

Delphes 3 a modular framework for fast simulation of a generic collider experiment

Pavel Demin, Michele Selvaggi

Université catholique de Louvain Louvain-la-Neuve, Belgium

Cosmology, Particle Physics and Phenomenology (CP3)

What is Fast Simulation?

- Full Detector Simulation and Full Event Reconstruction is very detailed but slow
 - ~ 10 1000 s/event
- Fast Detector Simulation and Fast Event Reconstruction is faster but less detailed
 - **Simplify** the slowest parts of the simulation (e.g., calorimeter response) and of the reconstruction (e.g., track reconstruction). Examples: Atlfast-II, CMS FastSim
 - ~ 1 100 s/event
 - Or parametrize the whole response of the detector and of the reconstruction algorithms. Examples: Delphes, PGS
 - ~ 0.01 1 s/event

What is Delphes?

Here's what the Wikipedia has to say about Delphes:

http://fr.wikipedia.org/wiki/Delphes

... Delphes (en grec: $\Delta\epsilon\lambda\phi oi$) est le site d'un sanctuaire panhellénique où parlait l'oracle d'Apollon à travers sa prophétesse, la Pythie...

Origin of Delphes

- Delphes project started back in 2007 at UCL as a side project to allow quick feasibility studies
- Following the guidelines and suggestions of the 2012 LPCC workshop on public fast simulators for the LHC, Delphes has been completely redesigned to meet the needs of all users
- In 2013, Delphes 3 was released:
 - modular structure allowing users to easily introduce new features and modify existing ones
 - library interface to use Delphes inside other programs
 - simulation speed has been improved
 - input file readers have been rewritten from scratch
 - many existing features have been updated
 - important number of bug fixes
- Widely tested and used by the community (pheno, Snowmass, CMS ECFA efforts, etc)

- **Delphes** is a **modular framework** that **parametrizes** the response of a multipurpose detector and of the reconstruction algorithms
- The simulation includes
 - tracking system, embedded into a magnetic field,
 - calorimeters with electromagnetic and hadronic sections,
 - muon system,
 - very forward detectors arranged along the beam-line [JINST 2 (2007) P09005].

- It performs
 - propagation of stable particles,
 - "interaction" with the detector (parametric approach to efficiency and resolution convolution),
 - "reconstruction" of physics objects.

• Website:

https://cp3.irmp.ucl.ac.be/projects/delphes

• Documentation:

https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook

• Paper:

http://dx.doi.org/10.1007/JHEP02(2014)057 http://arxiv.org/abs/1307.6346

How Delphes Works?

Modular Structure

- every physics object in Delphes is a Candidate (four-vector like object)
- all modules consume and produce arrays of Candidates
- modular system allows you to:
 - define your own output collections
 - store variants of object collections
 - define the isolation criteria for each type of object
 - define efficiency and resolution formulae for all objects

- .

• Delphes includes a set of modules and example configuration files well tested against expected response of ATLAS and CMS

Input and Output

file

- files in various formats can be read •
- readers for new formats can be • easily added
- Delphes also can be used as a **library** ٠ inside other programs
- Delphes' **output** is a ROOT tree ٠ containing the analysis objects
- configuration file:
 - modules interconnection, execution order and parameters
 - output object collections

Pile-up Mixing

- a random (Poisonian) number of pre-generated minimum bias events is added to the main event
- minimum bias events are
 - spread along z-axis
 - rotated by a random angle φ w.r.t. z-axis

Pile-up Mixing: Validation

Particle Propagation

StdHEP

HepMC

macros

ProMC

calorimeter and particle flow

FastJet

energy scale

b-, τ -tagging

jets

Event

display

towers and tracks

merger

MET

DELPHES

fast simulation

LHEF

14

}

Tracking Efficiency and Resolution

Photons, Electrons and Muons

file

file

- identified via their PDG ID
- photons are smeared according to the ECAL resolution
- electrons are smeared according to ٠ the tracker and ECAL resolution
- **muons** do not deposit energy in the • calorimeter (independent smearing parametrized in p_T and η)
- modular structure allows to easily • define various isolation criteria
- not implemented (yet):
 - misidentification,
 - punch-through,
 - brehmstrahlung,
 - conversions

Photons, Electrons and Muons: Validation

→ excellent agreement

Calorimetry

- ECAL/HCAL calorimeters have same **segmentation** in η and φ
- each particle that reaches the calorimeters deposits a fraction of its energy in one ECAL cell (f_{ECAL}) and one HCAL cell (f_{HCAL}):

particles	f _{ECAL}	f _{HCAL}
$e\gamma\pi^0$	1	0
${\rm K}^0{}_{\rm S}\Lambda^0$	0.3	0.7
νμ	0	0
others	0	1

- particle energy is **smeared** according to the calorimeter region it reaches
- no energy sharing between the neighboring cells
- no longitudinal segmentation in the calorimeters

Particle Flow Emulation

19

display

macros

- Example 1:
 - pion of 10 GeV
 - $E_{\text{HCAL}}(\pi^+) = 15 \text{ GeV}$
 - $E_{trk}(\pi^+) = 11 \text{ GeV}$
 - Particle Flow algorithm creates:
 - PF-track, with energy E_{PF-trk} = 11 GeV

PF-tower, with energy $E_{PF-tower} = 4 \text{ GeV}$

- Example 2:
 - pion of 10 GeV and photon of 20 GeV
 - $E_{ECAL}(\gamma) = 18 \text{ GeV}$
 - $E_{HCAL}(\pi^+) = 15 \text{ GeV}$
 - $E_{trk}(\pi^+) = 11 \text{ GeV}$
 - Particle Flow algorithm creates:
 - PF-track, with energy E_{PF-trk} = 11 GeV
 - PF-tower, with energy $E_{PF-tower} = 18 + 4 \text{ GeV}$

• Delphes uses the FastJet library [Eur.Phys.J. C72 (2012) 1896] to reconstruct jets

- wide set of algorithms available
- possible inputs:
 - particles produced by an event generator
 - calorimeter towers
 - Particle Flow objects
- jet energy scale corrections can be applied

Jets: Validation

→ good agreement

b- and τ - jets

- find the heaviest quark (or τ) within a cone of radius ΔR around the jet axis
- apply corresponding efficiency or mistag rate
- track counting b-tagging
 - count tracks within jet with large impact parameter significance
 - apply a selection criterion

Missing E_T

→ excellent agreement

Pile-up Subtraction

- **charged** pile-up subtraction (most effective if used with the particle flow algorithm)
 - remove all charged particles with z₀ > |Z_{res}|
- **residual** pile-up subtraction (needed for jets and isolation)
 - use FastJet to compute pile-up density (ρ) and jet area (A)
 - jet correction: p_T → p_T − ρA(JetPileUpSubtractor module)
 - lepton isolation correction: $\sum p_T \rightarrow \sum p_T - \rho \pi R^2$ (Isolation module)
 - subtraction can be |η| dependent

Pile-up Subtraction: Validation

- $H \rightarrow bb$ in VBF channel expected to be highly affected by pile-up
- irreducible background: bb + jets
- select at least 4 jets with p_T > 80, 60, 40, 40 (at least 2 b-tagged jets, at least 2 light jets)

• emergence of pile-up jets in the central region:

 \rightarrow depletion of rapidity gap

selection efficiency (%)

Pile-up Subtraction: Validation

- require large rapidity gap between light jets, no hadronic activity in between
- 100 < m(bb) < 200 GeV

Performance, Analysis and Visualization

Analysis

- Analyzing Delphes' output is simplified as much as possible, by providing intuitive tools:
 - ExRootAnalysis
 - C++/ROOT
 - helper classes for easier access to ROOT trees
 - DelphesAnalysis
 - Python/pyROOT
 - helper classes for event selection and control plots
- In both cases, examples are provided for immediate start
- No need to learn a big framework like in large experimental collaborations or to redo everything from scratch:
 - full analysis can be written in O(minutes) ~ O(hours)
 - tell what you want to see and get the histogram
- Of course, you can use your favorite code... Delphes output is a standard ROOT tree...

\rightarrow see the tutorial later this afternoon

Visualization

A basic event display is provided, based on ROOT EVE

- displays tracks, electrons, muons, calorimeter cells, jets
- more detailed version planed

How to Simulate LHCb and AFTER@LHC?

LHCb Layout

- Output collections (γ , e, μ , π , K, p, jets, ???)
- Jet input collections
- Calorimeters or parametrized resolution $\sigma(PID, E, \theta, \phi, ???)$
- Particle propagation (parabolic trajectories?)
- Magnetic field (map or parametrization?)
- Vertexes
- ???

AFTER@LHC

?

Final Remarks and Conclusions

- When to use Delphes?
 - more advanced than parton-level studies
 - testing analysis methods (multivariate/Matrix Element)
 - test your model (CheckMATE)
 - scan big parameter space (SUSY-like)
 - preliminary tests of new geometries/resolutions (upgrades, Snowmass)
 - educational purpose (bachelor/master thesis)
- When not to use Delphes?
 - high precision studies
 - very exotic topologies (heavy stable charged particles)
 - study is sensitive to tails

Conclusions

- **Delphes 3** has been out for more than one year now, with **major improvements**:
 - modularity
 - pile-up implementation
 - revamped particle flow emulation
 - visualization tool based on ROOT EVE
 - example configuration files giving results on par with published performance of the LHC experiments (ATLAS and CMS)
 - fully integrated within MadGraph5
- To-do:
 - energy sharing between the neighboring calorimeter cells
 - longitudinal segmentation in the calorimeters
 - understand how to simulate LHCb and AFTER@LHC

People

Jerome de Favereau Christophe Delaere Pavel Demin Andrea Giammanco Vincent Lemaitre Alexandre Mertens Michele Selvaggi

the community...