Uncertainties (possibly s-dependent)
- Th. models (Non-linear parameter dependence)

Even if fits are 100% successful :

check if numerical conclusions can be trusted

How to Check Global Fits?

- Several Expectations :
 - Parameter residuals OK : Unbiased
 - **Parameter Pulls OK** : Gaussians G(m=0, σ=1)
 - Probability distributions OK: Uniform on [0,1]
- → Fit parameters values & Fit Error Cov. Matrix OK

So : Any derived info. $X_0+\Delta X$ (val./err.) OK

BUT truth should be known → MC methods

How to Check Global Fit Methods?

- Several Expectations :
 - ✓ Parameter residuals OK : Unbiased
 - ✓ Parameter Pulls OK : Gaussians G(m=0, σ =1)
 - ✓ Probability distributions OK: Uniform on [0,1]
 - \rightarrow Fit parameters values & Fit Error Cov. Matrix OK

So : Any derived info. $X_0 \pm \Delta X$ (val./err.) VALID BUT truth should be known \rightarrow MC methods

How to Check Global Fit Methods?

- Several Expectations :
 - ✓ Parameter residuals OK : Unbiased
 - ✓ Parameter Pulls OK : Gaussians G(m=0, σ =1)
 - ✓ Probability distributions OK: Uniform on [0,1]
- → Fit parameters values & Fit Error Cov. Matrix OK

So : Any derived info. $X_0 \pm \Delta X$ (val./err.) VALID

BUT truth should be known \rightarrow MC methods

How to Check Global Fit Methods?

- Several Expectations :
 - ✓ Fit parameter residuals OK : Unbiased
 - ✓ parameter Pulls OK : Gaussians G(m=0, σ =1)
 - ✓ Probability distributions OK: Uniform on [0,1]
- → Fit parameters values & Fit Error Cov. Matrix OK

So : Any derived info. $X_0 \pm \Delta X$ (val./err.) VALID

BUT truth should be known \rightarrow MC methods

χ² Function : Global Scale Issues

• Spectrum (E) subject to one scale uncertainty λ_{E} [G(0, σ)] and stat. err. cov. V_{E} : $\chi_{E}^{2} = [m_{E} - M - \lambda_{E}A]^{T} V_{E}^{-1} [m_{E} - M - \lambda_{E}A] + \lambda_{E}^{2} / \sigma^{2}$ data Global scale (Penalty term » If no global scale : Stat. & uncorrel. syst

$$\chi_{E}^{2} = \left[m_{E} - M \right]^{T} V_{E}^{-1} \left[m_{E} - M \right]$$

what about A : Specific to E? Common to {E}?

s-dependent Global Scale Factors

- several independent scale factors (necessarily sdependent) affect the spectrum (E)
- The αth scale factor :

$$\lambda_{\alpha} = \mu_{\alpha}$$
 (0,1) σ_{α} (s)

- Define the vectors $\left(B_{\alpha}(s) = A(s) \sigma_{\alpha}(s)\right)$
- then

$$\chi_{E}^{2} = \left[m_{E} - M - \mu_{\alpha} B_{\alpha} \right]^{T} V_{E}^{-1} \left[m_{E} - M - \mu_{\beta} B_{\beta} \right] + \mu_{\alpha} \mu_{\beta} \delta_{\alpha\beta}$$

M.Benayoun et al . EPJ C73(2013)2453

« Penalty term »

Scale Uncertainty(ies)

M. Benayoun et al EPJ C73 (2013)2453

• Minimize :

$$\chi^{2} = \left[m - M - \lambda A \right]^{T} V^{-1} \left[m - M - \lambda A \right] + \lambda^{2} / \sigma^{2}$$

•Solving for λ ($\partial \chi^{2} / \partial \lambda = 0$) leads to:

$$\chi^2 = \left[m - M \right]^T \left[V + \sigma^2 A A^T \right]^{-1} \left[m - M \right]$$

•with:
$$\lambda = \left\{ A^T V^{-1} \left[m - M \right] \right\} / \left\{ A^T V^{-1} A + \frac{1}{\sigma^2} \right\}$$

NA7 Residuals (χ²/N≈2)!

NA7 Residuals (χ²/N≈2)!

• Contribution to HVP :

$$\int K(s) M(s) =? \int K(s) m(s)$$

• Contribution to HVP :

$$a_{\mu}(H_i) = \frac{1}{4\pi^3} \int_{s_{th}}^{s_{cut}} ds K(s) \sigma(e^+e^- \to H_i, s)$$

Contribution to HVP should be corrected

$$\int K(s) M(s) = \int K(s) m(s) - \lambda \int K(s) A(s)$$

Correction Evaluation requires λ & A(s)
 → fits!

m? or m-λA ?

Contribution to HVP should be corrected

$$\int K(s) M(s) = \int K(s) m(s) - \lambda \int K(s) A(s)$$

Correction Evaluation requires λ & A(s)
 → but fits provide M(s) directly

How to choose/check A?

 The best choice is A= M_{truth} M_{truth} is unknown !

G. D'Agostini NIM A346 (1994)306

• A= m may be not optimum: M.Benayoun *et al* . EPJ C73(2013)2453

- \rightarrow biased(?) information \rightarrow How to unbias?
- A solution : Iterative Method R.D.Ball et al JHEP 1005 (2010)075 iteration 0 : A= m \rightarrow it=0 fit. func. : M₀ iteration $1: A = M_0 \rightarrow it = 1$ fit. func. : M_1 **ETC.... up to convergence** $M_n = M_{truth}$ Also A=M (varying) if some good starting point

Global Fit of Toy Monte-Carlo Samples

- Choosing theoretical function(s) f_{th}(s)
- Generate N_{rep} replicas of N_{exp} spectra built using f_{th}(s) together with :
- a given statistical covariance matrix V
- given scale uncertainties
- Fitting the N_{rep} set of N_{exp} spectra (MINUIT)

Global Fit of Toy Monte-Carlo Samples

Th. functions [f(s)] : exponential, logarithm,

polynomials, BW & combinations

> report on
$$f(s) = \frac{g}{(s-a)^2 + b^2} \div c + ds + es^2$$

- Fit the N_{rep} replicas of the N_{exp} spectra
- > Check Residuals, pulls, prob. distributions > Check ratio \hat{I} of Integrals for $f_{fit}(s) \& f_{th}(s)$ (~ a_{μ})

Non Linear Effects

- $N_{exp} = 5/N_{rep} = 1000$
- $\sigma_{\text{stat}} = 2\%$, $\sigma_{\text{scale}} = 0\%$
- χ² does not depend on A
- < **Î** > =1
- Proba : (m=0.5, σ=1/√12)
- All pulls G(0,1)
- Errors : Parabolic ≡ MINOS (Migrad/MINUIT)

The Integral ratios **Î** (I)

- $N_{exp} = 5/N_{rep} = 1000$
- Each : σ_{stat} = 3% σ_{scale} = 5%
- A=M_{truth} : fit OK
- A=m : fit biased (20%!)
- A=M₀ : fit derives M₁
- A=M₁: fit derives M₂

The Integral ratios **1**(I)

- $N_{exp} = 5/N_{rep} = 1000$
- Each : σ_{stat} = 3% σ_{scale} = 5%
- A=M_{truth} : fit OK
- A=m : fit biased (20%!)
- A=M₀ : fit derives M₁
- A=M₁: fit derives M₂

Converges at iteration #1

R.D.Ball et al JHEP 1005 (2010)075

The Integral ratios **Î** (II)

Fit Parameter Pulls I

- A=m $\sigma_{pull} \approx 0.80$ A=M₀ $\sigma_{pull} \ge 0.95$

 Peaks shrink (param. a & b)

Fit Parameter Pulls II

Fit Parameter Pulls III

Fit Probabilities

- A=m peaked
- A=M/M₀/M₁/
 Flat distributions for iter. & truth

Fit Probabilities II

• Flat distributions

(without iterations)

$CASE : \sigma_{stat} = 2\% \& \sigma_{syst} = 2\%$

- smooth probability peak
- A=M/M₀/M₁/
 Flat distributions
 4% bias (20%)

Can One trust Global Model/Fits?

- From Toy MC studies one may conclude :
- Bias & shrink exist with amplitudes depending on the relative magnitudes of σ_{stat} & σ_{syst}
- but a few data samples with σ_{syst} << σ_{stat} sharply limit bias & shrinkage
- Running 1 iteration allows always full recovery
- Global fit of the largest set of data samples should give more robust estimates

Can One trust Global Model/Fits?

- From Toy MC studies one may conclude :
- Bias & shrink exist with amplitudes depending on the relative magnitudes of σ_{stat} & σ_{syst}
- but a few data samples with $\sigma_{syst} << \sigma_{stat}$ sharply limit bias & shrinkage
- Running 1 iteration allows always full recovery
- Iterated Global fits of the largest set of data samples should give more robust estimates (central & rms)

[Iterated] GLOBAL FITS

• Global Fits (+ iterate) of the data samples for

τ→ππ ν_τ, e⁺e⁻→ π⁺ π⁻/ K⁺K⁻/ K_L K_S/π γ/ηγ/π π π (probability, average χ^2/N)

- Discard πππ data in φ region (conf. B)
- Fitting from thresholds to 1. GeV/c (τ , $\pi\pi$, $\pi\pi\pi$)
- Fitting from thresholds to 1.05 GeV/c
- Identify samples not consistent within BHLS

π⁺ π⁻ Spectra : NSK, KLOE, BaBar

• Several measurements of the $\pi^+ \pi^-$ spectrum

CMD2: Phys. Lett. B648 (2007) 28, JETP Lett. 84 (2006) 413 SND: JETP 103 (2006) 380

KLOE08 : AIP Conf. Proc. 1182 (2009) 665

ii. KLOE

i.

iii. BaBar

KLOE10: Phys. Lett. B700 (2011) 102 KLOE12: Phys. Lett. B720 (2013)336

BaBar : Phys. Rev. Lett. **103** (2009) 231801 * Phys. Rev . **D86** (2012) 032013

exhibit conflicting behaviors within global fits

M. Benayoun et al EPJ C73 (2013)2453

Fitting $\pi^+\pi^-$ Data using τ Samples

_Fit Cond. (χ²/Ν _{π+π -})	KLOE08(60)	KLOE10(75)	KLOE12(60)	NSK(127/209)	BaBar(250) (trunc)
Single (χ²/N _{π+π -})	1.64 59 %	0.96 97%	1.02 97 %	0.96 [0.83] 97 % [99%]	1.15 74%
Comb 1 χ ² /N : 1.28(11%)		1.02	1.48	1.18 <mark>[0.96]</mark>	1.35
Comb 2 χ ² /N: 1.06(97%)		1.02	1.05	1.10[0.89]	
Comb 3 χ²/N: 0.98 (96%)		0.97	1.00		

Global Fit Results with τ & NSK

Data Set (#data points)	χ2 (NSK+τ)	X ² (NSK+KLOE)+τ
Decays (10)	8.4	9.2
New Timelike (127)	122.3	139.7
Old Timelike (82)	50.4	46.2
π ⁰ γ (86)	64.0	64.2
ηγ (182)	120.1	120.8
π⁺π⁻ π ⁰ (99)	102.3	101.8
K⁺K⁻ (36)	29.9	29.9
K _L K _s (119)	119.3	119.1
τ ALEPH <mark>(</mark> 37)	19.5	19.3
τ CLEO (29)	35.6	36.4
τ Belle (19)	28.3	30.9
X ² /dof // Probability	701/801 / 99.5%	857/936/ <mark>97%</mark>

GLOBAL FITS : Check ππ data sets

Fits with each ππ data set in isolation (scan/KLOE's/BaBar) → select on Prob.

• All other channels always included in fits $(\tau \rightarrow \pi \pi \nu_{\tau}, e^+e^- \rightarrow K^+K^-/K_L K_S/\pi \gamma/\eta\gamma/\pi \pi \pi)$

Consistent π⁺π⁻ data sets for Global Treatment : CMD2 & SND & KLOE10 & KLOE12

GLOBAL FIT : ππ spectrum

Global Fits : Side Regions

The Spacelike & threshold Regions

Threshold region

Extrapotation to s<0

Predicted Phase shift (I)

Predicted Phase shift (II)

$$\left[\frac{m_{\omega}^{HK}}{m_{\rho}^{HK}}\right]^2 = 1.05$$

Threshold Behavior -> NSB

a_μ (π⁺π⁻, √s=[0.630,0.958] GeV)

- Data and BHLS estimates
- Amp.: (0.76-0.80 GeV),
- Green : A = m (it=0)
- Black : $A = M_0$ (it=1)

a_μ (π⁺π⁻, √s=[0.630,0.958] GeV)

Data and BHLS estimates

HVP contribution (E≤ 1.05 GeV)

• $\pi^+\pi^-$: CMD2/SND/KLOE10/KLOE12 /OLYA/CMD

Channel	A=m	A=M ₀	A=M (variable)	Direct Estimate
π ⁺π⁻	494.57 ± 1.48	494.02 ±1.11	493.77 ± 1.03	(498.53 ± 3.73)scan (494.50 ± 3.13)isr
π ⁰ γ	4.53 ± 0.04	4.54 ± 0.04	4.54 ± 0.04	3.35 ± 0.11
ηγ	0.64 ± 0.005	0.64 ± 0.005	0.64 ± 0.005	0.48 ± 0.01
η' γ	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	
π ⁺ π ⁻ π ⁰	38.94 ± 0.58	38.96 ± 0.58	39.97 ± 0.57	43.24 ± 1.47
K _L K _S	11.56 ± 0.08	11.56 ± 0.08	11.56 ± 0.08	12.31 ± 0.33
K⁺K⁻	16.78 ± 0.21	16.77 ± 0.21	16.76 ± 0.21	17.88 ± 0.54
Total up to 1.05 GeV	567.03 ± 1.60	566.49 ± 1.27	566.25 ± 1.20	(575.79 ± 4.06)scan (571.76 ± 3.52)isr

HVP contribution (E≤ 1.05 GeV)

• Central values ≈ coincides with isr (NSK+KLOE)

Channel	A=m	A=M ₀	A=M (variable)	Direct Estimate
π+π-	494.57 ± 1.48	494.02 ±1.11	493.77±1.03	(498.53 ± 3.73)scan (494.50 = 3.13)isr
π ⁰ γ	4.53 ± 0.04	4.54 ± 0.04	4.54 ± 0.04	3.35 ± 0.11
ηγ	0.64 ± 0.005	0.64 ± 0.005	0.64 ± 0.005	0.48 ± 0.01
η' γ	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	
π ⁺ π ⁻ π ⁰	38.94 ± 0.58	38.96 ± 0.58	39.97 ± 0.57	43.24 ± 1.47
K _L K _S	11.56 ± 0.08	11.56 ± 0.08	11.56 ± 0.08	12.31 ± 0.33
K⁺K⁻	16.78 ± 0.21	16.77 ± 0.21	16.76 ± 0.21	17.88 ± 0.54
Total up to 1.05 GeV	567.03 ± 1.60	566.49 ± 1.27	566.25 ± 1.20	(575.79 ± 4.06)scan (571.76 ± 3.52)isr

HVP contribution (E≤ 1.05 GeV)

uncertainties improved by ≈2.5 to 3

Channel	A=m	A=M ₀	A=M (variable)	Direct Estimate
π ⁺π⁻	494.57 ± 1.48	494.02 ±1.11	493.77 <mark>± 1.03</mark>	(498.53 <u>± 3.73)scan</u> (494.50 <u>± 3.13)isr</u>
π ⁰ γ	4.53 ± 0.04	4.54 ± 0.04	4.54 ± 0.04	3.35 ± 0.11
η γ	0.64 ± 0.005	0.64 ± 0.005	0.64 ± 0.005	0.48 ± 0.01
η' γ	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	
π ⁺ π ⁻ π ⁰	38.94 ± 0.58	38.96 ± 0.58	39.97 ± 0.57	43.24 ± 1.47
K _L K _S	11.56 ± 0.08	11.56 ± 0.08	11.56 ± 0.08	12.31 ± 0.33
K⁺K⁻	16.78 ± 0.21	16.77 ± 0.21	16.76 ± 0.21	17.88 ± 0.54
Total up to 1.05 GeV	567.03 <mark>± 1.60</mark>	566.49 ± 1.27	566.25 ± 1.20	(575.79 ± 4.06)scan (571.76 ± 3.52)isr

NNPDF1.2

NNPDF1.2 + T method

х

g-2 Estimates & Discrepancy

Configuration B	$-\cdots - \tau \operatorname{\mathbf{Data}} + [\rho + \omega + \phi] \ (\mathbf{PDG}) \ (\delta m = \delta g = 0) \ \cdots$
τ (A+B+C)	$[30.96 \pm 6.84]$ $[3.3 \sigma]$
	Individual $\pi\pi$ Data Sets + τ —
NSK (CMD2+SND)	[38.09 ± 5.38] [4.6 σ] [$\chi^2/N_{\pi\pi}$ 0.96] [99.5%]
KLOE 08	[40.83 ± 5.88] [4.7 σ] [$\chi^2/N_{\pi\pi}$ 1.64] [58.9%]
KLOE 10	[41.26 ± 5.87] [4.8 σ] [$\chi^2/N_{\pi\pi}$ 0.96] [96.6%]
KLOE 12	[40.38 ± 5.17] [4.9 σ] [$\chi^2/N_{\pi\pi}$ 1.02] [96.9%]
BaBar (Trunc.)	[31.20 ± 4.95] [3.9 σ] [$\chi^2/N_{\pi\pi}$ 1.15] [73.8%]
BaBar (Full)	[29.45 ± 4.92] [3.7 σ] [$\chi^2/N_{\pi\pi}$ 1.25] [40.1%]
	$\pi \pi$ Scan $\pi \pi$ Data
NSK (CMD2+SND)+ τ	[38.09 ± 5.38] [4.6 σ] [$\chi^2/N_{\pi\pi}$ 0.96] [99.5%]
NSK	[39.99 ± 5.70] [4.7 σ] [$\chi^2/N_{\pi\pi}$ 0.97] [99.8%]
DHea09 (e^+e^-)	$[30.1 \pm 5.8] [3.5 \sigma]$
i	$ scan + ISR \pi\pi$ Data
NSK+KLOE (10&12)& τ	[40.47 ± 5.04] [5.0 σ] [$\chi^2/N_{\pi\pi}$ 1.06] [97.0%]
NSK+KLOE(10&12)	[41.38 ± 5.15] [5.1 σ] [$\chi^2/N_{\pi\pi}$ 1.06] [98.5%]
DHMZ10 $(e^+e^- + \tau)$	$[19.5 \pm 5.4]$ [2.4 σ]
DHMZ10 (e^+e^-)	$[28.7 \pm 4.9]$ $[3.6 \sigma]$
$\mathbf{HLMNT11}(e^+e^-)$	$[26.1 \pm 4.9] [3.3 \sigma]$
$JS11(e^+e^- + \tau)$	[29.20 \pm 6.0] [3.4 σ]
Global (ISR** & scan& τ)	[35.77 ± 4.96] [4.3 σ] [$\chi^2/N_{\pi\pi}$ 1.28] [11.3%]
Global (ISR** & scan)	[35.68 ± 4.92] [4.4 σ] [$\chi^2/N_{\pi\pi}$ 1.59] [15.4%]
	experiment
BNL-E821(avrg)	$[0\pm 6.3]$
-10	40 90 140
	$(a_{\mu}^{exp}-a_{\mu}^{th}){ imes}10^{10}$

g-2 Estimates & Discrepancy

Configuration B	τ Data + $[\rho + \omega + \phi]$ (PDG) $(\delta m = \delta g = 0)$
τ (A+B+C)	[30.96 \pm 6.84] [3.3 σ]
NSK (CMD2+SND)	[38.09 ± 5.38] [4.6 σ] [$\chi^2/N_{\pi\pi}$ 0.96] [99.5%]
KLOE 08	[40.83 ± 5.88] [4.7 σ] [$\chi^2/N_{\pi\pi}$ 1.64] [58.9%]
KLOE 10	[41.26 ± 5.87] [4.8 σ] [$\chi^2/N_{\pi\pi}$ 0.96] [96.6%]
KLOE 12	[40.38 ± 5.17] [4.9 σ] [$\chi^2/N_{\pi\pi}$ 1.02] [96.9%]
BaBar (Trunc.)	[31.20 ± 4.95] [3.9 σ] [$\chi^2/N_{\pi\pi}$ 1.15] [73.8%]
BaBar (Full)	[29.45 ± 4.92] [3.7 σ] [$\chi^2/N_{\pi\pi}$ 1.25] [40.1%]
	$$ scan $\pi\pi$ Data $$
NSK (CMD2+SND)+ τ	[38.09 ± 5.38] [4.6 σ] [$\chi^2/N_{\pi\pi}$ 0.96] [99.5%]
NSK	$[39.99 \pm 5.70] [4.7 \sigma] [\chi^2/N_{\pi\pi} 0.97] [99.8\%]$
DHea09 (e^+e^-)	[30.1 \pm 5.8] [3.5 σ]
	$\frac{1}{10} \frac{1}{10} \frac$
NSK+KLOE (10&12)& τ	[40.47 ± 5.04] [5.0 σ] [$\chi^2/N_{\pi\pi}$ 1.06] [97.0%]
NSK+KLOE(10&12)	[41.38 ± 5.15] [5.1 σ] [$\chi^2/N_{\pi\pi}$ 1.06] [98.5%]
DHMZ10 $(e^+e^- + \tau)$	$[19.5 \pm 5.4]$ [2.4 σ]
DHMZ10 (e^+e^-)	[28.7 \pm 4.9] [3.6 σ]
$HLMNT11(e^+e^-)$	$[26.1 \pm 4.9]$ [3.3 σ]
$JS11(e^+e^- + \tau)$	$[29.20 \pm 6.0]$ [3.4 σ]
Global (ISR** & scan& τ)	[35.77 ± 4.96] [4.3 σ] [$\chi^2/N_{\pi\pi}$ 1.28] [11.3%]
Global (ISR** & scan)	[35.68 ± 4.92] [4.4 σ] [$\chi^2/N_{\pi\pi}$ 1.59] [15.4%]
	experiment
BNL-E821(avrg)	$[0\pm 6.3]$
-10	40 90 140
	$(a_{\mu}^{exp}-a_{\mu}^{th}) imes 10^{10}$

g-2 Estimates & Discrepancy

Configuration B	τ Data + $[\rho + \omega + \phi]$ (PDG) $(\delta m = \delta g = 0)$
τ (A+B+C)	[30.96 \pm 6.84] [3.3 σ]
	Individual $\pi\pi$ Data Sets + τ
NSK (CMD2+SND)	[38.09 ± 5.38] [4.6 σ] [$\chi^2/N_{\pi\pi}$ 0.96] [99.5%]
KLOE 08	[40.83 ± 5.88] [4.7 σ] [$\chi^2/N_{\pi\pi}$ 1.64] [58.9%]
KLOE 10	[41.26 ± 5.87] [4.8 σ] [$\chi^2/N_{\pi\pi}$ 0.96] [96.6%]
KLOE 12	[40.38 ± 5.17] [4.9 σ] [$\chi^2/N_{\pi\pi}$ 1.02] [96.9%]
BaBar (Trunc.)	[31.20 ± 4.95] [3.9 σ] [$\chi^2/N_{\pi\pi}$ 1.15] [73.8%]
BaBar (Full)	$[29.45 \pm 4.92] [3.7 \sigma] [\chi^2/N_{\pi\pi} 1.25] [40.1\%]$
NSK (CMD2+SND)+ τ	[38.09 ± 5.38] [4.6 σ] [$\chi^2/N_{\pi\pi}$ 0.96] [99.5%]
NSK	[39.99 ± 5.70] [4.7 σ] [$\chi^2/N_{\pi\pi}$ 0.97] [99.8%]
DHea09 (e^+e^-)	$[30.1 \pm 5.8]$ $[3.5 \sigma]$
	$$ scan +ISR $\pi\pi$ Data $$
NSK+KLOE (10&12)& τ	[40.47 ± 5.04] [5.0 σ] [$\chi^2/N_{\pi\pi}$ 1.06] [97.0%]
NSK+KLOE(10&12)	[41.38 ± 5.15] [5.1 σ] [$\chi^2/N_{\pi\pi}$ 1.06] [98.5%]
DHMZ10 $(e^+e^- + \tau)$	$\blacksquare \qquad [19.5 \pm 5.4] \qquad [2.4 \sigma]$
DHMZ10 (e^+e^-)	$[28.7 \pm 4.9]$ [3.6 σ]
HLMNT11 (e^+e^-)	$[26.1 \pm 4.9]$ [3.3 σ]
$JS11(e^+e^- + \tau)$	[29.20 \pm 6.0] [3.4 σ]
Global (ISR** & scan $\& \tau$)	[35.77 ± 4.96] [4.3 σ] [$\chi^2/N_{\pi\pi}$ 1.28] [11.3%]
Global (ISR** & scan)	[35.68 \pm 4.92] [4.4 σ] [$\chi^2/N_{\pi\pi}$ 1.59] [15.4%]
	experiment
BNL-E821(avrg)	$[0\pm 6.3]$
-10	40 90 140
-	$(a_{\mu}^{exp}-a_{\mu}^{th}){ imes}10^{10}$

++ Additional Systematics

$$F_{\pi}(s) \approx 1 + a \, s + b \, s^{2}$$

a = 1.8 GeV⁻² b = 4.2 GeV⁻⁴
syst.: shift a_µ(ππ) => ±2. 10⁻¹⁰
10¹⁰ × $\left[a_{\mu}^{\exp}-a_{\mu}^{th}\right] = 40.47 + \left[\frac{+0.6}{-1.3}\right]_{\phi} + \left[\frac{+0.9}{-0.0}\right]_{\tau} + \left[\frac{+2.0}{-2.0}\right]_{s=0}$
10¹⁰ × $\left[a_{\mu}^{\exp}-a_{\mu}^{th}\right] = 35.68 + \left[\frac{+0.6}{-1.3}\right]_{\phi} + \left[\frac{+0.1}{-0.0}\right]_{\tau} + \left[\frac{+2.0}{-2.0}\right]_{s=0}$
NSK+KLOE + BaBar (trunc)
10¹⁰ × $\left[a_{\mu}^{\exp}-a_{\mu}^{th}\right] = 35.68 + \left[\frac{+0.6}{-1.3}\right]_{\phi} + \left[\frac{+0.1}{-0.0}\right]_{\tau} + \left[\frac{+2.0}{-2.0}\right]_{s=0}$
Significance for $\Delta a_{\mu} > 4.6/4.2 \sigma$

Conclusions

- 1/ The upgraded HLS model \rightarrow good simultaneous fit of
 - <u>e⁺e⁻ → ππ/K⁺K⁻/ K_LK_S/ πγ/ηγ/πππ (√s ≤ 1.05 GeV)</u>
- 2/ Iterating global fits is shown to drop out biases
- 3/ Iterated global fit improves HVP uncertainty by ≈ 3 !
- 4/ Good quality data samples with $\sigma_{syst} << \sigma_{stat}$: Helpful

4/ The discrepancy with BNL g-2 value is $\Delta a_{\mu} > 4.6/4.2 \sigma$

5/ Can one trust global fit methods?

Conclusions

- 1/ The upgraded HLS model -> good simultaneous fit of
 - <u>e⁺e⁻ → ππ/K⁺K⁻/ K_LK_S/ πγ/ηγ/πππ (√s ≤ 1.05 GeV)</u>
- 2/ Iterating global fits is shown to drop out biases
- 3/ Iterated global fit improves HVP uncertainty by ≈ 3 !
- 4/ Good quality data samples with $\sigma_{syst} << \sigma_{stat}$: Helpful
- 4/ The discrepancy with BNL g-2 value is $\Delta a_{\mu} > 4.6/4.2 \sigma$
- 5/ One can trust *iterated* global fit methods

GLOBAL FIT : All ππ spectrum

Global Fits : Top

$e^+e^- \rightarrow \pi^0 \gamma$

e⁺e⁻ → ηγ Data

e⁺e⁻ → K Kbar Data

 $\chi^2 / N_{\rm D} = \frac{30}{36}$

 $=\frac{119}{119}$

3-pion Data

 $=\frac{279}{179}$ χ^2 Np