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What is Fast Simulation?
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● Full Detector Simulation and Full Event Reconstruction is very detailed but slow 

~ 10 – 1000 s/event
● Fast Detector Simulation and Fast Event Reconstruction is faster but less detailed

– Simplify the slowest parts of the simulation (e.g., calorimeter response) and of the 
reconstruction (e.g., track reconstruction). Examples: Atlfast-II, CMS FastSim

~ 1 – 100 s/event
– Or parametrize the whole response of the detector and of the reconstruction 

algorithms. Examples: Delphes, PGS

~ 0.01 – 1 s/event

Detector Simulation
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What is Delphes?
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Here's what the Wikipedia has to say about Delphes:

http://fr.wikipedia.org/wiki/Delphes

… Delphes (en grec: Δελφοί) est le site d'un sanctuaire 
panhellénique où parlait l'oracle d'Apollon à travers sa 
prophétesse, la Pythie…

http://fr.wikipedia.org/wiki/Delphes
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Origin of Delphes

● Delphes project started back in 2007 at UCL as a side project to allow                           
quick feasibility studies

● Following the guidelines and suggestions of the 2012 LPCC workshop on public fast 
simulators for the LHC, Delphes has been completely redesigned to meet the needs of all 
users

● In 2013, Delphes 3 was released:
– modular structure allowing users to easily introduce new features

and modify existing ones
– library interface to use Delphes inside other programs
– simulation speed has been improved
– input file readers have been rewritten from scratch
– many existing features have been updated
– important number of bug fixes

● Widely tested and used by the community (pheno, Snowmass, CMS ECFA efforts, etc)
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Delphes in a nutshell

● Delphes is a modular framework that parametrizes the response of a multipurpose 
detector and of the reconstruction algorithms

● The simulation includes
– tracking system, embedded into a magnetic field,
– calorimeters with electromagnetic and                                                                      

hadronic sections,
– muon system,
– very forward detectors arranged                                                                                         

along the beam-line [JINST 2 (2007) P09005].

● It performs
– propagation of stable particles,
– “interaction” with the detector (parametric approach to efficiency and resolution 

convolution),
– “reconstruction” of physics objects.
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Useful Links

● Website:

https://cp3.irmp.ucl.ac.be/projects/delphes

● Documentation:

https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook

● Paper:

http://dx.doi.org/10.1007/JHEP02(2014)057

http://arxiv.org/abs/1307.6346

https://cp3.irmp.ucl.ac.be/projects/delphes
https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook
http://dx.doi.org/10.1007/JHEP02(2014)057
http://arxiv.org/abs/1307.6346
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How Delphes Works?



July 24, 2014 10

Modular Structure

● every physics object in Delphes is a 
Candidate (four-vector like object)

● all modules consume and produce 
arrays of Candidates

● modular system allows you to:
– define your own output 

collections
– store variants of object 

collections
– define the isolation criteria for 

each type of object
– define efficiency and resolution 

formulae for all objects
– …

● Delphes includes a set of modules 
and example configuration files well 
tested against expected response of 
ATLAS and CMS
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Input and Output

● Delphes' input is a list of particles 
produced by an event generator

● files in various formats can be read
● readers for new formats can be  

easily added

● Delphes also can be used as a library 
inside other programs

● Delphes' output is a ROOT tree 
containing the analysis objects

● configuration file:
– modules interconnection, 

execution order and parameters
– output object collections
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Pile-up Mixing

● pile-up mixing is implemented in 
the following way:

– a random (Poisonian) number 
of pre-generated minimum 
bias events is added to the 
main event

– minimum bias events are 
● spread along z-axis
● rotated by a random angle 

φ w.r.t. z-axis
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Pile-up Mixing: Validation

→  good agreement
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Particle Propagation

● charged and neutral particles are 
propagated in a solenoidal 
magnetic field until they reach the 
calorimeters

● propagation parameters:
– magnetic field (B)
– radius and half-length       

(Rmax , zmax) 
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Tracking Efficiency and Resolution

● efficiency and resolution depend on
– particle type (charged, photon, 

electron, muon)
– transverse momentum
– pseudo-rapidity

● not real tracking/vertexing:
– no fake tracks/conversions
– no dE/dx measurements

● for example, here is how the 
tracking efficiency for muons can  
be encoded:

# tracking efficiency formula for muons
set EfficiencyFormula {
                                                    (pt <= 0.1) * (0.00) +
                    (abs(eta) <= 1.5) * (pt > 0.1 && pt <= 1.0) * (0.75) +
                    (abs(eta) <= 1.5) * (pt > 1.0)              * (0.99) +
  (abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 0.1 && pt <= 1.0) * (0.70) +
  (abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 1.0)              * (0.98) +
                    (abs(eta)  > 2.5)                           * (0.00)
}
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Photons, Electrons and Muons

● identified via their PDG ID

● photons are smeared according to 
the ECAL resolution

● electrons are smeared according to 
the tracker and ECAL resolution

● muons do not deposit energy in the 
calorimeter (independent smearing 
parametrized in pT and η)

● modular structure allows to easily    
define various isolation criteria

● not implemented (yet):
– misidentification,
– punch-through,
– brehmstrahlung,
– conversions



July 24, 2014 17

Photons, Electrons and Muons: Validation

→  excellent agreement



July 24, 2014 18

Calorimetry

● ECAL/HCAL calorimeters have 
same segmentation in η and φ 

● each particle that reaches the 
calorimeters deposits a fraction of 
its energy in one ECAL cell (fECAL) 
and one HCAL cell (fHCAL):

● particle energy is smeared 
according to the calorimeter region 
it reaches

● no energy sharing between the 
neighboring cells

● no longitudinal segmentation in the 
calorimeters

particles fECAL fHCAL

e γ π0 1 0

K0S Λ0 0.3 0.7

ν μ 0 0

others 0 1
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Particle Flow Emulation

● Delphes attempts to reproduce 
performance of the Particle Flow 
algorithm

● tracking and calorimeter 
information allows to reconstruct 
high resolution objects for later use 
(jets, missing ET , HT)

● assume σ(trk) < σ(calo)

● separate neutral and charged 
calorimeter deposits has crucial 
implications for pile-up subtraction



July 24, 2014 20

Particle Flow Emulation: Examples

● Example 1:
– pion of 10 GeV

EHCAL(π+) = 15 GeV

Etrk(π+) = 11 GeV

– Particle Flow algorithm creates:

PF-track, with energy EPF-trk = 11 GeV

PF-tower, with energy EPF-tower = 4 GeV

● Example 2:
– pion of 10 GeV and photon of 20 GeV

EECAL(γ) = 18 GeV

EHCAL(π+) = 15 GeV

Etrk(π+) = 11 GeV

– Particle Flow algorithm creates:

PF-track, with energy EPF-trk = 11 GeV

PF-tower, with energy EPF-tower = 18 + 4 GeV
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Jets

● Delphes uses the FastJet library 
[Eur.Phys.J. C72 (2012) 1896] to 
reconstruct jets

● wide set of algorithms available

● possible inputs:
– particles produced by an event 

generator
– calorimeter towers
– Particle Flow objects

● jet energy scale corrections can be 
applied
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Jets: Validation

→  good agreement
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b- and τ- jets

● parametrized b- (τ-) tagging
– find the heaviest quark  (or τ) 

within a cone of radius ΔR 
around the jet axis

– apply corresponding efficiency 
or mistag rate 

● track counting b-tagging
– count tracks within jet with 

large impact parameter 
significance

– apply a selection criterion



July 24, 2014 24

Missing ET

●

● possible inputs:
– particles produced by an event 

generator
– calorimeter towers
– Particle Flow objects
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Missing ET : Validation

→  excellent agreement
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Pile-up Subtraction

● charged pile-up subtraction    
(most effective if used with the 
particle flow algorithm)
– remove all charged particles 

with z0 > |Zres|

● residual pile-up subtraction 
(needed for jets and isolation)
– use FastJet to compute pile-up 

density (ρ) and jet area (A)
– jet correction: pT → pT − ρA 

(JetPileUpSubtractor module)
– lepton isolation correction:      

∑ pT → ∑ pT − ρπR²      
(Isolation module)

– subtraction can be |η|
dependent
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Pile-up Subtraction: Validation

● H → bb in VBF channel expected to be highly affected by pile-up 

● irreducible background: bb + jets

● select at least 4 jets with pT > 80, 60, 40, 40 (at least 2 b-tagged jets, at least 2 light jets)

● emergence of pile-up jets in the

central region:

→ depletion of rapidity gap
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Pile-up Subtraction: Validation

● require large rapidity gap between light jets, no hadronic activity in between 

● 100 < m(bb) < 200 GeV
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Performance, Analysis and Visualization
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Performance



July 24, 2014 31

Analysis

● Analyzing Delphes' output is simplified as much as possible, by providing intuitive tools:
– ExRootAnalysis

● C++/ROOT
● helper classes for easier access to ROOT trees

– DelphesAnalysis
● Python/pyROOT
● helper classes for event selection and control plots

● In both cases, examples are provided for immediate start

● No need to learn a big framework like in large experimental collaborations or to redo 
everything from scratch:
– full analysis can be written in O(minutes) ~ O(hours)
– tell what you want to see and get the histogram

● Of course, you can use your favorite code… Delphes output is a standard ROOT tree…

→  see the tutorial later this afternoon
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Visualization

A basic event display is provided, based on ROOT EVE
– displays tracks, electrons, muons, calorimeter cells, jets
– more detailed version planed
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How to Simulate LHCb and AFTER@LHC?
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LHCb Layout
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Questions

● Output collections (γ, e, μ, π, K, p, jets, ???)

● Jet input collections

● Calorimeters or parametrized resolution σ(PID, E, θ, φ, ???)

● Particle propagation (parabolic trajectories?)

● Magnetic field (map or parametrization?)

● Vertexes

● ???
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AFTER@LHC

?
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Final Remarks and Conclusions
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When and When Not Delphes?

● When to use Delphes?

– more advanced than parton-level studies
– testing analysis methods (multivariate/Matrix Element)
– test your model (CheckMATE)
– scan big parameter space (SUSY-like)
– preliminary tests of new geometries/resolutions (upgrades, Snowmass)
– educational purpose (bachelor/master thesis)

● When not to use Delphes?

– high precision studies 
– very exotic topologies (heavy stable charged particles)
– study is sensitive to tails   
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Conclusions

● Delphes 3 has been out for more than one year now, with major improvements:

– modularity
– pile-up implementation
– revamped particle flow emulation
– visualization tool based on ROOT EVE
– example configuration files giving results on par with                                        

published performance of the LHC experiments (ATLAS and CMS)
– fully integrated within MadGraph5

● To-do: 

– energy sharing between the neighboring calorimeter cells
– longitudinal segmentation in the calorimeters
– understand how to simulate LHCb and AFTER@LHC
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