Precision Decay-Pion Spectroscopy of Λ-Hypernuclei at MAMI

Florian Schulz for the A1 Collaboration at MAMI

Outline

- Hypernuclear physics
- Spectroscopy of hypernuclei
- Measurement of hyperhydrogen at MAMI

Hypernuclei

Definition

• Bound system of a nucleus and hyperon(s) $(\Lambda, \Sigma, \Xi, \Omega)$

Notation

• ${}^{A}_{v}Z$ (e.g. ${}^{4}_{\wedge}H$)

Z : charge number

A: baryon number

Y: hyperon list

M. Danysz, J. Pniewski: *Delayed disintegration of a heavy nuclear fragment*, I. Philos. Mag. 7, 44:348-350, 1953

Learning from Hypernuclei

Nuclear force

- Nucleon-nucleon (NN) interaction has been extensively studied (NN scattering, spectroscopy)
- Extending to baryon-baryon interaction, including hyperons (Y) is the first step
- NY scattering is very difficult, YY scattering impractical

M. Danysz, J. Pniewski: *Delayed disintegration of a heavy nuclear fragment*, I. Philos. Mag. 7, 44:348-350, 1953

Learning from Hypernuclei

Neutron star structure

Models including hyperons have difficulties explaining the discovery of neutrons stars with two times the mass of the sun

- □ will YN & YY interactions solve it?
- □ or hyperonic three-body forces?
- and what about quark matter?

I. Vidaña: A three hours walk through the physics of neutron stars, URL://rafael.ujf.cas.cz/school14/index.php?location=Presentations

 $\rho_0 = 2.8 \cdot 10^{14} \text{ g/cm}^3$

Studying A-Hypernuclei

Production

- Strangeness exchange
- Strangeness production (strong / electromagnetic)

Λ-hypernuclei

- decay by weak interaction (τ ~100ps)
- narrow width allows spectroscopy

T. Gogami: Spectroscopic research of Λ hypernuclei up to medium-heavy mass region with the $(e,e'K^+)$ reaction, Ph.D. thesis, Tohoku University, 2014

Spectroscopy of Λ-Hypernuclei

Missing mass spectroscopy

- Measuring four-momenta
- Stable target nuclei
- Resolution 1.5 MeV 500 keV

- no pauli blocking for Λ
- probes deep inside the nucleus

Spectroscopy of Λ-Hypernuclei

Missing mass spectroscopy

- Measuring four-momenta
- Stable target nuclei
- Resolution 1.5 MeV 500 keV

Gamma ray spectroscopy

- Resolution in range of keV
- Stable target nuclei
- No absolute measurement

J. Sasao at al.: $^{7}_{\Lambda}$ Li ground-state spin determined by the yield of γ -rays subsequent to weak decay, Phys. Let. B 579, 258-264, 2004

Spectroscopy of Λ-Hypernuclei

Missing mass spectroscopy

- Measuring four-momenta
- Stable target nuclei
- Resolution 1.5 MeV 500 keV

Gamma ray spectroscopy

- Resolution in range of keV
- Stable target nuclei
- No absolute measurement

Decay-pion spectroscopy

- Mesonic two body decays
- Measuring hyperfragments
- Resolution below 100 keV

H. Tamura at al., Phys. Rev. C, 1989

Decay-Pion Spectroscopy of Λ-Hypernuclei

Ground-state masses of Λ-Hypernuclei

$$M_{\mathrm{HYP}} = \sqrt{M_{\mathrm{ncl}}^2 + p_{\pi^-}^2} + \sqrt{M_{\pi^-}^2 + p_{\pi^-}^2}$$

A = 4 Isospin Doublet

- NY interaction can be studied by strange mirror pairs
- Coulomb correction < 50 keV for the ⁴_AH ⁴_AHe pair
- The large $\Delta B_{\Lambda} = 0.35 \pm 0.06$ leads to the interpretation of a strong charge symmetry breaking effect in the ΛN interaction

Experimental data in MeV from [Nuclear Wallet Cards, BNL, 2011]

World data on ⁴_∧H

[M. Juric et al. NP B52 (1973)]

World data on A = 4 system

[M. Juric et al. NP B52 (1973)]

Mainz Microtron

Mainz Microtron

- Continuous wave electron beam
- Maximum beam energy: 1.6 GeV
- Maximum beam current: 100 μA
- Beam polarization > 80 %

Spectrometer facility

- 3 high resolution, $\delta p / p = 10^{-4}$, spectrometers "A/B/C"
- A short orbit spectrometer "Kaos"

Decay-pion spectroscopy of Λ-hypernuclei

Decay-pion spectroscopy program:

2011: Pioneering run at MAMI

• 2012: First measurement of ⁴_ΔH

2014: Second measurement campaign

Setup 2012

Target : ⁹Be, 22 mg/cm²

Beam energy : 1.508 GeV

• Beam current : 20 μA

Spectrometer

• A | | C : precise π^- spectroscopy

Kaos : K⁺ strangeness tag at 0°

Kaos as dedicated zero-degree tagger

• Suppression of large positron flux with 25 X_0 lead absorber wall

Reaction identification

- established clean tag on strangeness production at zero-degree
- decay-pion detection with Spectrometer A & C ($\delta p/p < 10^{-4}$)
- more than 1000 pion-kaon-coincidences from weak decays of hyperons

Hyperhydrogen peak search

Local excess observed inside the hyperhydrogen search region

Binding energy extraction

$$M(_{\Lambda}^{4}\mathrm{H}) = \sqrt{M^{2}(^{4}\mathrm{He}) + p_{\pi}^{2}} + \sqrt{M_{\pi}^{2} + p_{\pi}^{2}}$$
 and
$$B_{\Lambda} = M(^{3}\mathrm{H}) + M_{\Lambda} - M(_{\Lambda}^{4}\mathrm{H}) \text{ with c} = 1$$

World data on A = 4 system

World data on A = 4 system

MAMI experiment confirmed Λ binding energy of $^4_{\Lambda}$ H: B_{Λ} ~ 2.14 ± 0.1 MeV (MAMI 2014 prelim.)

Summary

- Hypernuclei have been studied since the 60's, with applications beyond nuclear physics
- With gamma ray and decay-pion spectroscopy it is now becoming a precision science
- Decay-pion spectroscopy gives access to precise ground state masses of light hypernuclei
- Precise measurements of the A = 4 systems are linked with understanding of the charge symmetry breaking in the ΛN interaction

Outlook

- In 2014 the next experiment in the measurement campaign was performed with 5 times higher statistics; analysis ongoing
- To access other hypernuclei different target material are under investigation
- The dominating systematic error can be reduced afterwards, by improved spectrometer calibration
 - → new Ph.D. project

Thank you for your attention

Collaboration list

Institut für Kernphysik, Johannes Gutenberg-Universität, Mainz, Germany:

Patrick Achenbach, Carlos Ayerbe, Ralph Böhm, Michael O. Distler, **Anselm Esser**, Mar Gomez, Alicia Sanchez-Lorente, Harald Merkel, Ulrich Müller, Josef Pochodzalla, Takehiko Saito, Björn Sören Schlimme, Matthias Schoth, **Florian Schulz**, Concettina Sfienti, Adrian Weber

University of Ljubljana and Institut "Josef Stefan", Ljubljana, Slovenia:

Luka Debenjak, Simon Sirca

Department of Physics, University of Zagreb, Croatia:

Damir Bosnar, Ivica Friscic

Department of Physics, Hampton University, VA, USA:

Liguang Tang

Department of Physics, Florida International University, Miami, FL, USA:

Joerg Reinhold

Yerevan Physics Institute, Yerevan, Armenia:

Amur Margaryan

Department of Physics, Tohoku University, Sendai, Japan:

Osamu Hashimoto, Satoshi N. Nakamura, Kyo Tsukada, Toshiyuki Gogami, Sho Nagao

GSI, Darmstadt, Germany:

Olga Borodina, Vakkas Bozkurt, Eunhee Kim, Christophe Rappold