Indirect dark matter searches with H.E.S.S.

Emmanuel Moulin CEA Saclay

ILP Thematic Day on Dark Matter June 19, 2014

Weakly interacting Massive Particles (WIMPs)

- Weakly interaction mass scale and standard gauge couplings give the right relic dark matter density
- Masses of O(GeV) to O(TeV) make them cold dark matter

Weakly interacting Massive Particles (WIMPs)

- Weakly interaction mass scale and standard gauge couplings give the right relic dark matter density
- Masses of O(GeV) to O(TeV) make them cold dark matter

Provide a benchmark annihilation cross section for indirect detection!

Dark matter annihilation flux

Dark matter annihilation flux

Emmanuel Moulin

Spectral signatures

Continuum emission

("Secondary photons") \rightarrow from fragmentation of quarks/massive gauge bosons (via π_0 decay)

Virtual Internal Bremsstrahlung (VIB)

→ radiative correction to processes with charged final states → generically suppressed by $O(\alpha)$

Gamma-ray lines

 \rightarrow from two-body annihilation into photons

 \rightarrow forbidden at tree-level, generically suppressed by O(α^2)

Dark matter signals : additional contributions

 \rightarrow expected to be important for winos

Huge enhancement, TeV DM masses required

Dark matter signals : additional contributions

- o Particle physics enhancements
- Sommerfeld effect (1931)
- Internal bremsstrahlung when charged particles are present (W+W-, ff, ...)

Dark matter signals : additional contributions

- o Particle physics enhancements
- Sommerfeld effect (1931)
- Internal bremsstrahlung Bergström et al. PRL 95, 241301 (2005)
- o Astrophysics enhancements
 - Substructures (subhalos) in the host halo as predicted by N-body simulations of CDM
 - Inverse Compton scattering on CMB

inverse Compton scattering

Dark matter halo profile

• From
$$\Lambda$$
 CDM
N-body
simulations
$$\begin{cases}
\rho_{\rm NFW}(r) = \frac{\rho_s}{r/r_s(1+r/r_s)} \\
\rho_{\rm Einasto}(r) = \rho_s e^{-\frac{2}{\alpha} \left((r/a)^{\alpha} - 1 \right)}
\end{cases}$$
• From rotation
curves
$$\int \rho_{\rm Buckert}(r) = \frac{\rho_c}{(1+r/r_c)(1+(r/r_c)^2)}$$

 $\rho_{\rm CIS}(r) = \frac{\rho_c}{1 + (r/r_c)^2}$

- ✓ Via Lactea predicts a cuspier profile: r^{-1.2}
- ✓ Aquarius predicts a shallower than r⁻¹ in the innermost profile

Dark matter halo profile

• FromACDM
N-body
simulations
$$\left\{ \begin{array}{l} \rho_{\rm NFW}(r) = \frac{\rho_s}{r/r_s(1+r/r_s)} \\ \rho_{\rm Einasto}(r) = \rho_s e^{-\frac{2}{\alpha} \left((r/a)^{\alpha} - 1 \right)} \end{array} \right.$$

• From rotation
curves
$$\int_{-\infty}^{\rho_{\text{Buckert}}(r)} \frac{\rho_{\text{Buckert}}(r)}{(1+r/r_c)(1+(r/r_c)^2)} \int_{\rho_{\text{CIS}}(r)}^{\rho_{\text{Buckert}}(r)} \frac{\rho_c}{1+(r/r_c)^2} \int_{-\infty}^{\infty} \frac{\rho_c}{(1+r/r_c)^2}$$

- ✓ Via Lactea predicts a cuspier profile: r^{-1.2}
- ✓ Aquarius predicts a shallower than r⁻¹ in the innermost profile

- o Situation a bit unclear: effects of baryons?
- The DM density at small scale is poorly known
 → need to take into account both class of models

High Energy Stereoscopic System (H.E.S.S.) Phase 1 : 2003 - 2012

Array of four Imaging Atmospheric Cherenkov Telescopes located in Namibia (1800 m a.s.l.)

- o 4 telescopes: Ø 12 m,107 m² each
- o Stereoscopic reconstruction
- o 960 PMTs/camera
- \circ Field of view : 5°
- Observations : ~1000h/year
- Source position : ~ 10''

- ✓ Angular resolution < $0.1^{\circ}/\gamma$
- ✓ Energy threshold (zenith) :~100 GeV
- ✓ Energy resolution ~ 15%
- ✓ Sensitivity (5 σ): 1% Crab in 25 h

Emmanuel Moulin

High Energy Stereoscopic System (H.E.S.S.) Phase 2 : first light on July 2012

Array of FIVE Imaging Atmospheric Cherenkov Telescopes Located in Namibia (1800 m a.s.l.)

- o 5th telescope:
 - Ø 28 m, 600 m²
 - 2048 PMTs
- \circ Field of view : 3.5°

→ Energy threshold (zenith) :~ 30 GeV
→ Sensitivity x 2 in the TeV range

Dark matter targets

Galaxy satellites of the Milky Way

- Many of them within the 100 kpc from GC
- DM-dominated environment
- o Potentially low astrophysical background

Galactic Centre
Proximity (~8kpc)
Possibly high DM
concentration :
DM profile : core? cusp?
High astrophysical
bck / source confusion

Aquarius, Springel et al. Nature 2008

DM density profile matters ... astrophysical background matters as well Substructures in the Galactic halo o Lower signal o Cleaner signal (once found)

Galactic halo

- o Large statistics
 - Galactic diffuse
 background

Also galaxy clusters

Emmanuel Moulin

Dwarf galaxies of the Milky Way

Name		Obs. Time (hours)	Canes Venatici II Canes Venatici -OLeo I Bootes / Leo Segue 1
Sagittarius	24	11 (90)	Ursa Major Co Hercules!
Canis Major	8	10	Observed by Fermi
Sculptor	79	11.8	Observed by IACTs
Carina	101	14.8	Segue 2 Segue 2 Seg
Coma Be.	44	8.6	Belokurov, V., et al. 2007, ApJ, 654, 897
Fornax	140	6.1	

Dwarf galaxies of the Milky Way

Name	Distance (kpc)		
Sagittarius	24	11 (90)	H.E.S.S. Coll. Astropart. Phys. 29, 55 (2007)
Canis Major	8	10	H.E.S.S. Coll. Astrophys. J. 691, 175 (2009)
Sculptor	79	11.8	HESS Coll Astronart Phys 34 (2011) 608
Carina	101	14.8	
Coma Be.	44	8.6	
Fornax	140	6.1	

New article about to be published with stacking analysis including 90 hours of observation towards Sagittarius dwarf

The example of Sculptor: halo dependence

- Halo modelling : NFW and core profiles
- → models fitted from luminosity profile and velocity dispersion data (Battaglia 's thesis, Battaglia et al. ApJ 681, 13 (2008))

- Various DM halo profile studied
- → helps to estimate the uncertainties due to the halo modeling
- o Complementary limits to Fermi

The example of Sculptor: additional contributions

- Resonant exclusion limits
 with Sommerfeld effect
- More than one order of magnitude effect outside resonances above 1 TeV
- Internal Bremmstrahlung
 only significant in the low
 mass region

Galaxy clusters

Largest gravitationally bound objects $10^{14} - 10^{15} M_{sun}$

- Most recent structures to form
- N-body simulations predict unmerged substructures in the DM host halo

 \rightarrow may potentially boost the expected gamma-ray flux

- dependence on the assumed smooth halo profile
- dependence on the limiting substructure mass

Galaxy clusters

Largest gravitationally bound objects $10^{14} - 10^{15} M_{sun}$

- Most recent structures to form
- N-body simulations predict unmerged substructures in the DM host halo \rightarrow may potentially boost the expected gamma-ray flux
- Further distances w.r.t. dwarf galaxies but higher annihilation luminosities

Galaxy clusters: the case for Fornax

Emmanuel Moulin

The Fornax galaxy cluster

Several tracers used for The halo modeling

- Hydrogen gas (X-rays)
- Satellite galaxies
- Globular clusters

Stars

Two hypotheses of halo profile

- Cuspy: NFW profile
- Cored: Burkert profile

Choice of the tracer samples induces uncertainties up to one order of magnitude
 Complementary to Formi limits

Complementary to Fermi limits

The Fornax galaxy cluster

- Extended analysis allows
- \rightarrow significant improvement on the limits
- Thermally produced DM can be probed for some specific masses
- Competitive limits to dwarf galaxies limits

Galactic halo

 \rightarrow Avoid sky regions with strong astrophysical gamma ray signals

 \rightarrow Focus at the same time on regions with an expectedly large DM density

Search region : 45-150 pc around GC, Galactic plane excluded

Emmanuel Moulin

Galactic halo: continuum signal

Galactic halo: line-like signal

Search for line signatures in the Galactic halo and extragalactic field

 \rightarrow Gaussian fit on top of background

Galactic halo: line-like signal

Search for line signatures in the Galactic halo and extragalactic field

 \rightarrow Gaussian fit on top of background

Best limits so far for DM masses > 500 GeV

Emmanuel Moulin

Emmanuel Moulin

 Fermi-LAT will collect more data optimized for viewing the GC

- o Fermi-LAT will collect more data optimized for viewing the GC → Fermi Symp.2014
- H.E.S.S. 2 has a golden opportunity to either conclusively make a statement or rule out the effect: first results by end of the year, stay tuned !

28 m diameter telescope

Strongest gamma-ray constraints to date

Nearby (~100kpc) dwarf galaxies

Inner Galactic halo

33

Gamma-ray status and outlook

• The most stringent constraints are obtained from dwarf galaxies (Fermi) and the inner region of the Galactic Center (H.E.S.S.)

- A factor 10 better in sensitivity than current instruments
- Wider energy range coverage, wider field of view, substantially better angular and energy resolution

Gamma-ray status and outlook

• The most stringent constraints are obtained from dwarf galaxies (Fermi) and the inner region of the Galactic Center (H.E.S.S.)

Summary

- O Gamma-rays are the golden channel for indirect detection of dark matter
 → most stringent constraints to date from the dwarf galaxies (Fermi) and Galactic halo (HESS)
- H.E.S.S.-1 dark matter program :
 - Dwarf galaxies: Sagittarius (2008), Canis Major (2009), Sculptor (2010), Carina (2010), Fornax, Coma Berenices
 - DM substructures: IMBH (2008), Galactic subhalos (2012)
 - Galaxy clusters: Fornax (2012)
 - Globular clusters: M 15 (2012), NGC 6388 (2012)
 - Galactic halo : continuum (2011), line (2013) signals
- Dwarf galaxies / Galaxy clusters: among the best and robust constraints so far with IACTs
- Galactic Centre region: best constraints so far for DM masses above 500 GeV

Outlook

- H.E.S.S. 2 prospects in Astroparticle Physics:
 - Galactic halo
 - Line search
 - (Cosmic ray electrons: anisotropy studies)
 - (Opacity of the universe and axion-like particle searches)
- The 130 GeV gamma-ray line : excess still exists but significance is decreasing with time
 - \rightarrow Fermi with optimized GC observations and H.E.S.S. 2 by the end of the year
- The Galactic center: 90h taken with H.E.S.S. 2 in 2013, observations continue in Spring/Summer 2014

High energy neutrinos: WIMPs from the Sun

- o WIMPs gravitationanly captured by the Sun
- o Accumulate in the core and annihilate
- Hydrogen-dominated target
 - \rightarrow Excellent sensitivity to SD cross section

High energy neutrinos: other targets

- Hard to compete with IACTs
- Maybe at O(10) TeV DM masses

Status: ANTARES and Icecube running well

Outlook: go further down in energy

→ PINGU (IceCube) energy threshold at about 10 GeV

The case for Sagittarius dwarf

- Discovered by Ibata, Gilmore, Irwin (1994)
- o Distance 24 kpc
- Closest dwarf for the Southern hemisphere observatories
- Has been claimed to be among the best target

Clear tidal streams

 \rightarrow Difficult halo modeling

Dark matter halo modelling:

- o NFW profile :
 - Thightly bound dark matter cusp is more resilient to tidal disruption
 - The kinematics of stars that locate the central regions of the dwarf are not influenced by external tidal field
- o Cored isothermal profile : J. Peñarrubia, et al. (2010). MNRAS, 408, L26
 - Fitting the visible streams to simulations allows to recover the actual DM halo profile

The case for Sagittarius dwarf : updated limits

- Update of former HESS limits (2008) with more realistic halos models
- Old limits (2008) overestimate the DM gamma-ray flux, due to lack of accurate modelling of SgrDw at that time
- Projected upper limits and sensitivity for 50h with H.E.S.S.

Emmanuel Moulin

Are globular clusters better targets than dwarfs?

- o HESS observations: 15 hr
 - ✓ halo modelling:
 - initial NFW profile
 - adiabatic contraction by baryons
 - heating of DM by stars in the core
 - → depletion of DM _____ in a few relation times

Emmanuel Moulin

Are globular clusters better targets than dwarfs?

- Whipple, single dish ø 10m, 1.2 hr
 - \rightarrow limits quite constraining on M15... optimistic halo from DM adiabatic contraction
- o HESS observations: 15 hr
 - ✓ halo modelling
 - ✓ exclusion limits at the level of 10⁻²³ cm³s⁻¹

<u>Caveat:</u> limits assume GC to be formed in DM minihalos \rightarrow no consensus on the GC formation scenario yet

