Proton form factors and threshold behavior

S. Pacetti, R. Baldini Ferroli, E. Tomasi-Gustafsson

Recent highlights in hadron structure IPN Orsay - October $6^{\text {th }}-7^{\text {th }}, 2014$

Agenda

-Nucleon electromagnetic form factors

- Definition and properties

OThe space-like region

- Proton radius
- Rosenbluth versus polarization
-The time-like region
-Unphysical region
OThe threshold
OThe asymptotic region
OConclusions

Dirac and Pauli Form Factors

Scattering: $\mathbf{e}^{-\boldsymbol{N}} \rightarrow \mathbf{e}^{-\boldsymbol{N}}$
Space-like kinematic region

$$
q^{2}=-2 \omega_{1} \omega_{2}\left(1-\cos \theta_{e}\right) \leq 0
$$

Annihilation: $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \leftrightarrow \boldsymbol{N} \bar{N}$
Time-like kinematic region

$$
q^{2}=4 \omega^{2}>0
$$

Scattering amplitude in Born approximation

$$
\mathcal{M}=\frac{1}{q^{2}}\left[e \bar{u}\left(k_{2}\right) \gamma_{\mu} u\left(k_{1}\right)\right] \underbrace{\left[e \bar{U}\left(p_{2}\right) \Gamma^{\mu}\left(p_{1}, p_{2}\right) U\left(p_{1}\right)\right]}_{\text {Nucleon EM 4-current: } J_{N}^{\mu}}
$$

From Lorenz and gauge invariance

$$
\Gamma^{\mu}\left(p_{1}, p_{2}\right)=\gamma^{\mu} F_{1}^{N}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M} F_{2}^{N}\left(q^{2}\right)
$$

Dirac FF: $F_{1}^{N}\left(q^{2}\right), F_{1}^{N}(0)=\mathcal{Q}_{N}$
Pauli FF: $F_{2}^{N}\left(q^{2}\right), F_{2}^{N}(0)=\kappa_{N}$
$\mathcal{Q}_{\boldsymbol{N}}=N$ electric charge $\quad \boldsymbol{\kappa}_{\boldsymbol{N}}=N$ anomalous magnetic moment

Sachs Form Factors

Breit frame

No energy exchanged
$p_{1}=(E,-\vec{q} / 2)$
$p_{2}=(E, \vec{q} / 2)$
$q=(0, \vec{q})$

Nucleon elecrtomagnetic four-current

$$
J_{N}^{\mu}=\left(\nu_{N}^{0}, \vec{J}_{N}\right) \quad\left\{\begin{array}{l}
\rho_{q}=J_{N}^{0}=e\left[F_{1}^{N}+\frac{q^{2}}{4 M^{2}} F_{2}^{N}\right] \\
\vec{J}_{N}=e \bar{U}\left(p_{2}\right) \vec{\gamma} U\left(p_{1}\right)\left[F_{1}^{N}+F_{2}^{N}\right]
\end{array}\right.
$$

Sachs Nucleon Form Factors

$$
G_{M}^{N}\left(q^{2}\right)=F_{1}^{N}\left(q^{2}\right)+F_{2}^{N}\left(q^{2}\right) \quad G_{E}^{N}\left(q^{2}\right)=F_{1}^{N}\left(q^{2}\right)+\frac{q^{2}}{4 M^{2}} F_{2}^{N}\left(q^{2}\right)
$$

In the Breit frame represent the Fourier transforms of charge and magnetic moment spatial distributions of the nucleon

$$
\begin{aligned}
& \text { Normalization at } q^{2}=0 \\
& G_{E}^{N}(0)=\mathcal{Q}_{N} \\
& G_{M}^{N}(0)=\mu_{N}
\end{aligned}
$$

$$
\mu_{N}=\mathcal{Q}_{N}+\kappa_{N}
$$

is the nucleon magnetic moment

Cross sections and analyticity

q^{2}-complex plane

($\chi^{\operatorname{lm}\left(q^{2}\right)}$	Time-like region	
Space-like region $e N \rightarrow e N$ FF's are real		Unphysical region $N \bar{N} \leftrightarrow e^{+} e^{-} \pi^{0}$ FF's are com	Data region $e^{+} e^{-} \leftrightarrow N \bar{N}$ olex
	$4 M^{2}$	$4 M^{2}$	

$$
\text { Crossing: tot. helicity }=\left\{\begin{array}{l}
1 \Rightarrow G_{E} \\
0 \Rightarrow G_{M}
\end{array}\right\} \quad G_{E}\left(4 M^{2}\right)=G_{M}\left(4 M^{2}\right)
$$

Elastic scattering

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \omega_{2} \cos ^{2} \frac{\theta_{e}}{2}}{4 \omega_{1}^{3} \sin ^{4} \frac{\theta_{e}}{2}}\left[G_{E}^{2}-\tau\left(1+2(1-\tau) \tan ^{2} \frac{\theta_{e}}{2}\right) G_{M}^{2}\right] \frac{1}{1-\tau} \tau=\frac{q^{2}}{4 M^{2}}
$$

Annihilation

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta \mathcal{C}}{4 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right] \quad \beta=\sqrt{1-\frac{1}{\tau}}
$$

The proton radius

The proton radius

Proton form factors and threshold behavior

The proton radius

$$
G_{E}^{p}\left(q^{2}\right)=\int d^{3} \vec{r} \rho(r) e^{i \vec{q} \cdot \vec{r}}=1+\frac{1}{6} q^{2}\left\langle r_{c}^{2}\right\rangle+\mathcal{O}\left(q^{4}\right)
$$

$\rho(r)$: normalized spherical charge density

The charge radius

$$
r_{E}=\sqrt{\left\langle r_{C}^{2}\right\rangle}=\sqrt{4 \pi \int_{0}^{\infty} r^{4} \rho(r) d r}=\sqrt{\left.\frac{6}{G_{E}^{p}(0)} \frac{d G_{E}^{p}}{d q^{2}}\right|_{q^{2}=0}}
$$

Charge density

$$
\rho(r)
$$

$$
\delta^{3}(r)
$$

$$
e^{-\lambda r}
$$

$$
e^{-\lambda r} / r
$$

$$
e^{-\lambda r^{2}} / r^{2}
$$

Form factor $G_{E}^{p}\left(q^{2}\right)$

Charge radius r_{E} 0

$$
1
$$

$$
\lambda^{4} /\left(q^{2}+\lambda^{2}\right)^{2}
$$

$$
\left|\lambda^{2} /\left(q^{2}+\lambda^{2}\right)\right| \quad \sqrt{6} / \lambda
$$

$$
1 / \sqrt{2 \lambda}
$$

Comments pointlike dipole monopole
gaussian

The proton radius

A1 Collaboration [arXiv:1307.6227]

17

The proton radius

Ongoing discussions...

- Radiative corrections
- Two-photon exchange
- Coulomb corrections

A1 Collaboration [arXiv:1307.6227]

Extrapolating $q^{2} \rightarrow 0^{-}$

$$
\text { DR: } r_{E}^{2}=\frac{12 M_{\pi}^{2}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\ln \left|G_{E}^{p}(t) / G_{E}^{p}(0)\right|}{t^{2} \sqrt{t-4 M_{\pi}^{2}}} d t
$$

Rosenbluth separation (one-photon exchange)

Rosenbluth formula

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }} \frac{1}{1-\tau}\left[G_{E}^{2}-\frac{\tau}{\epsilon} G_{M}^{2}\right] \\
& \\
& \quad \text { Mott pointlike cross section } \\
& \quad\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }}=\frac{4 \alpha^{2}}{\left(-q^{2}\right)^{2}} \frac{E_{2}^{3}}{E_{1}} \cos ^{2}\left(\theta_{e} / 2\right)
\end{aligned}
$$

(-) Photon polarization

$$
\epsilon=\left[1+2(1-\tau) \tan ^{2}\left(\theta_{e} / 2\right)\right]^{-1}
$$

G_{E}^{p} and G_{M}^{p} with Rosenbluth separation

$$
\text { Dipole approximation } \quad G_{D}\left(q^{2}\right)=\left(1-q^{2} / M_{D}^{2}\right)^{-2} \quad M_{D}^{2}=0.71 \mathrm{GeV}^{2}
$$

Classical approach

Form factors, in nonrelativistic approximation, are Fourier transforms of charge and magnetic distributions

The dipole form factor corresponds to an exponential distribution

$$
\rho(r)=\rho_{0} e^{-r / r_{0}}
$$

$$
M_{D}^{2}=0.71 \mathrm{GeV}^{2} \Longrightarrow\left\{\begin{aligned}
r_{0}^{2} & =(0.24 \mathrm{fm})^{2} \\
\left\langle r^{2}\right\rangle & =(0.81 \mathrm{fm})^{2}
\end{aligned}\right.
$$

Dipole approximation and pQCD

Lett. Nuovo Cim. 7 (1973) 719
Phys. Rev. Lett. 31 (1973) 1153 JETP Lett. 96 (2012) 6-12

Hadron form factor

$F\left(q^{2}\right)=\frac{C_{n}}{\left(1-q^{2} / M_{n}^{2}\right)^{n-1}}$
$M_{n}^{2}=n \beta^{2}$
e $\beta^{2}=$ quark momentum squared
en= number of constituent quarks

Dimensional scaling

$$
F_{\pi}\left(q^{2}\right)=\frac{C_{2}}{1-\frac{q^{2}}{0.471 \mathrm{GeV}^{2}}} \ldots \ldots \ldots . \text { pion, } n=2
$$

Pion form factor \Downarrow

$$
\beta^{2}=(0.471 \pm 0.010) \mathrm{GeV}^{2}
$$

$$
F_{N}\left(q^{2}\right)=\frac{C_{3}}{\left(1-\frac{q^{2}}{0.71 \mathrm{GeV}^{2}}\right)^{2}} \ldots \text { nucleon, } n=3
$$

$$
F_{d}\left(q^{2}\right)=\frac{C_{6}}{\left(1-\frac{q^{2}}{1.42 \mathrm{GeV}^{2}}\right)^{5}} \ldots \text { deuteron, } n=6
$$

Polarization observables

A.I. Akhiezer, M.P. Rekalo, Sov. Phys. Dokl. 13, 572 (1968)

Elastic scattering of longitudinally polarized $(h= \pm 1)$ electrons on nucleon target
Hadronic tensor: $W_{\mu \nu}=\underbrace{W_{\mu \nu}(0)}_{\text {no pol. }}+\underbrace{W_{\mu \nu}(\vec{P})+W_{\mu \nu}\left(\vec{P}^{\prime}\right)}_{\text {ini. or fin. pol. of } N}+\underbrace{W_{\mu \nu}\left(\vec{P}, \vec{P}^{\prime}\right)}_{\text {ini. and fin. pol. of } N}$
In case of polarized $(h= \pm 1)$ electrons on unpolarized nucleon target:

$$
P_{x}^{\prime}=-\frac{2 \sqrt{\tau(\tau-1)}}{G_{E}^{2}-\frac{\tau}{\epsilon} G_{M}^{2}} G_{E} G_{M} \tan \left(\frac{\theta_{e}}{2}\right) \left\lvert\, \quad P_{z}^{\prime}=\frac{\left(E_{e}+E_{e}^{\prime}\right) \sqrt{\tau(\tau-1)}}{M\left(G_{E}^{2}-\frac{\tau}{\epsilon} G_{M}^{2}\right)} G_{M}^{2} \tan ^{2}\left(\frac{\theta_{e}}{2}\right)\right.
$$

$$
\frac{P_{X}^{\prime}}{P_{z}^{\prime}}=-\frac{2 M \cot \left(\theta_{e} / 2\right)}{E_{e}+E_{e}^{\prime}} \frac{G_{E}}{G_{M}}
$$

G_{E}^{p} / G_{M}^{p} in polarization transfer experiments

"Standard" dipole for the proton magnetic form factors G_{M}^{p}Linear deviation from the dipole for the electric proton form factor G_{E}^{p}

QCD scaling still not reached

Zero crossing for G_{E}^{p}

Polarization data do not agree with old Rosenbluth data (\diamond)

New Rosenbluth separation data from JLab still do not agree with polarization data

The time-like region

The time-like region

The time-like region

Differential cross section $e^{+} e^{-} \rightarrow p \bar{p}$
A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto [NC XXIV (1962) 170]

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta C}{4 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}^{p}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}^{p}\right|^{2}\right]
$$

Optical theorem

$$
\operatorname{Im}\left\langle\bar{N}\left(p^{\prime}\right) N(p)\right| j^{\mu}|0\rangle \sim \sum_{n}\left\langle\bar{N}\left(p^{\prime}\right) N(p)\right| j^{\mu}|n\rangle\langle n| j^{\mu}|0\rangle
$$

$|n\rangle$ are on-shell intermediate states: $2 \pi, 3 \pi, 4 \pi, \ldots$

The cross section is an even function of $\cos \theta$
The cross section does not depend on the form factor phases

- At high q^{2} the $\left|G_{E}^{p}\right|^{2}$ contribution is suppressed
- The unphysical region is not accessible through the annihilations $e^{+} e^{-} \leftrightarrow p \bar{p}$

Proton effective form factor

No individual determination of $\left|G_{E}^{p}\right|$ and $\left|G_{M}^{p}\right|$.Time-like proton form factors are larger (factor of two) than their space-like values at the same $\left|q^{2}\right|$.The threshold behavior is very steep.
It is not smooth. Structures? Resonances?...

Initial State Radiation

$$
\begin{aligned}
& \bullet \frac{d^{2} \sigma}{d E_{\gamma} d \cos \theta_{\gamma}}=W\left(E_{\gamma}, \theta_{\gamma}\right) \sigma_{e^{+} e^{-} \rightarrow X_{\text {nad }}}(s) \\
& \bullet w\left(E_{\gamma}, \theta_{\gamma}\right)=\frac{\alpha}{\pi x}\left(\frac{2-2 x+x^{2}}{\sin ^{2} \theta_{\gamma}}-\frac{x^{2}}{2}\right)
\end{aligned}
$$

$$
\text { es }=q^{2}, q \ldots \ldots . X_{\text {had }} \text { momentum }
$$

- $E_{\gamma}, \boldsymbol{\theta}_{\gamma}$. CM $\gamma_{\text {IS }}$ energy, scatt. ang.
- $E_{\mathrm{CM}} \ldots \ldots \ldots \ldots . . \mathrm{CM} \boldsymbol{e}^{+} \boldsymbol{e}^{-}$energy
e $x=2 E_{\gamma} / E_{\mathrm{cm}}$
- All energies $\left(q^{2}\right)$ at the same time \Rightarrow

Better control on systematics (greatly reduced point to point)

Detected ISR at large angles \Rightarrow full $X_{\text {had }}$ angular coverage

CM boost $\Rightarrow\left\{\begin{array}{l}\text { efficiency at threshold } \neq 0 \\ \text { energy resolution } \sim 1 \mathrm{MeV}\end{array}\right.$

$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow p \bar{p}$ angular distribution (BABAR)

$\cos \theta_{p}$ distributions form threshold up to 3 GeV [intervals in $\left.E_{C M} \equiv \sqrt{q^{2}}(\mathrm{GeV})\right]$

$\frac{d \boldsymbol{\sigma}}{\boldsymbol{d} \cos \theta_{p}}=\boldsymbol{A}\left[H_{E}\left(\cos \theta_{p}, q^{2}\right)\left|\frac{G_{E}^{p}\left(q^{2}\right)}{G_{M}^{p}\left(q^{2}\right)}\right|^{2}+H_{M}\left(\cos \theta_{p}, q^{2}\right)\right]$
H_{E} and H_{M} from MC

At higher $q^{2}, \quad\left|G_{E}^{p}\right| \rightarrow\left|G_{M}^{p}\right|$

Time-like $\left|G_{E}^{p} / G_{M}^{p}\right|$ measurements

$$
\frac{d \sigma}{d \cos \theta}=\frac{\pi \alpha^{2} \beta \mathcal{C}}{2 q^{2}}\left|G_{M}^{p}\right|^{2}\left[\left(1+\cos ^{2} \theta\right)+\frac{4 M_{p}^{2}}{q^{2}} \sin ^{2} \theta\left|\frac{G_{E}^{p}}{G_{M}^{p}}\right|^{2}\right]
$$

$\gamma \gamma$ exchange from $e^{+} e^{-} \rightarrow p \bar{p} \gamma$ BABAR 2013 data

Integrated over the $p \bar{p}$-CM energy from threshold up to 3 GeV

The MC-fit assumes one-photon exchange

Slope $=-0.041 \pm 0.026 \pm 0.005$

Integral asymmetry

$$
\begin{gathered}
\langle\mathcal{A}\rangle_{\cos \theta_{p}}=\frac{\sigma\left(\cos \theta_{p}>0\right)-\sigma\left(\cos \theta_{p}<0\right)}{\sigma\left(\cos \theta_{p}>0\right)+\sigma\left(\cos \theta_{p}<0\right)}=-0.025 \pm 0.014 \pm 0.003 \\
\sigma\left(\cos \theta_{p} \gtrless 0\right) \text { is the cross section integrated with } \sqrt{q^{2}} \leq 3 \mathrm{GeV} \text { and } \cos \theta_{p} \gtrless 0
\end{gathered}
$$

The unphysical region

The unphysical region

The unphysical region

Unphysical region goes from $q^{2}=0$ up to the physical threshold $q^{2}=4 M^{2}$

In that region, form factors

- are still well defined but not (directly) experimentally accessible
- are complex and, following VMD-based models, receive their main contribution from intermediate resonances

Handling the unphysical region

Accessing the unphysical region

[C. Adamuscin, E.A. Kuraev, E. Tomasi-Gustafsson, F. Maas]

The initial state π-production

$$
p \bar{p} \rightarrow \pi^{0} e^{+} e^{-}
$$

The process $p \bar{p} \rightarrow \pi^{0} e^{+} e^{-}$

Hadronic current [PRC75 045205]

- $J_{\mu}=\phi_{\pi}\left(p_{\pi}\right) \bar{v}\left(p_{2}\right) O_{\mu} u\left(p_{1}\right)$
- $O_{\mu}=O_{\mu}\left[\Gamma_{\mu}(q)\right]$
$\left\langle N\left(p^{\prime}\right)\right| \Gamma_{\mu}(q)|N(p)\rangle=\bar{u}\left(p^{\prime}\right)\left[F_{1}\left(q^{2}\right) \gamma_{\mu}+\frac{i \sigma_{\mu \nu} q^{\nu}}{4 M} F_{p}^{2}\left(q^{2}\right)\right] u(p)$

Background

Polarization observables help in disentangle reaction mechanisms
[E. A. Kuraev et al., J. Exp. Theor. Phys. 115 (2012) 93
G.I. Gakh, E. Tomasi-Gustafsson, A. Dbeyssi, A.G. Gakh

PhysRevC86 (2012) 025204]

The threshold region ${ }_{1}$

The threshold region ${ }_{1}$

The threshold region ${ }_{1}$

$$
\begin{aligned}
& \text { Annihilation cross section } \\
& \frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta C}{4 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right]
\end{aligned}
$$

The threshold region ${ }_{1}$

Partial wave form factors

$$
\left\{\begin{array} { l }
{ P _ { \gamma } = - 1 } \\
{ J _ { \gamma } = 1 }
\end{array} \quad \left\{\begin{array}{l}
P_{p \bar{p}}=(-1)^{L+1} \\
S_{p \bar{p}}=0,1
\end{array}\right.\right.
$$

$$
\left\{\begin{array}{l}
L_{p \bar{p}}=0,2 \\
S_{p \bar{p}}=1
\end{array}\right.
$$

11

Partial wave form factors

$$
G_{S}^{p}=\frac{1}{3}\left(2 G_{M}^{p} \sqrt{\frac{q^{2}}{4 M_{p}^{2}}}+G_{E}^{p}\right)
$$

$$
G_{D}^{p}=\frac{1}{3}\left(G_{M}^{p} \sqrt{\frac{q^{2}}{4 M_{p}^{2}}}-G_{E}^{p}\right)
$$

Cross section

$$
\sigma\left(q^{2}\right)=2 \pi \alpha^{2} \beta \frac{4 M_{p}^{2}}{\left(q^{2}\right)^{2}}\left[C\left|G_{s}^{p}\left(q^{2}\right)\right|^{2}+2\left|G_{D}^{p}\left(q^{2}\right)\right|^{2}\right]
$$

Enhancement and Resummation Factors

Coulomb factor

Resummation factor

Enhancement
 factor
 $\mathcal{E}=\frac{\pi \alpha}{\beta}$

- It is responsible for the one-photon exchange $\bar{p} \bar{p}$ FSI
- It dominates close to threshold: $\mathcal{C} \underset{\beta \sim 0}{\sim} \mathcal{E}$
- It cancels the phase-space factor \Rightarrow
stepwise cross section at threshold

$$
\sigma_{p \bar{p}}\left(4 M_{p}^{2}\right)=\frac{\pi^{2} \alpha^{3}}{2 M_{p}^{2}}\left|G_{S}^{p}\left(4 M_{p}^{2}\right)\right|^{2}=0.85\left|G_{S}^{p}\left(4 M_{p}^{2}\right)\right|^{2} \mathrm{nb}
$$

Resummation factor
$\mathcal{R}=\frac{1}{1-e^{-\frac{\pi \alpha}{\beta}}}$

O It is responsible for the multi-photon exchange $p \bar{p}$ FSI

- No effective few MeV above threshold: $\mathcal{R} \underset{\beta>0}{\sim} 1$

O It must account also for gluon exchange

$$
\begin{array}{|l|l|}
\hline \mathcal{R} \rightarrow \mathcal{R}_{s}=\left[1-\exp \left(-\pi \alpha_{s} / \tilde{\beta}\right)\right]^{-1} & \alpha_{s} \simeq 0.5 \\
\tilde{\beta}=\beta /(1-\beta)
\end{array}
$$

Step and plateau in BABAR data

Step and plateau in BABAR data

$B A B A R: G_{\text {eff }}^{p}$ including threshold effects

$$
\left[G_{\mathrm{no} \text { corr }}^{p}\left(q^{2}\right)\right]^{2}=\frac{\sigma_{p \bar{p}}\left(q^{2}\right)}{\mathcal{E R} \frac{16 \pi \alpha^{2}}{3} \frac{\beta}{4 q^{2}}\left(1+\frac{1}{2 \tau}\right)}
$$

$$
\left[G_{\mathrm{eff}}^{p}\left(q^{2}\right)\right]^{2}=\frac{\sigma_{p \bar{p}}\left(q^{2}\right)}{\mathcal{E} \mathcal{R}_{s} \frac{16 \pi \alpha^{2}}{3} \frac{\beta}{4 q^{2}}\left(1+\frac{1}{2 \tau}\right)}
$$

BABAR: $G_{\text {eff }}^{p}$ including threshold effects

$$
\left[G_{\mathrm{no} \mathrm{corr}}^{p}\left(q^{2}\right)\right]^{2}=\frac{\sigma_{p \bar{p}}\left(q^{2}\right)}{\mathcal{E} \mathcal{R} \frac{16 \pi \alpha^{2}}{3} \frac{\beta}{4 q^{2}}\left(1+\frac{1}{2 \tau}\right)}
$$

$$
\left[G_{\mathrm{eff}}^{p}\left(q^{2}\right)\right]^{2}=\frac{\sigma_{p \bar{p}}\left(q^{2}\right)}{\mathcal{E} \mathcal{R}_{s} \frac{16 \pi \alpha^{2}}{3} \frac{\beta}{4 q^{2}}\left(1+\frac{1}{2 \tau}\right)}
$$

Isotropy at the $p \bar{p}$ production threshold

$G_{E}\left(4 M^{2}\right)=G_{M}\left(4 M^{2}\right)$

0 Electric form factor $G_{E} \longrightarrow p$ and \bar{p} have antiparallel spins
Q Magnetic form factor $G_{M} \longrightarrow p$ and \bar{p} have parallel spins
(Electromagnetic current:
$J^{\mu}\left(p_{1}, p_{2}\right)=\bar{U}\left(p_{2}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M} F_{2}\left(q^{2}\right)\right] U\left(p_{1}\right)$
$F_{1}=\frac{q^{2} G_{E}-4 M^{2} G_{M}}{q^{2}-4 M^{2}} \quad F_{2}=4 M^{2} \frac{G_{M}-G_{E}}{q^{2}-4 M^{2}}$
F_{1} and F_{2} "can" be analytic (pointlike limit: $F_{1}\left(q^{2}\right)=1$ and $F_{2}\left(q^{2}\right)=0$)

- Annihilation cross section $\left[\widetilde{G}_{E, M} \equiv G_{E, M}\left(4 M^{2}\right)\right]$

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta \mathcal{C}}{4 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right] \xrightarrow[q^{2} \rightarrow 4 M^{2}]{\left|\widetilde{G}_{E}\right|=\left|\widetilde{G}_{M}\right|} \frac{\alpha^{2} \beta \mathcal{C}}{16 M^{2}}\left[2\left|\tilde{G}_{M}\right|^{2}\right]
$$

- Partial wave form factors
$G_{S}=\frac{2 \sqrt{\frac{q^{2}}{4 M^{2}}} G_{M}+G_{E}}{3} \xrightarrow[q^{2} \rightarrow 4 M^{2}]{ } \widetilde{G}_{M} \quad G_{D}=\frac{\sqrt{\frac{q^{2}}{4 M^{2}}} G_{M}-G_{E}}{3} \xrightarrow[q^{2} \rightarrow 4 M^{2}]{ } 0$

Anisotropy at the production threshold

$$
G_{E}\left(4 M^{2}\right) \neq G_{M}\left(4 M^{2}\right)
$$

Dirac and Pauli form factors F_{1} and F_{2} are not analytic
To preserve G_{E} and G_{M} analyticity, F_{1} and F_{2} must have a simple pole at the threshold with opposite residues

- $F_{1}=\frac{-4 M^{2} \Delta \widetilde{G}}{q^{2}-4 M^{2}}+F_{1}^{\text {an }}$
$F_{2}=\frac{4 M^{2} \Delta \widetilde{G}}{q^{2}-4 M^{2}}+F_{2}^{\text {an }}$
- $\Delta \widetilde{G} \equiv \widetilde{G}_{E}-\widetilde{G}_{M}$
$F_{1,2}^{\text {an }}$ is the analytic part of $F_{1,2}$Annihilation cross section

$$
\frac{d \sigma}{d \Omega} \xrightarrow[q^{2} \rightarrow 4 M^{2}]{\left|\tilde{G}_{E}\right| \neq\left|\tilde{G}_{M}\right|} \frac{\alpha^{2} \beta C}{8 M^{2}}\left[\left|\widetilde{G}_{M}\right|^{2}+\operatorname{Re}\left(\Delta \widetilde{G}_{M}^{*}\right) \sin ^{2} \theta\right]
$$

Assuming $|\Delta \widetilde{G}| \ll\left|\widetilde{G}_{M}\right|$

Partial wave form factors

$$
G_{S}=\frac{2 \sqrt{\frac{q^{2}}{4 M^{2}}} G_{M}+G_{E}}{3} \underset{q^{2} \rightarrow 4 M^{2}}{\longrightarrow} \widetilde{G}_{M}+\frac{\Delta \widetilde{G}}{3}
$$

$$
G_{D}=\frac{\sqrt{\frac{q^{2}}{4 M^{2}}}}{3} G_{M}-G_{E} \underset{q^{2} \rightarrow 4 M^{2}}{ }-\frac{\Delta \widetilde{G}}{3}
$$

Sources of anisotropy

Coulomb/QCD

 interaction correction $\alpha \beta^{-1}$

Only Coulomb
Dmitriev, Milstein, PLB722 (13) 83

$$
\widetilde{G}_{D} \sim-\frac{\alpha^{2}}{8}
$$

Very small
but not vanishing!

QCD Coulomb like
Brodsky, Hoang, Kuhn, Teubner,
PB359 (95) 355

Large effect for heavy quarks

Anisotropy $\propto \beta^{n}$ No effect at threshold!

Measuring anisotropy at threshold

$e^{+} e^{-} \rightarrow p \bar{p}$
SND CMD3

$p \bar{p} \rightarrow e^{+} e^{-}$
PANDA

BABAR BESIII

$$
e^{+} e^{-} \rightarrow H_{B} \bar{H}_{B}
$$

BESIII

Very difficult
Efficiency drops with proton antiproton velocity

Very difficult
Normalization (Coulomb corrections...)

Difficult
ISR technique: not enough statistics

Feasible with heavy baryons
The weak decay allows detection at threshold and polarization measurements (BESIII has...)

The asymptotic regions ${ }_{1}$

The asymptotic regions ${ }_{1}$

The asymptotic regions ${ }_{1}$

Time-like asymptotic behavior

Phragmèn Lindelöf theorem:
If a function $\boldsymbol{f}(\mathbf{z}) \rightarrow \mathrm{a}$ as $\mathrm{z} \rightarrow \infty$ along a straight line, and $f(z) \rightarrow b$ as $z \rightarrow \infty$ along another straight line, and $f(z)$ is regular and bounded in the angle between, then $a=b$ and $f(z) \rightarrow a$ uniformly in this angle.
() $\underbrace{\lim _{q^{2} \rightarrow-\infty} G_{E, M}\left(q^{2}\right)}_{\text {space-like }}=\underbrace{\lim _{q^{2} \rightarrow+\infty} G_{E, M}\left(q^{2}\right)}_{\text {time-like }}$
($G_{E, M} \underset{q^{2} \rightarrow+\infty}{\sim}\left(q^{2}\right)^{-2} \quad$ real

The asymptotic regions 2_{2}

$$
\begin{gathered}
\text { pQCD } \\
G_{\text {eff }}^{p}\left(q^{2}\right) \underset{q^{2} \rightarrow \infty}{\sim} G_{M}^{p}\left(q^{2}\right) \\
\text { Phragmèn Lindelöf } \\
\lim _{q^{2} \rightarrow \infty} \frac{G_{\text {eff }}^{p}\left(q^{2}\right)}{G_{M}^{p}\left(-q^{2}\right)}=1
\end{gathered}
$$

Conclusions

Global models for proton and neutron, electric and magnetic form factors must be encouraged. They can help in understanding...
o the threshold behavior
the proton radius
the presence of zeros
(the asymptotic behavior
万 the unphysical region

- ...

To measure...

- zero of G_{E}^{p} in space-like region
(moduli of G_{E} and G_{M} in time-like region
- complex structure of form factors (polarization)
- unphysical time-like form factors ($p \bar{p} \rightarrow \pi^{0} e^{+} e^{-}$)

Experiments: now and future

A1
$-G_{E}^{n}$ at $-q^{2}=1.5 \mathrm{GeV}^{2}\left(\right.$ Pol. $\left.{ }^{3} \mathrm{He}\right)$

- G_{E}^{p} and G_{M}^{p} for $-q^{2} \leq 2.0 \mathrm{GeV}^{2}$

Space-like region

Mainz

- [Hall A] G_{E}^{n} / G_{M}^{n} up to $10.2 \mathrm{GeV}^{2}$
- [Hall B] G_{M}^{n} (deuterium) up to $14 \mathrm{GeV}^{2}$
- [Hall C] G_{E}^{n} up to $7 \mathrm{GeV}^{2}$

Time-like region

$$
\begin{gathered}
\text { at VEPP-2000 } \\
e^{+} e^{-} \text {collider } \\
\left|G_{\text {eff }}^{p}\right|,\left|G_{\text {eff }}^{n}\right|(\text { scan }) \\
q^{2} \leq(4 \mathrm{GeV})^{2}
\end{gathered}
$$

$\begin{gathered} \text { at BEPCII } \\ e^{+} e^{-} \text {collider } \\ \left\|G_{E}^{p}\right\|,\left\|G_{M}^{p}\right\|,\left\|G_{\text {eff }}^{n}\right\| \text { (scan and ISR) } \\ q^{2} \leq(3.5 \mathrm{GeV})^{2} \end{gathered}$	

Prinida at FAlR $p \bar{p}$ collider
$\left|G_{E}^{p}\right|,\left|G_{M}^{p}\right|, G_{E}^{p} / G_{M}^{p}$ phase (\bar{p} polarization)
$(2.4 \mathrm{GeV})^{2} \leq \boldsymbol{q}^{2} \leq(3.7 \mathrm{GeV})^{2}$
at SuperKEKB $e^{+} e^{-}$collider $\left|G_{E}^{p}\right|,\left|G_{M}^{p}\right|$, (ISR) $q^{2} \leq(4.5 \mathrm{GeV})^{2}$

Additional slides

The threshold region ${ }_{3}$

The threshold region ${ }_{3}$

Assumption
 Pauli principle pulls away from the internal region of strong chromo-electromagnetic field quarks of same flavor because the color quantum number does not play any role (stochastic averaging).

Outer spatial region

$$
|p\rangle=\epsilon^{j j k}\left|u_{i} u_{j} d_{k}\right\rangle
$$

$$
\text { charge = } 1
$$

Central region

$$
\begin{aligned}
& |p\rangle \neq \epsilon^{j j k}\left|u_{i} u_{j} d_{k}\right\rangle \\
& \text { charge }=0
\end{aligned}
$$

space-like
A screening effect from the central region provides an additional suppression for the electric form factor

$$
G_{M}^{p}\left(q^{2}\right)=\mu_{p} G_{D}\left(q^{2}\right)
$$

$$
G_{E}^{p}\left(q^{2}\right)=\frac{G_{D}\left(q^{2}\right)}{1-q^{2} / q_{1}^{2}}
$$

time-like

$$
G_{M}^{p}\left(q^{2}\right)=\frac{\theta\left(q^{2}-4 M_{p}^{2}\right)}{\left[1+\left(q^{2}-4 M_{p}^{2}\right)^{2} / q_{2}^{2}\right]^{2}}
$$

$$
G_{E}^{p}\left(q^{2}\right)=\frac{G_{M}^{p}\left(q^{2}\right) \theta\left(q^{2}-4 M_{p}^{2}\right)}{1+\left(q^{2}-4 M_{p}^{2}\right)^{2} / q_{2}^{2}}
$$

