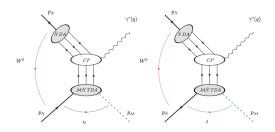
Feasibility of measurements of $ar p p o \pi^0 J/\psi o \pi^0 e^+ e^-$ to constrain pion-nucleon TDAs in PANDA

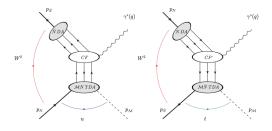
GDR PH-QCD

Ermias ATOMSSA


Institut de Physique Nucléaire d'Orsay

October 7, 2014 Orsay

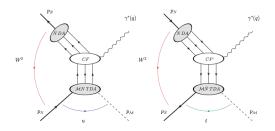
Outline


- Transition Distribution Amplitudes
- PANDA Experimental Setup
- Event Generation (Signal and Background)
- Efficiency and rejection estimation
- Effective signal to background

J-P. Lansberg et. al. Phys. Rev. D 75 (2007) 074004

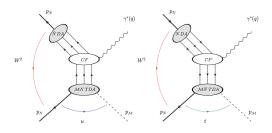
- Occur in collinear factorization of $\bar p p o \pi^0 \gamma^* o \pi^0 e^+ e^-$ and $\bar p p o \pi^0 J/\psi o \pi^0 e^+ e^-$
- Valid only for large values of $s=(p_N+p_{\bar{N}})^2=W^2$
 - Backward kinematics (small |u|), π^0 in direction of nucleon (probes $\pi ext{-N TDAs}$)
 - ullet Forward kinematics (small |t|), π^0 in direction of anti-nucleon (probes $\pi { ext{-}} ar{ ext{N}}$ TDAs)
- CF: Hard sub-process amplitude

J-P. Lansberg et. al. Phys. Rev. D 75 (2007) 074004



• π -N TDA : Fourier transform of non-diagonal (baryon-to-meson transition) matrix elements of non local three (anti-)quark operators on the light cone:

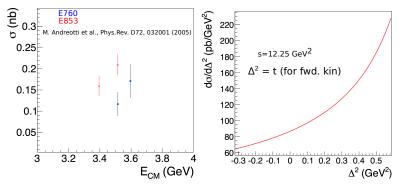
$$<\pi^0(p_\pi)|\varepsilon_{c_1c_2c_3}u^{c_1}_\rho(\lambda_1n)u^{c_2}_\tau(\lambda_2n)u^{c_3}_\xi(\lambda_3n)|N^p(p_N,S_N)>$$


parameterized as a function of momentum fractions (x_i) , skewness (ξ) and momentum transfer squared $(\Delta^2=t/u$ in fwd/bwd kinematics resp.) independent of W^2 and q

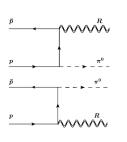
J-P. Lansberg et. al. Phys. Rev. D 75 (2007) 074004

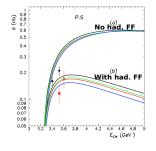
• DAs: Diagonal matrix elements of non local three (anti-)quark operators on the light cone $<0|\varepsilon_{c_1c_2c_3}u_\rho^{c_1}(\lambda_1n)u_\tau^{c_2}(\lambda_2n)u_\varepsilon^{c_3}(\lambda_3n)|N^p(p_N,S_N)>$

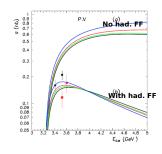
J-P. Lansberg et. al. Phys. Rev. D 75 (2007) 074004



- Feasibility study completed by M. Carmen Mora Espí (submitted to EPJA)
- Forward and backward kinematic regions, at s=5 GeV² and s=10 GeV²
- Expected signal event rate for 2 fb⁻¹ is 3350 (@ s=5 GeV²) and 465 (@ s=10 GeV²)
- ullet S/B is assumed $\sigma(ar p p o \pi^0 \gamma^* o \pi^0 e^+ e^-)/\sigma(ar p p o \pi^0 \pi^+ \pi^-) pprox 10^{-6}$
- Cross-section measurements are readily feasible under this assumption

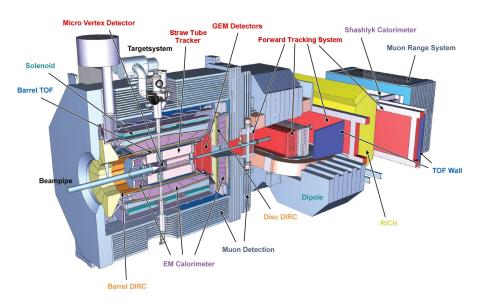

$\overline{\pi}$ -N TDAs in $\overline{m{p}}m{p} o\pi^0m{J}/\psi o\pi^0m{e}^+m{e}^-$

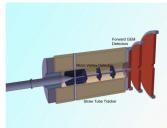

- ullet Higher signal cross section and large $q^2~(=M_{J/\psi}^2)$ -B. Pire et. al. Physics Letters B 724 (2013) 99107
- ullet Reduces uncertainty on DAs by using $J/\psi o par p$ partial decay width data

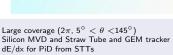


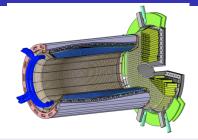
- ullet X-sect. predictions reproduce existing data from Fermilab at $\sqrt{s}=3.5$ GeV (M_{h_c})
- ullet Test of universality of TDAs by comparing to $ar p p o \pi^0 \gamma^* o \pi^0 e^+ e^-$ at different q^2

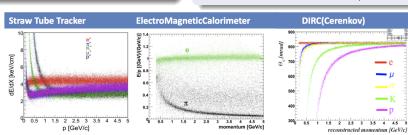
Alternative models $ar p p o \pi^0 J/\psi o \pi^0 e^+ e^-$

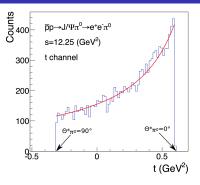





- Alternative calculation based on effective Lagrangian approach (J. Van de Wiele, S. Ong Eur.Phys.J. C73, 2640 (2013))
- ullet Different colors \Longrightarrow different parameters of $ar ppJ/\psi$ Lagrangian
- ullet Good description of Fermilab data with both PS and PV πNN coupling
- ullet However a dipole hadronic form factor at the πNN vertex to take into account the offshell nature of the exchanged nucleon is required to reproduce the data


PANDA detector


Tracking and PID for Nucleon Structure Physics Program



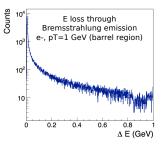
PbWO crystal EMCal, APDs (barrel) VPT (forward) Operation at -25° C for optimal photon production Wide dynamic range: $\gtrapprox 3 \text{ MeV}$ Excellent resolution: $\sigma(E)/E \approx 1\% \oplus 2\%/\sqrt{E(\text{GeV})}$

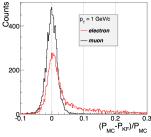
Event generation and rate estimates for

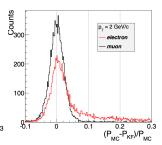
$$ar{p}p
ightarrow \pi^0 J/\psi
ightarrow \pi^0 e^+ e^-$$

- New event generator based on TDA model for $\bar p p o \pi^0 J/\psi o \pi^0 e^+ e^-$ reaction (collaboration K. Semenov/B. Ma)
- $s = 12.25 \text{ GeV}^2$ picked to correspond to Fermilab data points

Expected signal rate in forward kinematics for s=12.25 GeV 2 for 2 fb $^{-1}$ with 100% Acc- ε :

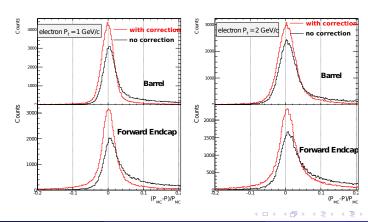

$$\mathcal{R}_{SIG}^{tot} = \mathcal{L}_{int} \sigma \mathsf{BR} = 2 \mathit{fb}^{-1} \cdot 105 \mathsf{pb} \cdot 5.94\% \approx 13 \mathsf{k}$$

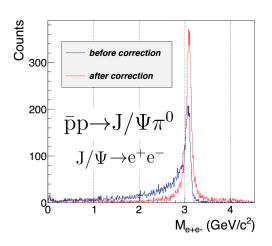

Ermias ATOMSSA (IPNO)


Electron momentum reconstruction in PANDA

Resolution loss due to Bremsstrahlung

- Significant radiation length in and before tracking detectors
- Higly non Gaussain energy loss by electrons due to Bremsstrahlung photon emission
- ullet Kalman filter used for track reconstruction assumes Gaussian errors and thus can not handle Bremsstrahlung \Longrightarrow resolution loss

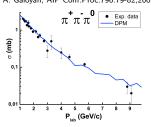




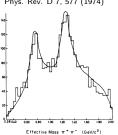
Event by event correction of Bremsstrahlung

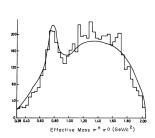
- Thesis work by Binsong Ma (Defended on September 23 2014)
- Exploit spatial correlation between γ_{Brem} and e^+/e^- clusters
- Combined with low threshold EMCal, possible to
 - Find Bremsstrahlung photon candidates track by track
 - ullet Correct each track's momentum by adding back total energy from all γ_{Brem}
- Approach works: clear improvement in electron momentum resolution

Improvement on J/ψ reconstruction

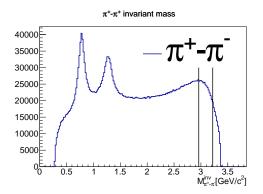


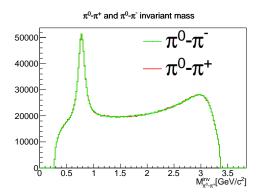
- ullet Allows to improve mass cut efficiency on e^+e^- from J/ψ by 70%
- A mass cut of 2.96 $< M_{inv} < 3.22$ has an efficiency of $\varepsilon_M^{SIG} = 64\%$ for signal events $\implies \mathcal{R}_{SIG} \cdot \varepsilon_M^{SIG} = 8.3$ k events


$\pi^0\pi^+\pi^-$ background


- Main background $\pi^0\pi^+\pi^-$ similar event topology and kinematically very close to signal
- Cross section relatively well known

A. Galoyan, AIP Conf.Proc.796:79-82,2005


Phys. Rev. D 7, 577 (1974)


- Data from CERN-HERA 84-01, 1984 and references therein
- Interpolated x-sect at $p_{\bar{p}}=5.51~{\rm GeV/c}$ of $\sigma=0.2\pm0.05~{\rm mb}$ used for BG rate estimations
- DPM reproduces both cross-sections and invariant mass distributions of data

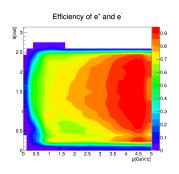
π^0 $\pi^+\pi^-$ Background distributions from DPM

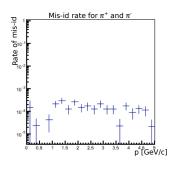
- Rate estimation restricted to $-0.5 < t[\text{GeV}^2] < 0.6, 2.96 < M_{inv}[\text{GeV}/c^2] < 3.22$
- ullet Rejection from J/ψ mass cut is pprox90%
- lacktriangledown ho and f_0 resonances peaks in $\pi^+\pi^-$
- ullet Contribute outside the J/ψ mass selection window 2.96 < $M_{\it inv}$ < 3.22

π^0 $\pi^+\pi^-$ Background distributions from DPM

- Rate estimation restricted to $-0.5 < t[\text{GeV}^2] < 0.6, 2.96 < M_{inv}[\text{GeV/c}^2] < 3.22$
- Rejection from J/ψ mass cut is \approx 90%
- ρ^+ and ρ^- resonance peaks in $\pi^0\pi^+$ and $\pi^0\pi^-$ respectively
- Provide a means to empirically control background contamination

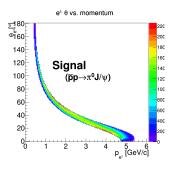
Background rate estimates

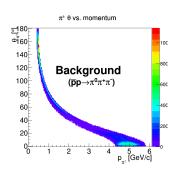

- Total rate of $\bar{p}p \to \pi^0 \pi^+ \pi^-$ for 2 fb⁻¹ integrated luminosity $\mathcal{R}^{BG}_{tot} = \mathcal{L}_{int} \sigma = 2 \text{fb}^{-1} \cdot 0.2 \pm 0.05 \text{mb} \approx (4 \pm 0.1) \times 10^{11}$
- ullet Reduction by 95% for forward π^0 emission after J/ψ mass cut $(arepsilon_t \cdot arepsilon_M^{BG} pprox$ 5%)
- Expected background rate that has to be dealt with PID and kinematic fits:


$$\mathcal{R} = \mathcal{R}_{tot}^{BG} \cdot \varepsilon_t \cdot \varepsilon_M^{BG} = (4 \pm 0.1 \times 10^{11}) \cdot 5\% \approx (2 \pm 0.05) \times 10^{10}$$

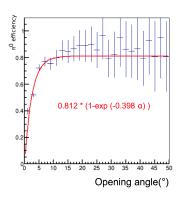
which gives S/B ratio before PID of $\approx 8.2 \times 10^3/2 \times 10^{10} \approx 4.1 \times 10^{-7}$

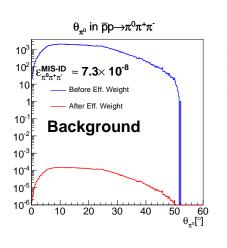
PID will therefore be critical for this measurement

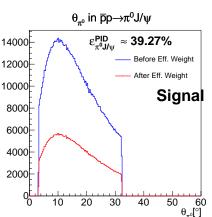

PID efficiency for electrons and charged pions



- Effect of PID cuts studied using parametrized efficiency and rejection
- The parametrization was based on a Bayesian classifier developed by R. Kunne using response to electrons and pions in a full MC (using EMC, STT, DIRC and DISC)
- ullet Efficiency of e^\pm and mis-id rate of π^\pm were calculated as a function of (θ,p) and p respectively by requiring a combined probability of 99.9% of being an electron
- For each track from the simulation, a weight proportional to the corresponding efficiency was applied


PID efficiency for electrons and charged pions


- Effect of PID cuts studied using parametrized efficiency and rejection
- The parametrization was based on a Bayesian classifier developed by R. Kunne using response to electrons and pions in a full MC (using EMC, STT, DIRC and DISC)
- Efficiency of e^\pm and mis-id rate of π^\pm were calculated as a function of (θ,p) and p respectively by requiring a combined probability of 99.9% of being an electron
- For each track from the simulation, a weight proportional to the corresponding efficiency was applied
- ullet Low efficiency for e^\pm below pprox 0.5 GeV doesn't affect efficiency for signal


PID Efficiency for π^0

- Most of the efficiency variation ultimately comes from opening angle
- ullet Minimum opening angle of $pprox 12^\circ$ ensures most of the signal lies in the plateau region of the efficiency (not affected by drop of efficiency at low opening angles)

Efficiency estimate of $ar p p o \pi^0 J/\psi \to \pi^0 e^+ e^-$ and $ar p p o \pi^0 \pi^+ \pi^-$

Effective Signal/Background

- Estimated S/B counts ratio based on ingredients presented above
 - Signal counts (C_{SIG})

$$\mathcal{C}_{\textit{SIG}} = \mathcal{R}_{\textit{SIG}}^{\textit{tot}} \cdot \varepsilon_{\textit{M}}^{\textit{SIG}} \cdot \varepsilon_{\textit{M}}^{\textit{MIS-ID}} \cdot \varepsilon_{\pi^0\pi^+\pi^-}^{\textit{MIS-ID}} \approx 1.3 \times 10^4 \times 0.64 \times 0.39 = 3.3 \times 10^3$$

• Background counts (C_{BG}):

$$\mathcal{C}_{BG} = \mathcal{R}_{BG}^{tot} \cdot \varepsilon_t \cdot \varepsilon_M^{SIG} \cdot \varepsilon_{\pi^0 J/\psi}^{PID} \approx 4.0 \times 10^{11} \times 0.05 \times 7.3 \times 10^{-8} = 1.5 \times 10^3$$

- S/B will therefore come out to about $C_{SIG}/C_{BG} \approx 2.3$
- Further improvement should be possible with kinematic fits
- Background rejection at the percent level probably out of reach
 - \Rightarrow precise measurement and subtraction of $\pi^0\pi^+\pi^-$ background needed.

Summary

- TDAs are universal non perturbative hadronic matrix elements that appear in factorized calculations of amplitudes that carry information about the structure of hadrons through correlations between constituents
- In PANDA , TDAs can be accessed through $\bar{p}p \to \pi^0 \gamma^* \to \pi^0 e^+ e^-$ or $\bar{p}p \to \pi^0 J/\psi \to \pi^0 e^+ e^-$ (the later of which is more favorable due to higher S/B under the J/ψ peak)
- ullet Good significance requires high performance PID, in particular π^\pm rejection will be critical
- Rough estimation for forward kinematics based on parameterized efficiencies and rejections
 - S/B ratio of 2.3 before kinematic fit
 - Total count of events will be about 3.3k for 2 fb $^{-1}$
 - Needs some refinement, but orders of magnitude are realistic
- Background rejection at the percent level probably out of reach, but easy enough to subtract residual background