Update on feasibility studies of Time-Like proton form factors at PANDA

Alaa Dbeyssi, Dmitry Khaneft, Frank Maas, Maria C. M. Espi, Egle
Tomasi-Gustafsson, Dominique Marchand, Manuel Zambrana
October 7 ${ }^{\text {th }}, 2014$
"The annual meeting of the group II of GDR-PH-QCD"

Outline

I. Introduction: Measurements of the proton electromagnetic form factors in the Time-Like (TL) region
II. Feasibility studies of the $\bar{p} p \rightarrow e^{+} e^{-}$reaction measurement at PANDA at 3 values of total energy
III. Determination of the statistical error on the proton FF ratio
IV. Conclusions

Electromagnetic form factors

- Parametrize the EM interaction of the hadron (\neq point-like)
- In a P- and T-invariant theory, the EM structure of a particle of spin S is defined by $2 \mathrm{~S}+1$ FFs: Proton ($\mathrm{S}=1 / 2$) has electric $G_{E}\left(\boldsymbol{q}^{2}\right)$ and magnetic $G_{M}\left(\boldsymbol{q}^{2}\right)$ FFs
- \boldsymbol{q}^{2} is a kinematical invariant: $[-\infty,+\infty]$

Born approximation

Electromagnetic form factors

- Parametrize the EM interaction of the hadron (\neq point-like)
- In a P- and T-invariant theory, the EM structure of a particle of spin S is defined by $2 \mathrm{~S}+1$ FFs: Proton ($\mathrm{S}=1 / 2$) has electric $G_{E}\left(\boldsymbol{q}^{2}\right)$ and magnetic $G_{M}\left(\boldsymbol{q}^{2}\right)$ FFs
- \boldsymbol{q}^{2} is a kinematical invariant: $[-\infty,+\infty]$

Born approximation

Data on proton electromagnetic form factors

> Space-Like (SL): Discrepancy between the polarized and unpolarized data
> Time-Like (TL): - Individual measurement of $\left|G_{E}\right|$ and $\left|G_{M}\right|$

- Investigation of the unphysical region

Towards a unified description of FFs in all kinematical regions

proton FF measurements in TL region

Energy scan:

$$
\begin{aligned}
\frac{d \sigma}{d \cos \theta} & =\mathcal{N}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{4 M^{2}}{s} \sin ^{2} \theta\left|G_{E}\right|^{2}\right] \\
& \left.=\mathcal{N | G}\left|G_{M}\right|^{2}\left(1+\cos ^{2} \theta\right)+\frac{4 M^{2}}{s} \sin ^{2} \theta R^{2}\right]
\end{aligned}
$$

$\mathrm{R}=\left|G_{E}\right| /\left|G_{M}\right|, \mathcal{N}$ is a normalization factor.

- Angular distribution of the proton (electron) $\rightarrow \mathrm{R}=\left|G_{E}\right| /\left|G_{M}\right|$
- Angular distribution + normalization $\rightarrow\left|G_{E}\right|$ and $\left|G_{M}\right|$
- Total cross section \rightarrow effective form factor $\left(\left|G_{E}\right|=\left|G_{M}\right|\right)$

Initial State Radiation:

Tagged analysis: proton, antiproton and the photon need to be detected

Untagged analysis: proton and antiproton are detected. 4-momentum of the ISR photon is reconstructed

Data on the ratio of TL proton electromagnetic form factors

- $10 \%-24 \%$ statistical uncertainties
- Inconsistent data between BaBar and PS170
- BaBar: ISR technique [1.877, 3.00] GeV
- PS170 (LEAR): Low energy scan
- Future Data from:

$D \subset C$ IT

ISR technique (tagged+untagged) : XYZ, J/ $\psi, \psi^{\prime}, \psi^{\prime \prime}, \Psi(4040)$ data

- Proton FF measurement from $2.0-3.1 \mathrm{GeV}$ energy scan, 8 energy points, Integrated luminosity $=478 \mathrm{pb}^{-1}, \mathrm{R} \sim 10 \%$
- PANDA (2019): Large range of CM energy and high luminosity

FAIR-High quality antiproton beam

Facility	Years	Momentum range $[\mathrm{GeV} / \mathrm{c}]$	Luminosity $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$	$\Delta p / p$
CERN-LEAR	$1983-1996$	$0.06-1.94$	2×10^{29}	10^{-3}
Fermilab (AA) Low energy experiments	$1985-2011$	<8.9	2×10^{31}	10^{-4}
FAIR-PANDA	$2018-\ldots$	$1.5-15$	$2 \times 10^{32}\left(10^{31}\right)$	10^{-4} 4×10^{-5}

PANDA will have:

- Larger momentum range of antiproton beam
- Higher luminosity
- Improved beam momentum resolution

Measurement of TL proton FFs at PANDA: Goals

> Measurements of TL proton FFs (effective FF, ratio) over a large kinematical region through: $\bar{p} p \rightarrow \mathrm{e}^{+} e^{-}$
$>$ Individual measurement of $\left|G_{E}\right|$ and $\left|G_{M}\right|$
"M. Sudol et al. EPJ A44, 373 (2010)"
> Possibility to access the relative phase of proton TL FFs

- Polarization observables (Born approximation) give access to $G_{E} G_{M}{ }^{*}$
- Development of a transverse polarized proton target for PANDA in Mainz
$>$ Measurement of proton FFs in the unphysical region: $\bar{p} p \rightarrow \mathrm{e}^{+} e^{-} \pi^{0}$

TL proton FF measurements at PANDA: background study

$>$ Main issue: signal identification from the huge hadronic background
$>$ The signal is $\overline{\boldsymbol{p}} \boldsymbol{p} \rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-}$and the main background is $\overline{\boldsymbol{p}} \boldsymbol{p} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$

- Channels with more than two charged particles in the final state can be rejected using the kinematics (missing mass)
- The mass of pion is closer to the electron mass than other hadrons (proton and kaon)

$$
\frac{\sigma\left(\pi^{+} \pi^{-}\right)}{\sigma\left(e^{+} e^{-}\right)} \sim\left[10^{5}-10^{6}\right]
$$

A background rejection at the order of $\mathbf{1 0}^{-\mathbf{8}}$ is needed
A. Dbeyssi and E. Tomasi Gustafsson

Prob. Atomic Sci. Technol. 2012N1, 84 (2012)

Outline of the simulation studies

$>$ Feasibility studies of $\bar{p} p \rightarrow e^{+} e^{-}$for the measurement of proton FF ratio at PANDA:

- Study of the background suppression versus the signal ($\overline{\boldsymbol{p}} \boldsymbol{p} \rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-}$) efficiency
- Determination of the statistical error on the extracted proton FF ratio $R=\left|G_{E}\right| /\left|G_{M}\right|$

Based on realistic Monte Carlo simulation using PANDARoot, Big amount of data have been handled by the Clusters of HIM

Background angular distribution: Data and modelisation

$$
\overline{\boldsymbol{p}} \boldsymbol{p} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}
$$

- Reaction mechanism is changing with the energy and the angle
- Data are very scarce not allowing to constrain parameter model

Monte Carlo event generator:
$>$ Low energy ($\mathrm{p}<5 \mathrm{GeV}$): parameters of Legendre polynomials
> High energy ($5 \mathrm{GeV} \leq \mathrm{p}<12 \mathrm{GeV}$) : Regge inspired parametrization

$$
\text { Zambrana et al., " PANDA note - EventGenerators" , HIM Mainz-IPN Orsay, } 2011
$$

Description of the simulation

Monte Carlo parameters:

$\boldsymbol{p}_{\overline{\boldsymbol{p}}}[\mathrm{GeV}]$	$\mathbf{1 . 7}$	$\mathbf{3 . 3}$	$\mathbf{6 . 4}$	•PHSP (PHase Space, GEANT4) • $\bar{p} p \rightarrow e^{+} e^{-}$		
$\mathrm{s}=q^{2}\left[\mathrm{GeV}^{2}\right]$	5.4	8.2	13.9			
Events $\left(\bar{p} p \rightarrow e^{+} e^{-}\right)$	10^{6}	10^{6}	10^{6}			
Events $\left(\bar{p} p \rightarrow \pi^{+} \pi^{-}\right)$	10^{8}	10^{8}	10^{8}		\quad	$\bar{p} p \rightarrow \pi^{+} \pi^{-}: \cos \theta=[-0.8,0.8]$
:---						

Standard chain of simulation and analysis in PANDARoot:

- One positive and one negative particle per event
- Best back to back pair in the CM is selected among all possible pairs (positive and negative particles) per event
- PID probabilities and kinematics cuts are applied to the selected events

Reconstructed PID variables

- Energy deposit, shower shape, . . . in the ElectroMagnetic Calorimeter
- Energy loss in the Straw Tube Tracker and Micro Vertex Detector
- Cherenkov angles (Cherenkov detectors DIRC)
- Other kinematical an PID variables

PID and kinematical Cuts

s $\left[\mathrm{GeV}^{2}\right]$	5.4	$\mathbf{8 . 2}$	13.9
Total PID prob.	$>99 \%$	$>99 \%$	$>99.9 \%$
Individual PID_{i} prob.	$\mathrm{EMC}>0.3$	$\mathrm{EMC}>0.63$	$\mathrm{EMC}>0.06$
	$\mathrm{STT}>0.33$ $\mathrm{MVD}>0.05$	$\mathrm{STT}>0.37$	$\mathrm{STT}>0.11$
$\left\|\phi-\phi^{\prime}\right\|$		$\left[178^{\circ}-185^{\circ}\right]$	$\left[175^{\circ}-185^{\circ}\right]$
Invariant mass $[\mathrm{GeV}]$	>1.5		>2.7
Background rejection factor	10^{-8}	10^{-8}	10^{-8}

- PID --> probability for the detected particle to be identified as the signal.
- PID information are taken from EMC, STT, DIRC and MVD subdetectors.

Signal efficiency after background suppression

$\epsilon=$ Selected events ($e^{+} e^{-}$) after the cuts/MC events ($e^{+} e^{-}$)

$$
s=5.4 \mathrm{GeV}^{2}
$$

$$
s=8.2 \mathrm{GeV}^{2}
$$

$$
s=13.9 \mathrm{GeV}^{2}
$$

Analysis for proton FF measurements is limited to the region $\cos \theta=[-0.8,0.8]$ in the CM

From PHSP to physical angular distributions

The differential cross section in the CM for $\overline{\boldsymbol{p}} \boldsymbol{p} \rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-}$is:

$$
\frac{d \sigma}{d \cos \theta}=\sigma_{0}\left(1+\mathcal{A} \cos ^{2} \theta\right)\left\{\begin{array}{l}
\sigma_{0}=\frac{d \sigma}{d \cos \theta}\left(\theta=\frac{\pi}{2}\right) \\
\mathcal{A}=\frac{\tau-R^{2}}{\tau+R^{2}}, R=\left|G_{E}\right| /\left|G_{M}\right|, \tau=\frac{s}{4 M^{2}}
\end{array}\right.
$$

A. Zichichi et al., Nuovo Cim. 24 (1962) 170
E. Tomasi-Gustafsson and M.P. Rekalo, Phys.Lett. B504 (2001) 291-295

Monte Carlo events, PHSP

\times Weight: $1+\mathcal{A} \cos ^{2} \theta$

Physical Monte Carlo events

\times Efficiency $\epsilon(c)$
Physical reconstructed events

Efficiency correction and linear fit

- The observed events are corrected by the efficiency: $\mathrm{F}(\mathrm{c})=\frac{O(c)}{\varepsilon(c)}$
- The events are normalized according to the expected counting rate: $\mathrm{O}(\mathrm{c})$
$>$ Linear fit to the signal $\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-}\right)$events as a function of $\cos ^{2} \theta$
- Fit function: $\mathrm{y}=a_{0}+a_{1} x, x=\cos ^{2} \theta$

$$
\frac{d \sigma}{d \cos \theta}=\sigma_{0}\left(1+\mathcal{A} \cos ^{2} \theta\right)
$$

- The slope a_{1} is related to \mathcal{A}
- Error on R through: $\mathcal{A}=\frac{\tau-R^{2}}{\tau+R^{2}} \rightarrow \Delta R=\frac{1}{R} \frac{\tau}{(1+\mathcal{A})^{2}} \Delta \mathcal{A}$

Results ($R=1$)

$s\left[\mathrm{GeV}^{2}\right]$	\mathcal{A}	$\mathcal{A} \pm \Delta \mathcal{A}$	R	$\boldsymbol{R} \pm \Delta \boldsymbol{R}$	
5.4	0.21	0.217 ± 0.011	1	0.993 ± 0.011	The are compatible with the Monte Carlo input
8.2	0.4	0.393 ± 0.041	1	1.007 ± 0.049	
13.9	0.59	0.588 ± 0.268	1	1.01 ± 0.415	
F. lachello et al., Phys. Rev. C 69 (2004) 055204 E. Tomasi-Gustafsson et al., Eur. Phys. J. A 24, 419 (2005)					

Comparison with previous simulations

$s\left[\mathrm{GeV}^{2}\right]$	$\boldsymbol{R} \pm \Delta \boldsymbol{R}$	$\boldsymbol{R} \pm \Delta \boldsymbol{R}$ (new simulation)
5.4	0.992 ± 0.009	0.993 ± 0.011
8.2	0.997 ± 0.045	1.007 ± 0.049
13.9	1 ± 0.396	1.01 ± 0.415

- New version of PANDARoot
- More background events have been generated

Expected statistical precision using the BaBar framework for $\mathrm{R}=1$.
[M. Sudol et al. EPJ A44, 373 (2010)]

Points under investigation

$>$ Determination of the statistical errors on the individual proton form factors

- Efficiency extrapolation and effective form factor determination at large energies
$>$ Second analysis done by Dmitry khaneft (HIM Mainz) :
- Different event generator for the signal
- Different PID and kinematical cuts
- Different fit functions (study of the correlation matrix elements)
$>$ Radiative corrections to the annihilation reactions $\overline{\boldsymbol{p}} \boldsymbol{p} \rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-}$
- Event generator for PANDA
- Simulation and analysis studies:
effect of radiative correction on the proton form factors

Conclusions

$>$ Feasibility studies (PANDARoot) for measuring proton TL EM FFs at PANDA:

- Three values of the momentum transfer squared are considered $q^{2}=s=5.4,8.2$ and $13.9 \mathrm{GeV}^{2}$
- The suppression of the main background at the order of $\mathbf{1 0}^{\mathbf{- 8}}$ is achieved keeping sufficient signal efficiency
- The proton FF ratio can be measured at PANDA with unprecedented statistical accuracy

Thank you for your attention

PID and kinematical Cuts

Previous simulations

s $\left[\mathrm{GeV}^{2}\right]$	$\mathbf{5 . 4}$	$\mathbf{8 . 2}$	$\mathbf{1 3 . 9}$
Total PID prob.	$>99 \%$	$>99 \%$	$>99.9 \%$
Individual PID ${ }_{i}$ prob.	$>5 \%$	$>5 \%$	$>6 \%$
Number of fired crystals in the EMC	>5	>5	>5
$\left(\theta+\theta^{\prime}\right)[\mathrm{CMS}]$	$\left[178^{\circ}-182^{\circ}\right]$	$\left[178^{\circ}-182^{\circ}\right]$	$\left[175^{\circ}-185^{\circ}\right]$
$\left\|\phi-\phi^{\prime}\right\|$	$\left[178^{\circ}-182^{\circ}\right]$	$\left[178^{\circ}-182^{\circ}\right]$	$\left[175^{\circ}-185^{\circ}\right]$
Invariant mass [GeV]	No cut	$>2.14 \mathrm{GeV}$	$>2.5 \mathrm{GeV}$
Background [Events]	0	0	0

- PID --> probability for the detected particle to be identified as the signal.
- PID information are taken from EMC, STT, DIRC and MVD subdetectors.

Signal efficiency after background suppression

$\epsilon=$ Selected events $\left(e^{+} e^{-}\right)$after the cuts/MC events $\left(e^{+} e^{-}\right)$
Previous simulations

$$
s=5.4 \mathrm{GeV}^{2} \quad s=8.2 \mathrm{GeV}^{2}
$$

$$
s=13.9 \mathrm{GeV}^{2}
$$

Analysis for proton FF measurements is limited to the region $\cos \theta=[-0.8,0.8]$ in the CM

Results:

[^0]E. Tomasi-Gustafsson et al., Eur. Phys. J. A 24, 419 (2005)
V. A. Matveev, S. J. Brodsky, D. V. Shirkov....

Effect of the angular cut

Previous simulations

[^0]: F. lachello et al., Phys. Rev. C 69 (2004) 055204
 E. L. Lomon, Phys. Rev. C 66 (2002) 045501

