Imaginary Charmonium Decay Widths ?

A proposal for PANDA

The BESIII Italian Collaboration 1,2,3,4,5

Wang Ping ${ }^{5}$, Wang Yadi ${ }^{1}$, Zhu Kai ${ }^{5}$

1 - Laboratori Nazionali di Frascati, Italy
2 - Università degli Studi di Torino and INFN, Italy
3 - Università degli Studi di Ferrara and INFN, Italy
4 - Università degli Studi di Perugia and INFN, Italy
5 - Institute of High Energy Physics, GUCAS, Beijing, P.R.C.

Outline

- Vector Charmonium decay mechanisms
] J/ ψ strong imaginary decay widths, experimental evidences:
- Vector+Pseudoscalar, Pseudoscalar+Pseudoscalar: $|\Phi|$ ~ 90°
- Energy scan, close to the J/ ψ looking for interference, by BESIII: $|\Phi| \sim 90^{\circ}$
- A possible way to get the continuum phase
\square Controversial evidences for $\psi^{\prime}(2 S)$
- $\psi^{\prime \prime}(3770)$ experimental evidences : $\Phi \sim-90^{\circ}$

A model for strong imaginary decay widths
[A proposal for PANDA: a ppbar -> J/ $\psi->$ hadrons $/ \mu \mu$ scan

Vector Quarkonium Decay Mechanisms

(a) $e^{+} e^{-} \rightarrow \mathrm{J} / \psi \rightarrow$ hadrons via strong mechanism (b) via em mechanism
(c) non-resonant $e^{+} e^{-} \rightarrow$ hadrons via a virtual photon. PQCD regime: all amplitudes real (apart BW resonance behaviour), while data are as if there is an additional in front of the BW

Experimental Evidences for Imaginary Strong Decay Widths

Model dependent experimental evidences (old data)
SU3 and SU3 Breaking in $\mathbf{1 0}^{-}, \mathbf{0}^{-0} \mathbf{0}^{-} \mathbf{1 - 1}^{-1^{-}}$decay : Φ ~ 90°

$$
\begin{array}{ll}
\mathrm{J} / \Psi \rightarrow \mathrm{VP}\left(1^{-} 0^{-}\right) & \Phi=106^{\circ} \pm 10^{\circ}[1] \\
\mathrm{J} / \Psi \rightarrow \mathrm{PP}\left(0^{-} 0^{-}\right) & \Phi=89.6^{\circ} \pm 9.9^{\circ}[2] \\
\mathrm{J} / \Psi \rightarrow \mathrm{VV}\left(1^{-1}\right) & \Phi=138^{\circ} \pm 37^{\circ}[2]
\end{array}
$$

More recently:
If $\mathbf{A}\left(\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{n n} \mathbf{n a r}\right) \sim-\mathbf{A}\left(\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{p p}_{\text {bar }}\right)^{\text {[3] }}$
$B\left(\mathrm{nn}_{\mathrm{bar}}\right) / B\left(\mathrm{pp}_{\mathrm{bar}}\right)=0.98 \pm 0.08 \rightarrow \Phi \sim 89^{\circ} \pm 8^{\circ}{ }^{[4]}$ (BESIII)
[1] L. Kopke and N. Wermes, Phys. Rep. 174, 67 (1989); J. Jousset et al., Phys. Rev. D41, 1389 (1990).
[2] M. Suzuki et al., Phys. Rev. D60, 051501 (1999).
[3] FENICE Coll. NP B517(1998)3, SND Phipsi Rome, Sep (2013).
[4] M. Ablikim et al., Phys. Rev. D 86, 032014 (2012).

VP decay updated and revisited

SU3 and SU3 Breaking Amplitudes

Use reduced amplitudes $B=B_{0} / P^{*} 3$

Process $J / \psi \rightarrow$	Amplitude
$\rho^{+} \pi^{-}, \rho^{0} \pi^{0}, \rho^{-} \pi^{+}$	$g+e$
$K^{*+} K^{-}, K^{*-} K^{+}$	$g(1-s)+e$
$K^{* 0} \bar{K}^{0}, \bar{K}^{* 0} K^{0}$	$g(1-s)-2 e$
$\omega \eta$	$(g+e) X_{\eta}+\sqrt{2} r g\left(\sqrt{2} X_{\eta}+Y_{\eta}\right)$
$\omega \eta^{\prime}$	$(g+e) X_{\eta^{\prime}}+\sqrt{2} r g\left(\sqrt{2} X_{\eta},+Y_{\eta^{\prime}}\right)$
$\phi \eta$	$(g(1-2 s)-2 e) Y_{\eta}+r g\left(\sqrt{2} X_{\eta}+Y_{\eta}\right)$
$\phi \eta^{\prime}$	$(g(1-2 s)-2 e) Y_{\eta^{\prime}}+r g\left(\sqrt{2} X_{\eta^{\prime}}+Y_{\eta^{\prime}}\right)$
$\rho^{0} \eta^{\prime}$	$3 e X_{\eta}$
$\rho^{0} \eta^{\prime}$	$3 e X_{\eta^{\prime}}$
$\omega \pi^{0}$	$3 e$
$\phi \pi^{0}$	0

J/ Ψ
 Vector +Pseudoscalar

Parameter		Fit
SU_{3} strong Amplitude	g	7.22 ± 0.38
SU_{3} breaking strange	s	0.18 ± 0.04
SU_{3} breaking DOZI	r	-0.04 ± 0.02
E.M. Amplitude	e	0.75 ± 0.04
Phase	f	81.51 ± 6.75

J/ ψ

Vector + Pseudoscalar

Decay	Amplitude	PDG×104	FitX104	$\Delta \chi^{2}$
$\rho^{0} \pi^{0}$	$g \mathrm{e}^{\mathrm{if}}+\mathrm{e}$	169.0 ± 15.0	133.00	1.13
$\mathrm{K}^{*}+\mathrm{K}^{-}$	$\mathrm{g}(1-\mathrm{s}) \mathrm{e}^{\mathrm{id}+e}$	51.2 ± 3.0	51.5	0.01
$\mathrm{K}^{*} \mathrm{~K}^{0}$	$\mathrm{g}(1-\mathrm{s}) \mathrm{e}^{\text {ip }}-2 \mathrm{e}$	43.9 ± 3.1	48.5	0.48
$\omega \eta$	$(g X+d) e^{i \phi}+e X$	17.4 ± 2.0	18.5	0.06
$\phi \eta$	$(\mathrm{g}(1-2 \mathrm{~s}) \mathrm{Y}+\mathrm{d}) \mathrm{e}^{\mathrm{if}-2 \mathrm{e}} \mathrm{Y}$	7.5 ± 0.8	3.9	4.02
$\rho \eta$	3 eX	1.9 ± 0.2	2.2	0.30
$\omega \pi$	3 e	4.5 ± 0.5	4.1	0.11
$\omega \eta^{\prime}$	$\left(\mathrm{g} \mathrm{X}{ }^{\prime}+\mathrm{d}^{\prime}\right) \mathrm{e}^{\mathrm{id}}+\mathrm{e} \mathrm{X}^{\prime}$	7.0 ± 7.0	11.9	0.10
$\phi \eta^{\prime}$	$\left(g(1-2 s) Y^{\prime}+d^{\prime}\right) e^{i \varphi}-2 e Y^{\prime}$	4.0 ± 0.7	6.1	1.87
$\rho \mathrm{H}$	3 eX	1.1 ± 0.2	1.1	0.04

PP decay updated and revisited

Pseudoscalar Pseudoscalar Decay Revisited

- Open question about $J / \Psi->\pi \pi$ decay, since pure em :
$\mathrm{B}^{\pi \pi}=\left|\mathrm{E}^{\pi \pi}\right|^{2,}$, while
$\mathrm{B}^{\pi \pi}=(1.47 \pm .23) 10^{-4}$ from PDG
$\left|\mathrm{E}^{\pi \pi}\right|^{2}=\mathrm{B}^{\mu \mu} \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-}->\pi^{+} \pi-\right) / \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-}->\mu \mu\right)=$ $=(0.46 \pm .23) 10^{-4}$ extrapolated from BaBar $\mathbf{B}^{\pi \pi} \neq\left|\mathrm{E}^{\pi \pi}\right|^{2}$ by 3 s.d.
$\square \pi \pi$ cross section slope B, asymptotically it is expected $B=-2-4 \times n_{q}=-6$ $\mathrm{B}^{\pi \pi} \sim-10 \pm 2$

Pseudoscalar Pseudoscalar Decay Revisited

- It is possible to avoid $\pi \pi$ and complications from s quark by means of KK BR's and $\left|\mathrm{E}^{K K}\right|$ only
- $\mathrm{B}^{+-}=|\mathrm{S}|^{2}+\left|\mathrm{E}^{+-}\right|^{2}+2|\mathrm{~S}|\left|\mathrm{E}^{+-}\right| \cos \Phi$ $B^{S L}=|S|^{2}+\left|E^{S L}\right|^{2}-2|S|\left|E^{S L}\right| \cos \Phi$
- $\left|\mathrm{E}^{+-}\right|^{2}=\mathrm{B}^{\mu \mu} \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{K}^{+} \mathrm{K}^{-}\right) / \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-}->\mu \mu\right)$ $\left|E^{S L}\right|^{2} \sim 0$, since $\sigma\left(e \mathrm{e}->\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}}\right) \ll \sigma\left(\mathrm{e} e->\mathrm{K}^{+} \mathrm{K}^{-}\right)$ $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}}\right) \sim 0.6 \mathrm{pb}$ at J/ Ψ $\mathrm{B}^{+-} \quad=(2.37 \pm 0.31) 10^{-4} \quad \mathrm{~B}^{\mathrm{SL}}=(1.66 \pm 0.26) 10^{-4}$ $\left|\mathrm{E}^{+-}\right|^{2}=(1.3 \pm 0.6) 10^{-4} \quad$ from BaBar $\Phi=83.7^{0} \pm 9.0^{\circ}$

The ψ^{\prime} Puzzle

Ψ^{\prime}

Vector + Pseudoscalar

Parameter	Fit	
SU_{3} strong Amplitude	g	0.49 ± 0.04
SU_{3} breaking strange	s	-0.04 ± 0.13
SU_{3} breaking DOZI	r	-0.04 ± 0.08
E.M. Amplitude	e	0.18 ± 0.02
Phase	f	$159 . \pm 12$.
$\chi^{2} / \mathrm{DFR}=0.96$		

Φ at the Ψ^{\prime} from $K^{*}(892) \mathrm{K}$ Decay Only

- $\mathrm{K}^{*}(892) \mathrm{K}$ decay: possible to avoid SU_{3} assumptions and complications from s quark mass, since CLEOc measured the continuum cross sections
- CLEOc (arXiv:hep-ex/0509011v2):
$\sigma\left(\mathrm{e} \mathrm{e}->\mathrm{K}^{*} \mathrm{~K}^{0}+\mathrm{cc}\right)=(23.5 \pm 5.3) \mathrm{pb}$ at $\mathrm{W}=3.67 \mathrm{GeV}$ $\sigma\left(\mathrm{e} \mathrm{e}->\mathrm{K}^{*+} \mathrm{K}^{-}+\mathrm{cc}\right) \sim(1 \pm 0.9) \mathrm{pb}$ $\left|E^{+-}\right|^{2} \sim 0.1 \times 10^{-5} \quad\left|E^{00}\right|^{2} \sim 28 . \times 10^{-5}$
$\square B^{+-}=(1.7 \pm 0.8) \times 10^{-5} \quad B^{00}=(10.9 \pm 2.0) \times 10^{-5}$
$B^{+-}=|S|^{2}+\left|E^{+-}\right|^{2}+2 x|S|\left|E^{+-}\right| \cos \Phi$
$B^{00}=|S|^{2}+\left|E^{00}\right|^{2}-2 x|S|\left|E^{00}\right| \cos \Phi$
$\Phi=159^{\circ} \pm 24^{0}$ again like VP!

Pseudoscalar Pseudoscalar Decay

$\square \Psi^{\prime}:$

$$
\begin{aligned}
& \mathrm{B}^{+-}=(6.30 \pm 0.70) 10^{-5} \quad \mathrm{~B}^{S L}=(5.26 \pm 0.25) 10^{-5} \\
& \left|\mathrm{E}^{+-}\right|^{2}=(0.7 \pm 0.4) 10^{-5} \quad \text { from BaBar } \\
& \Phi \quad=95^{0} \pm \mathbf{1 1 0}^{0} \quad(6.3 \sim 5.26+0.7+3.8 \times \cos \Phi)
\end{aligned}
$$

- But Nambu wrote Ψ^{\prime} might be different! (PRL 34(1975), 1645)

Experimental evidences for
 $\Psi(3770)$ imaginary strong decay widths

$\boldsymbol{\Psi}^{\prime \prime}(3770):$

* non DDbar (small) -> throught the interfence with continuum
* For a wide resonance Φ from interference at the peak
$-2\left|A_{3 g}\right| / \Gamma_{\text {tot }} \sin \Phi \times$ continuum
* CLEOc and BESIII: $\Phi \sim-90^{\circ}$, since continuum sign

decay	continuum	$\Psi^{\prime \prime}(\mathbf{3 7 7 0})$	sign	
$\rho \pi$	13.1 ± 2.8	7.4 ± 1.3	-	CLEOc, PRD 73(2006)012002
$\phi \eta$	2.1 ± 1.6	4.5 ± 0.7	+	CLEOc, PRD 73(2006)012002
$P \mathrm{p}$	0.74 ± 0.08	0.4 ± 0.02	-	BESIII Y.Liang, Nov (2012)

Model independent from interference in q^{2} behavior

Actually $\Phi_{\text {meas }}=\Phi-\delta_{\text {cont }}$ and $\left|\Phi_{\text {meas }}\right|$ only is measured, since it is difficult to get the sign

The full interference between A_{EM} and $\mathrm{A}_{\text {cont }}$ has been observed, as expected, at MARKI(1975), BESII (1995), KDER (2010).
$1 / 2$ photon propagators require $\varphi^{\prime}=180^{\circ}$

BESIII J/ Ψ scan

The interference pattern is not always the same.

A possible way to get the continuum phase (work in progress)

Continuum phase $\mathrm{d}(\mathrm{s})$

- Continuum amplitudes should be almost real : $\delta(\mathrm{s}) \sim 0^{\circ}$ or 180°
- Logarithm Dispersion Relations relating modulus $|\mathrm{F}(\mathrm{s})|^{2} \sim \sigma(\mathrm{~s})$ and $\delta(\mathrm{s})$ might help:

$$
\delta(s)=-\frac{\sqrt{s-q_{\mathrm{t}}^{2}}}{\pi} \mathrm{PV} \int_{q_{\mathrm{i}}^{2}}^{\infty} \frac{\ln |F(t)| F(0) \mid}{(t-s) \sqrt{t-q_{\mathrm{t}}^{2}}} d t, \quad \delta(s)=-\frac{\sqrt{s-q_{\mathrm{t}}^{2}}}{\pi} \mathrm{PV} \int_{q_{\mathrm{t}}^{2}}^{\infty} \frac{\ln |F(t)| F(0) \mid}{(t-s) \sqrt{t-q_{\mathrm{i}}^{2}}} d t .
$$

Check: phase as expected, if $|\mathrm{F}(\mathrm{s})|^{2} \sim \mathrm{BW} \sim \sigma(\mathrm{s}) / \mathrm{IPS}$
\square Applied to $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{pp}_{\mathrm{bar}}\right)$ (unphysical region): $\delta(\mathrm{s}) \sim 360^{\circ}$

$$
\begin{aligned}
& \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-}->\pi \pi\right): \delta(\mathrm{s}) \sim 180^{\circ} \\
& \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-}->3 \pi\right): \delta(\mathrm{s}) \sim 180^{\circ}(?)
\end{aligned}
$$

If $\delta(\mathrm{s}) \neq 0$ and it is known how 180° or 0^{0} is asymp reached, from $\left|\Phi_{\text {meas }}\right|=|\phi-\delta|$ the sign $\left(+/-90^{\circ}\right)$ might be established

$\pi^{+} \pi$ and $\mathrm{pp}_{\mathrm{bar}}$ (throught the unphysical region.) phases

(S.Pacetti, R. Baldini... EPJC 11(1999)709... long time ago)

Open Issues related to Unitarity

$\square \quad$ No explanation for imaginary strong decay J/ Ψ widths has been put forward until now
$\square \mathrm{J} / \Psi$ description as a Breit Wigner might have some difficulties, dealing with imaginary decay widths
\square Optical theorem: $\operatorname{Im} \mathrm{T}_{\mathrm{el}}=\mathrm{W} / 8 \pi \cdot \sigma_{\text {tot }}$ implies $\operatorname{Im} \mathrm{T}_{\mathrm{el}}>0$

- $\Gamma\left(\mathrm{J} / \Psi->\mathrm{pp}_{\text {bar }}\right)$ imaginary: $\operatorname{Im} \mathrm{T}_{\mathrm{el}}\left(\mathrm{pp}_{\text {bar }}->\mathrm{J} / \Psi->\mathrm{pp}_{\text {bar }}\right)<0$
. $\mathrm{pp}_{\text {bar }}$ continuum could restore unitarity, even if unrelated to J / Ψ
\square Looking for a different J/ Ψ description
$\square \quad \sigma_{\text {el }}\left(\mathrm{pp}_{\text {bar }}->\mathrm{J} / \Psi->\right.$ hadrons) : a test of the following model

A model to explain imaginary widths

Quarkonium OZI breaking decay

as Freund and Nambu (PRL 34(1975), 1645)
$\square \quad$ Quarkonium as a superposition of

- A narrow V (coupled to the virtual photon, but not directly to hadrons)
- A wide one (a glueball O)
(not coupled to leptons i.e. to a virtual photon,
but strongly coupled to hadrons)
f is the coupling between v and \mathcal{O}

iterated in f

Quarkonium OZI breaking decay

as Freund and Nambu (PRL 34(1975), 1645)

\square Quarkonium as a superposition of V and O :

$$
\begin{aligned}
A_{\text {strong }} & =G_{e} V^{-1} f O^{-1} G_{f}+G_{e} V^{-1} f O^{-1} f V^{-1} f O^{-1} G_{f}+\text { iterations } \\
& =G_{e} V^{-1} f O^{-1} G_{f} /\left(1-V^{-1} O^{-1} f^{2}\right)=G_{e} f G_{f} /\left(V O-f^{2}\right)
\end{aligned}
$$

$\square \quad A_{e m} \quad=G_{e} V^{-1} G_{1}+G_{e} V^{-1} \mathrm{f} \mathrm{O}^{-1} \mathrm{f} \mathrm{V}^{-1} \mathrm{G}_{1}+$ iterations

$$
=G_{e} O G_{f} /\left(V O-f^{2}\right)
$$

$\square \quad$ An infinity of radial O recurrences
$\square \quad$ This model mainly used to try to explain $\operatorname{Br}\left(\psi^{\prime}\right) / \operatorname{Br}(\mathrm{J} / \psi)$ anomalies S. J. Brodsky, G. P. Lepage, S. F. Tuan, PRL 59, 621(1987) W.S. Hou, C.Y. Ko, NTUTH-97-11, 1997

Narrow V and wide glueball 0 superposition

P.J.Franzini, F.J.Gilman, PR D32, 237 (1985)

$$
A_{\text {strong }}=\frac{\sqrt{\Gamma_{e e}} M_{V} M_{O} f \sqrt{\Gamma_{O}}}{\left(M_{V}^{2}-W^{2}-i M_{V} \Gamma_{V}\right)\left(M_{O}^{2}-W^{2}-i M_{O} \Gamma_{O}\right)-M_{V} M_{O} f^{2}}
$$

assuming $\Gamma_{O} \gg \Gamma_{J / \psi}, f^{2} \sim \Gamma_{0}\left(\Gamma_{J / \psi}-\Gamma_{V}\right)$

$$
A_{\text {strong }} \sim \frac{(i) \sqrt{B_{e e}} M_{V} f \sqrt{B_{h}}}{M_{J / \Psi}^{2}-W^{2}-i M_{J / \Psi} \Gamma_{J / \Psi}} A_{e m}=\frac{\sqrt{B_{e e}} M_{V} \Gamma_{J / \Psi} \sqrt{B_{e m}}}{M_{J / \Psi}^{2}-W^{2}-i M_{J / \Psi} \Gamma_{J / \Psi}}
$$

■ The additional 90° phase is naturally achieved
$\square \mathrm{J} / \psi$ shape reproduced if: $|f| \sim 0.012 \mathrm{GeV}, \mathrm{M}_{\mathrm{O}} \sim \mathrm{M}_{\mathrm{J} / \psi}, \Gamma_{\mathrm{O}} \sim 0.5 \mathrm{GeV}$
nly far from the J / ψ (no contradiction with BES, PR 54(1996)1221)
$\square \psi$ "(3770) decay phases agree with Nambu suggestion.
$\square \psi^{\text {‘ }}$ unclear; $\psi^{\text {‘ }}$-> $\mathrm{J} / \psi \pi \pi$ (?)

SND $\Phi->\pi^{+} \pi^{-} \pi^{0}$

BaBar $\pi^{+} \pi^{-} \pi^{0} \quad$ PRD $70,072004(2004)$

Masses and widths

$$
\begin{gathered}
M_{\omega^{\prime}}=(1350 \pm \mathbf{2 0} \pm \mathbf{2 0}) \mathrm{MeV} / c^{2} \\
\Gamma_{\omega^{\prime}}=(450 \pm 70 \pm \mathbf{0 0}) \mathrm{MeV} / c^{2} \\
M_{\omega^{\prime \prime}}=(1660 \pm 10 \pm \mathbf{2}) \mathrm{MeV} / c^{2} \\
\Gamma_{\omega^{\prime \prime}}=(230 \pm 30 \pm \mathbf{2 0}) \mathrm{MeV} / c^{2}
\end{gathered}
$$

BaBar found indeed an unexpected resonance (O ?)
at 1.35 GeV , wide 0.45 GeV

A proposal for PANDA: a J/ Ψ scan

A Proposal for PANDA

$\square \quad$ Expected $\sigma\left(\mathrm{p}_{\mathrm{b} \text { bar }}->\mathrm{J} / \Psi \rightarrow\right.$ hadrons $) \sim 1 \mu \mathrm{~b}$
while $\quad \sigma\left(\mathrm{p}_{\mathrm{bar}}->\right.$ hadrons $) \sim 70 \mathrm{mb}$

- No J/ Ψ exclusive production evidence in present data (too small cross section $+\mathrm{p} \mathrm{p}_{\mathrm{bar}} \mathrm{c}$. m . energy spread)
- Different mechanism in inclusive or exclusive production:
> Inclusive production: direct coupling to gluons or virtual photon
> Exclusive production: hadronic -> apply FN model

p par Total and Elastic cross section (PDG2012)

A Proposal for PANDA

Contributions to $p \mathrm{p}_{\mathrm{bar}}->\mathrm{J} / \Psi->$ hadrons, according to the FN model

A Proposal for PANDA

$\square \quad A=G_{p} O^{-1} G_{h}+G_{p} O^{-1} \mathrm{f} \mathrm{V}^{-1} \mathrm{f} \mathrm{O}^{-1} G_{h}+$ iterations
$A=G_{p} O^{-1} G_{h} /\left(1-V^{-1} O^{-1} f^{2}\right)$
$A=G_{p} G_{h} V /\left(V O-f^{2}\right)$
$\square \quad$ Still assuming
$>\Delta \mathrm{W} \sim \Gamma_{\mathrm{J} / \Psi}->\left(\mathrm{M}_{\mathrm{O}}{ }^{2}-\mathrm{W}^{2}\right) / \mathrm{M}_{\mathrm{O}} \ll \Gamma_{\mathrm{O}}$
$>\mathrm{f}^{2} \sim \Gamma_{\mathrm{O}}\left(\Gamma_{\mathrm{J} / \Psi}-\Gamma_{\mathrm{V}}\right)$
> Amplitudes $p p_{\text {bar }}->V, V->p p_{\text {bar }}$ negligeable
> Interference with background $\mathrm{J}^{\mathrm{P}}=1^{\text {- }}$ to be included yet

A Proposal for PANDA

\square According to the FN approach

$$
\sigma_{F N}=\frac{\left.B_{p}\left[\left(M_{J / \Psi}^{2}-W^{2}\right)^{2}+\left(M_{J / \Psi} \Gamma_{V}\right)^{2}\right)\right] B_{h}}{\left(M_{J / \Psi}^{2}-W^{2}\right)^{2}+\left(M_{J / \Psi} \Gamma_{J / \Psi}\right)^{2}}
$$

Taking into account that $\Gamma_{K} \ll \Gamma_{\vartheta / \Psi}$
$\sigma_{F N}=\frac{B_{p}\left(M_{J / \Psi}^{2}-W^{2}\right)^{2} B_{h}}{\left(M_{J / \Psi}^{2}-W^{2}\right)^{2}+\left(M_{J / \Psi} \Gamma_{J / \Psi}\right)^{2}} \quad$ a zero $->$ a dip in $\sigma_{\mathbf{h}}$
\square To be compared to a Breit Wigner

$$
\sigma_{B W}=\frac{B_{p} \Gamma_{J / \Psi}^{2} B_{h} \mathrm{M}^{2}{ }_{\mathrm{J} / \Psi}}{\left(M_{J / \Psi}^{2}-W^{2}\right)^{2}+\left(M_{J / \Psi} \Gamma_{J / \Psi}\right)^{2}}
$$

A Proposal for PANDA

PANDA inv mass resolution: small beam energy spread and no ISR

A Proposal for PANDA

\square Rough $J^{P}=1^{-}$estimation $p_{\text {bar }}$ background σ at $P_{\text {pbar }} \sim 4 \mathrm{GeV}$:
$>\sigma\left(\mathrm{J}^{\mathrm{P}}=1^{-}\right) \sim 0.5 \sigma(\mathrm{~S}$ wave $)$
$>\sigma_{\text {tot }} \sim$ Black Disk $=2 \pi \mathrm{R}^{2}=2 \pi / \mathrm{P}^{2} \Sigma_{\mathrm{l}}(2 \mathrm{l}+1)$
$>I_{\text {max }} \sim R P \sim 25$
$>\mathrm{S}$ wave $\sim 0.5 \sigma_{\text {tot }} / \mathrm{I}_{\max }{ }^{2} \sim 40 \mu \mathrm{~b} \quad\left(\sigma_{J / \Psi} \sim 1.5 \mu \mathrm{~b}\right)$
> Background amplitude R+iI, should be mostly imaginary : $\mathrm{I} \sim 5 \times \mathrm{A}_{\mathrm{J} / \Psi}, \quad \mathrm{I} \gg \mathrm{R}$
. $\mathrm{JP}^{\mathrm{P}}=1^{-}$background heavily interferences with the J / Ψ
Some channel might have a much better J/ $\Psi /$ background ratio: $3 \pi, 5 \pi, \ldots$?

A Proposal for PANDA

$\square \quad \mathrm{JP}=1^{-}$background interference with FN :

$$
\propto \frac{\left[\left(\mathrm{M}^{2}-\mathrm{W}^{2}\right)^{2}+\Gamma_{/ / \Psi} \Gamma_{\mathrm{V}} \mathrm{M}^{2}\right] \mathrm{I}-\left(\Gamma_{\mathrm{J} / \Psi}-\Gamma_{\mathrm{V}}\right) \mathrm{M}\left(\mathrm{M}^{2}-\mathrm{W}^{2}\right) \mathrm{R}}{\left(\mathrm{M}^{2}-\mathrm{W}^{2}\right)^{2}+\Gamma_{\mathrm{J} / \Psi} \mathrm{M}}
$$

$\square \quad$ The term prop. to I should increase the expected dip, since I>0
$\square \quad$ The term prop. to R expected small and affected by beam spread
$\square \quad \mathrm{J}^{\mathrm{P}}=1^{-}$background interference with a BW:

$$
\propto \frac{\left.\left(\Gamma_{\mathrm{I} / \Psi} \mathrm{M}\right)^{2}\right] I+\mathrm{M}^{2}\left(\mathrm{M}^{2}-\mathrm{W}^{2}\right) \mathrm{R}}{\left(\mathrm{M}^{2}-\mathrm{W}^{2}\right)^{2}+\Gamma_{\mathrm{J} / \Psi} \mathrm{M}}
$$

$\square \quad$ The term prop. to I should increase the expected peak
$\square \quad$ The term prop. to R has to be evaluated

A Proposal for PANDA

\square Rough estimation of the integrated luminosity:
$>$ Signal $\sim 0.2 \div 0.4 \mu \mathrm{~b}$, depending on $\sigma_{\text {beam }} \sim 200 \div 100 \mathrm{KeV}$
$>$ Background $\sim 5 \cdot 10^{4} \mu \mathrm{~b}$
$>\mathrm{L} \sim 10^{31} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$
$\square \quad \mathrm{S} \sim \mathrm{n} \cdot \sqrt{ } \mathrm{B}$, after $\mathrm{T}->\mathrm{O} .2 \cdot \mathrm{~T} \cdot \mathrm{~L} \sim \mathrm{n} \sqrt{ }\left(5 \cdot 10^{4} \cdot \mathrm{~T} \cdot \mathrm{~L}\right)$
$\mathrm{T} \sim$ few months, if $\mathrm{n} \sim 4$, assuming a 10 points scan
(efficiency and dead time to be included)
. Much less time might be needed for some channels: $3 \pi, 5 \pi$, ..

- Of course time is available for any other measurement at J/ Ψ

A Proposal for PANDA

Marco Destefanis already proposed to look for $\mathrm{J} / \Psi->\mu \mu$ in PANDA, exploiting the very good inv mass resolution (no ISR)

Exploiting Di-Muon
 Production at PANDA

J / Ψ invariant mass resolution in $\mathrm{e}+\mathrm{e}-->\mathrm{p} \mathrm{p}_{\mathrm{bar}}$ in BESIII

(Marco Destefanis at STORI11)

J / Ψ invariant mass resolution in $\mathrm{p} \mathrm{p}_{\mathrm{bar}}->\mu \mu$ in PANDA

(Marco Destefanis at STORI11)

Simulated Yields for $\overline{\mathrm{p} p}->\mu^{+} \mu^{-}$

- $\Delta \varphi=0^{\circ}$
- $\Delta \varphi=90^{\circ}$
- $\Delta \varphi=180^{\circ}$
continuum reference
$\sigma \sim 18 \mathrm{pb}$

Conclusions

$\square \quad$ Unexpected imaginary J / Ψ strong decay widths ($\Phi \sim\left|90^{\circ}\right|$)
\square Updated VP and PP J/ Ψ decays data point out this result
$\square \mathrm{J} / \Psi$ scan by BESIII seems to confirm that $\Phi \sim\left|90^{\circ}\right|$
$\square \Psi(2 S)$ present data contradictory-> $\Psi(2 S)$ scan by BESIII
$\square \quad \Psi^{\prime \prime}(3770)$ present data suggest $\Phi \sim-90^{\circ}$
\square A model under development to explain this unexpected phase

Conclusions

- A proposal for PANDA:
> $\mathrm{p}_{\mathrm{bar}}->\mathrm{J} / \Psi->$ hadrons seen as a dip
$>\mathrm{pp}_{\mathrm{bar}}->\mathrm{J} / \Psi->\mu \mu$, ee seen as a peak
(exploiting PANDA very good inv. mass resolution)
- However a better evaluation of the interference
with the $\mathrm{JP}^{\mathrm{P}}=1^{-}$background is needed

Thanks for your attention

(谢谢)

BaBar: $\mathrm{e}^{+} \mathrm{e}^{-}->\pi^{+} \pi^{-}$cross section

arXiv:1205.2228v1

$$
\mathrm{e}^{+} \mathrm{e}^{-->} \mathrm{KS} \text { KL }
$$

Summary of fit results

Channel	$M_{\text {J/ }}{ }^{\text {r }}$	Γ (KeV)	φ^{\prime}
$\mu+\mu-$	3097.33 ± 0.01	92.9 (fixed)	0° (fixed)
$\pi+\pi-\pi+\pi-$	3097.46 ± 0.03	92.9 (fixed)	$(-2.14 \pm 27.59)^{\circ}$
$\pi+\pi-\pi+\pi-\pi 0$	3097.50 ± 0.04	92.9 (fixed)	0° (fixed)
$\pi+\pi-\pi 0$	3097.50 ± 0.06	92.9 (fixed)	0° (fixed)
pp	$0.3+3096.9$	-	--
Channel	Ф	Br ${ }_{\text {out }}$	Bripdg
$\mu+\mu-$	--	5.94×10^{-2} (fixed)	5.94×10^{-2}
$\pi+\pi-\pi+\pi-$	--	$(3.04 \pm 0.17) \times 10^{-3}$	$(3.55 \pm 0.23) \times 10^{-3}$
$\pi+\pi-\pi+\pi-\pi 0$	$(102.6 \pm 5.1)^{\circ}$	$(3.55 \pm 0.13) \times 10^{-2}$	$(4.1 \pm 0.5) \times 10^{-2}$
$\pi+\pi-\pi 0$	$(108.4 \pm 10.1)^{0}$	$(1.87 \pm 0.08) \times 10^{-2}$	$(2.07 \pm 0.12) \times 10^{-2}$
pp	$(84.73 \pm 9.62)^{\circ}$	$(1.90 \pm 0.05) \times 10^{-3}$	--
Channel	$\sigma_{\text {cont }}(\mathrm{nb})$	$\mathrm{S}_{\mathrm{E}}(\mathrm{MeV})$	
$\mu+\mu-$	--	0.92 ± 0.01	
$\pi+\pi-\pi+\pi-$	0.465 ± 0.014	0.92 (fixed)	
$\pi+\pi-\pi+\pi-\pi 0$	0.153 ± 0.013	0.92 (fixed)	
$\pi+\pi-\pi 0$	0.040 ± 0.010	0.92 (fixed)	
pp	0.006 ± 0.001	0.92 ± 0.01	

