Update on feasibility studies of Time-Like proton form factors at PANDA

Alaa Dbeyssi, Dmitry Khaneft, Frank Maas, Maria C. M. Espi, Egle Tomasi-Gustafsson, Dominique Marchand, Manuel Zambrana

October 7th, 2014

"The annual meeting of the group II of GDR-PH-QCD"

Outline

- I. Introduction: Measurements of the proton electromagnetic form factors in the Time-Like (TL) region
- II. Feasibility studies of the $p p \rightarrow e^+e^-$ reaction measurement at PANDA at 3 values of total energy
- III. Determination of the statistical error on the proton FF ratio
- IV. Conclusions

Electromagnetic form factors

- Parametrize the EM interaction of the hadron (\neq point-like)
- In a P- and T-invariant theory, the EM structure of a particle of spin S is defined by 2S+1 FFs: Proton (S=1/2) has electric $G_E(q^2)$ and magnetic $G_M(q^2)$ FFs
- q^2 is a kinematical invariant : $[-\infty, +\infty]$

Electromagnetic form factors

- Parametrize the EM interaction of the hadron (\neq point-like)
- In a P- and T-invariant theory, the EM structure of a particle of spin S is defined by 2S+1 FFs: Proton (S=1/2) has electric $G_E(q^2)$ and magnetic $G_M(q^2)$ FFs
- q^2 is a kinematical invariant : $[-\infty, +\infty]$

Data on proton electromagnetic form factors

Space-Like (SL): Discrepancy between the polarized and unpolarized data Time-Like (TL): - Individual measurement of $|G_E|$ and $|G_M|$

- Investigation of the unphysical region

Towards a unified description of FFs in all kinematical regions

proton FF measurements in TL region

$$\frac{d\sigma}{d\cos\theta} = \mathcal{N}\left[\left(1 + \cos^2\theta\right)|G_M|^2 + \frac{4M^2}{s}\sin^2\theta|G_E|^2\right]$$
$$= \mathcal{N}[G_M|^2](1 + \cos^2\theta) + \frac{4M^2}{s}\sin^2\theta R^2]$$

 $R=|G_E|/|G_M|$, \mathcal{N} is a normalization factor.

- Angular distribution of the proton (electron) $\rightarrow R = |G_E| / |G_M|$
- Angular distribution + normalization $\rightarrow |G_E|$ and $|G_M|$
- Total cross section \rightarrow effective form factor ($|G_E| = |G_M|$)

Tagged analysis: proton, antiproton and the photon need to be detected

Untagged analysis: proton and antiproton are detected. 4-momentum of the ISR photon is reconstructed

Data on the ratio of TL proton electromagnetic form factors

- Inconsistent data between BaBar and PS170
- BaBar: ISR technique [1.877, 3.00] GeV
- PS170 (LEAR): Low energy scan
- Future Data from:

₿€SⅢ

- ISR technique (tagged+untagged) : XYZ, J/ ψ , ψ' , ψ'' , ψ (4040) data
- Proton FF measurement from 2.0-3.1 GeV energy scan, 8 energy points, Integrated luminosity= 478 pb⁻¹, R ~10%
- PANDA (2019): Large range of CM energy and high luminosity

7/10/2014

FAIR-High quality antiproton beam

Facility	Years	Momentum range [GeV/c]	Luminosity $[cm^{-2}s^{-1}]$	$\Delta p/p$
CERN-LEAR	1983-1996	0.06 - 1.94	2 × 10 ²⁹	10^{-3}
Fermilab (AA) Low energy experiments	1985-2011	< 8.9	2×10 ³¹	10 ⁻⁴
FAIR-PANDA	2018	1.5 — 15	$2 \times 10^{32} (10^{31})$	10^{-4} 4 × 10^{-5}

PANDA will have:

- Larger momentum range of antiproton beam
- Higher luminosity
- Improved beam momentum resolution

Measurement of TL proton FFs at PANDA: Goals

- Measurements of TL proton FFs (effective FF, ratio) over a large kinematical region through: $\bar{p}p \rightarrow e^+e^-$
- Individual measurement of $|G_E|$ and $|G_M|$

"M. Sudol et al. EPJ A44, 373 (2010)"

- Possibility to access the relative phase of proton TL FFs
 - Polarization observables (**Born approximation**) give access to $G_E G_M^*$
 - Development of a transverse polarized proton target for PANDA in Mainz ٠
- \blacktriangleright Measurement of proton FFs in the unphysical region: $\bar{p}p \rightarrow e^+e^-\pi^0$

- M.P. Rekalo. Sov. J. Nucl. Phys., 1:760, 1965

TL proton FF measurements at PANDA: background study

- Main issue: signal identification from the huge hadronic background
- \succ The signal is $\overline{p}p
 ightarrow e^+e^-$ and the main background is $\overline{p}p
 ightarrow \pi^+\pi^-$
 - Channels with more than two charged particles in the final state can be rejected using the kinematics (missing mass)
 - The mass of pion is closer to the electron mass than other hadrons (proton and kaon)

Prob. Atomic Sci. Technol. 2012N1, 84 (2012)

 $\frac{\sigma(\pi^+\pi^-)}{\sigma(e^+e^-)} \sim [10^5 - 10^6]$

A background rejection at the order of 10^{-8} is needed

Outline of the simulation studies

- > Feasibility studies of $\bar{p}p \rightarrow e^+e^-$ for the measurement of proton FF ratio at PANDA:
 - Study of the background suppression versus the signal ($\overline{p}p \rightarrow e^+e^-$) efficiency
 - Determination of the statistical error on the extracted proton FF ratio $R = |G_E|/|G_M|$

Based on realistic Monte Carlo simulation using PANDARoot, Big amount of data have been handled by the Clusters of HIM

Background angular distribution: Data and modelisation

Monte Carlo event generator:

- Low energy (p<5 GeV): parameters of Legendre polynomials</p>
- ➢ High energy (5 GeV≤p<12 GeV) : Regge inspired parametrization</p>

Zambrana et al., "PANDA note - EventGenerators", HIM Mainz-IPN Orsay, 2011

Description of the simulation

Monte Carlo parameters:

$p_{\overline{p}}$ [GeV]	1.7	3.3	6.4
$s=q^2$ [GeV ²]	5.4	8.2	13.9
Events ($\bar{p}p \rightarrow e^+e^-$)	10 ⁶	10 ⁶	10 ⁶
Events ($\bar{p}p \rightarrow \pi^+\pi^-$)	108	10 ⁸	10 ⁸

- PHSP (PHase Space, GEANT4)
 - $\bar{p}p \rightarrow e^+e^-$
 - *PHOTOS* is switched on

$$\bar{p}p \rightarrow \pi^+\pi^-: \cos\theta = [-0.8, 0.8]$$

PANDARoot version: 25544 (apr13)

Standard chain of simulation and analysis in PANDARoot:

- One positive and one negative particle per event
- Best back to back pair in the CM is selected among all possible pairs (positive and negative particles) per event
 - PID probabilities and kinematics cuts are applied to the selected events

Reconstructed PID variables

- Energy deposit , shower shape, . . . in the ElectroMagnetic Calorimeter
- Energy loss in the Straw Tube Tracker and Micro Vertex Detector
- Cherenkov angles (Cherenkov detectors DIRC)
- Other kinematical an PID variables

PID and kinematical Cuts

s [GeV ²]	5.4	8.2	13.9
Total PID prob.	>99%	>99%	>99.9%
Individual PID _i prob.	EMC >0.3 STT >0.33 MVD>0.05	EMC >0.63 STT >0.37	EMC >0.06 STT >0.11
$ \phi - \phi' $		[178°-185°]	[175°-185°]
Invariant mass [GeV]	>1.5		> 2.7
Background rejection factor	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸

- PID --> probability for the detected particle to be identified as the signal.
- PID information are taken from EMC, STT, DIRC and MVD subdetectors.

Signal efficiency after background suppression

 ϵ = Selected events (e^+e^-) after the cuts/MC events (e^+e^-)

Analysis for proton FF measurements is limited to the region $\cos\theta = [-0.8, 0.8]$ in the CM

From PHSP to physical angular distributions

A. Zichichi et al., Nuovo Cim. 24 (1962) 170

E. Tomasi-Gustafsson and M.P. Rekalo, Phys.Lett. B504 (2001) 291-295

Monte Carlo events, PHSP × Weight: $1 + \mathcal{A} \cos^2 \theta$ Physical Monte Carlo events × Efficiency $\epsilon(c)$ Physical reconstructed events

Efficiency correction and linear fit

 \blacktriangleright Linear fit to the signal (e^+e^-) events as a function of $\cos^2\theta$

• Fit function:
$$y=a_0 + a_1 x$$
, $x = \cos^2 \theta$

$$\frac{d\sigma}{d\cos\theta} = \sigma_0 (1 + \mathcal{A}\cos^2\theta)$$

• The slope a_1 is related to \mathcal{A}

• Error on *R* through:
$$\mathcal{A} = \frac{\tau - R^2}{\tau + R^2} \to \Delta R = \frac{1}{R} \frac{\tau}{(1 + \mathcal{A})^2} \Delta \mathcal{A}$$

Results (R=1)

s [GeV ²]	${\mathcal A}$	$\mathcal{A}\pm\Delta\mathcal{A}$	R	$R \pm \Delta R$
5.4	0.21	0.217 ± 0.011	1	0.993 ± 0.011
8.2	0.4	0.393 ± 0.041	1	1.007 ± 0.049
13.9	0.59	0.588 ± 0.268	1	1.01 ± 0.415

The extracted values are compatible with the Monte Carlo input

 F. Iachello et al., Phys. Rev. C 69 (2004) 055204
 E. Tomasi-Gui

 E. L. Lomon, Phys. Rev. C 66 (2002) 045501
 V. A. Matvee

E. Tomasi-Gustafsson et al., Eur. Phys. J. A 24, 419 (2005) V. A. Matveev, S. J. Brodsky , D. V. Shirkov....

7/10/2014

Alaa Dbeyssi

Comparison with previous simulations

s [GeV ²]	$R \pm \Delta R$	$R \pm \Delta R$ (new simulation)
5.4	0.992 ± 0.009	0.993 ± 0.011
8.2	0.997 ± 0.045	1.007 ± 0.049
13.9	1 ± 0.396	1.01 ± 0.415

- New version of PANDARoot
- More background events have been generated

Expected statistical precision using the **BaBar** framework for R=1. [M. Sudol *et al.* EPJ A44, 373 (2010)]

Points under investigation

- > Determination of the statistical errors on the individual proton form factors
- Efficiency extrapolation and effective form factor determination at large energies
- Second analysis done by Dmitry khaneft (HIM Mainz) :
 - Different event generator for the signal
 - Different PID and kinematical cuts
 - Different fit functions (study of the correlation matrix elements)
- \succ Radiative corrections to the annihilation reactions $\overline{p}p
 ightarrow e^+e^-$
 - Event generator for PANDA
 - Simulation and analysis studies: effect of radiative correction on the proton form factors

Conclusions

- Feasibility studies (PANDARoot) for measuring proton TL EM FFs at PANDA:
 - Three values of the momentum transfer squared are considered $q^2 = s = 5.4$, 8.2 and 13.9 GeV²
 - The suppression of the main background at the order of 10^{-8} is achieved keeping sufficient signal efficiency
 - The proton FF ratio can be measured at PANDA with unprecedented statistical accuracy

Thank you for your attention

PID and kinematical Cuts

Previous simulations

s [GeV ²]	5.4	8.2	13.9
Total PID prob.	>99%	>99%	>99.9%
Individual PID _i prob.	>5%	>5%	>6%
Number of fired crystals in the EMC	>5	>5	>5
$(\theta + \theta')$ [CMS]	[178°-182°]	[178°-182°]	[175°-185°]
$ \phi - \phi' $	[178°-182°]	[178°-182°]	[175°-185°]
Invariant mass [GeV]	No cut	> 2.14 GeV	> 2.5 GeV
Background [Events]	0	0	0

- PID --> probability for the detected particle to be identified as the signal.
- PID information are taken from EMC, STT, DIRC and MVD subdetectors.

Signal efficiency after background suppression

Analysis for proton FF measurements is limited to the region $\cos\theta = [-0.8, 0.8]$ in the CM

Results:

F. lachello et al., Phys. Rev. C 69 (2004) 055204 E. L. Lomon, Phys. Rev. C 66 (2002) 045501 E. Tomasi-Gustafsson et al., Eur. Phys. J. A 24, 419 (2005) V. A. Matveev, S. J. Brodsky, D. V. Shirkov....

7/10/2014

Alaa Dbeyssi

Effect of the angular cut

Previous simulations

