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⌦B
' 5 Just coincidence? Or: signal of a link?

Possibly a common production mechanism:

Baryogenesis: ‘Darko’genesis:

⌘B =
nB � nB̄

n�
= 6 · 10�10 ⌘DM =

nDM � nDM

n�
= ⌘B
?

BBN, CMB...

A variety of specific models/ideas:

cfr J. March-Russell

transferring or co-genesis

DM stores the anti-B number
via leptogenesis

connection to neutrino masses
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Figure 1: Illustrative plots of the solutions of
the evolution equations in the case of annihila-
tions only (top left panel, discussed in Sec. 3.1),
annihilations with oscillations (top right panel,
Sec. 3.3) and in the case which includes elastic
scatterings (bottom left panel, Sec. 3.4). The
blue (magenta) line represents the comoving
population of n+ (n�), the black line their sum.
The arrow points to the value of the primordial
asymmetry, the green band is the correct relic
abundance (± 1⇥).

neglected. As anticipated, therefore, in this typical aDM configuration the most relevant
parameter is the initial asymmetry �B: it sets the asymptotic number density 4 and thus,
in order to obtain the correct ⇤DM, forces mDM to be O(5 GeV) (4.5 GeV in the plot).

For illustration one can also define the sum and the di⌅erence of the comoving number
densities

⇥(x) = Y +(x) + Y �(x), �(x) = Y +(x)� Y �(x), (15)

In terms of these quantities, the Boltzmann equations read
⇧
�⌥

�⌃

⇥ ⇥(x) = �2
⇤⇥v⌅ s(x)

x H(x)

⇤
1

4

⇥
⇥2(x)��2(x)

�
� Y 2

eq(x)

⌅
,

�⇥(x) = 0,

(16)

which clearly shows that the di⌅erence � between the populations remains constant and
equal to the initial condition �0; on the other hand, the total population of + and � particles
decreases, due to annihilations. At late times, Yeq is negligible and ⇥ is attracted towards
� = �0.

3.2 Oscillations only

We consider next the restricted case in which there are only DM ⇥ DM oscillations in the
system, without annihilations nor scatterings with the plasma. Eq. (11) reduces in this case

4Note that we are assuming that any process changing the DM-number (such as e.g. weak sphalerons,
in models in which the DM-number is related to the ordinary baryon number) is already switched o� by
the time of freeze-out, so that we can consider �0 as an actual constant in the subsequent evolution. This
could be invalid for very large DM masses (� 10 TeV), for which freeze-out happens early.
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like rodents in the paleocene

Consider a particle χ:
- subject to 
  with a very small rate
- ‘heavy’ (e.g. 100 GeV)
- ‘stable’
- in an expanding Universe
- zero initial abundance

ff̄ ! �, ��̄

increasing
production σ

The final abundance is determined by σ (or rather λ).

Hall, Jedamzik, March-Russell, West 2009
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Minimalistic approach
On top of the SM, add only one extra multiplet X

and systematically search for the ideal DM candidate...

=


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
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X2

.
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.







L = LSM + X̄ (iD/ + M)X if       is a fermionX

if       is a scalarXL = LSM + |DµX|2 − M
2|X |2
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
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L = LSM + X̄ (iD/ + M)X if       is a fermion

if       is a scalar

X

X

gauge interactions the only parameter, 
and will be fixed by         .ΩDM

(other terms in the 
scalar potential)

(one loop mass splitting)

L = LSM + |DµX|2 − M
2|X |2

X

X

W±, Z, γ

[g2, g1, Y ]
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weakly int., massive, neutral, stable
The ideal DM candidate is
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
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Non-perturbative corrections
(and other smaller corrections)
induce modifications: 

(more later)

〈σannv〉 ! R · 〈σannv〉 + 〈σannv〉p−wave

with R ∼ O(few) → O(102)

w/o Non-Pert corr

full computation
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A fermionic                quintuplet with            ,
provides a DM candidate with                       ,

which is fully successful:
- neutral

- automatically  stable
and

not yet  discovered by DM searches.     

Recap:
SU(2)L Y = 0

A scalar               eptaplet with               also does.SU(2)L Y = 0

(Other candidates can be cured via non-minimalities.)

like proton 
stability in SM!

M = 10 TeV



Asymmetric
Dark Matter

Nussinov 1985
D.B.Kaplan 1992

Farrar, Zaharijas 2005
Zurek  2009

+ many many >2009
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Figure 1: Illustrative plots of the solutions of
the evolution equations in the case of annihila-
tions only (top left panel, discussed in Sec. 3.1),
annihilations with oscillations (top right panel,
Sec. 3.3) and in the case which includes elastic
scatterings (bottom left panel, Sec. 3.4). The
blue (magenta) line represents the comoving
population of n+ (n�), the black line their sum.
The arrow points to the value of the primordial
asymmetry, the green band is the correct relic
abundance (± 1�).

with the same initial conditions as for eq. (11) and where the oscillation rate is defined as

�osc(x) = �m tan

⇤
�m

H(x)

⌅
. (20)

These can also be written in terms of ⇤ and ⇥ as
⇧
⌥

⌃

⇤ ⇤(x) = 0,

⇥ ⇤(x) = �2
�osc(x)

x H(x)
⇥(x).

(21)

It is now ⇤ which is constant in time, since oscillations exchange particle with antiparticle
but conserve the total number of bodies, while ⇥(x) follows an oscillatory behaviour.

In the absence of interactions with the plasma, the probability that a DM particle
becomes a DM particle at time t is simply P+�

osc (t) = sin2 (�m t). Oscillations start when
H(x) � �m (i.e T �

⌃
�m MPl). Slightly more precisely, one can define xosc via the condition

�m x2
osc/H(mDM) ⇧ 2⇥, which gives

xosc ⇧
⇤

8⇥3

90
g⇥

⌅1/4 1⌃
MPl

mDM⌃
�m

⌅ 2 · 10�4
� mDM

10 GeV

⇥ ⇤
eV

�m

⌅1/2

. (22)

This equation is plotted in Fig. 2, showing that a large range of possibilities is open,
depending on the values of the DM mass and of the �m parameter. We will later see how
this relation is modified by the presence of annihilations and elastic scatterings.

8

A completely different relic
from the Early Universe

��̄ � ff̄ � ? 9 . . .��̄! ff̄

⌦X '
mX s

⇢crit
⌘0

The relic abundance is determined by       and        .

Provided:
- an initial asymmetry
- strong enough annihilations

⌘0 mX
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‘Secluded’
Dark Matter

Pospelov, Ritz, Voloshin 2007
Arkani-Hamed, Finkbeiner, Slatyer, Weiner 2008

+ many many many >2009
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The “Theory of DM”
Arkani-Hamed, Weiner, Finkbeiner et al. 0810.0713

0811.3641

Basic ingredients:
Dark Matter particle, decoupled from SM, mass             
new gauge boson (“Dark photon”), 

couples only to DM, with typical gauge strength, 
- mediates Sommerfeld enhancement of         annihilation:

        fulfilled

- decays only into            or              
for kinematical limit

�
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e+e� µ+µ�

M � 700+ GeV

m� � few GeV

�M/mV � 1
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e+

e�
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Extras:
�       is a multiplet of states and        is non-abelian gauge boson:

    splitting                                (via loops of non-abelian bosons)
- inelastic scattering explains DAMA
- eXcited state decay                     explains INTEGRAL

�
�M � 200 KeV

��� ���

�� e+e�



Variations
(selected)

Axion Portal:       is pseudoscalar axion-like
Nomura, Thaler 0810.5397

�

pioneering: Secluded DM, U(1) Stückelberg extension of SM
Pospelov, Ritz et al 0711.4866 P.Nath et al 0810.5762

singlet-extended UED:      is KK RNnu,      is an extra bulk singlet
Bai, Han 0811.0387

� �

DM carrying lepton number:      charged under                    ,      gauge bosonU(1)Lµ�L⇥
� �

Cirelli, Kadastik, Raidal, Strumia 0809.2409 Fox, Poppitz 0811.0399 (m� � tens GeV)

split UED:     annihilates only to leptons because quarks are on another brane�
Park, Shu 0901.0720

New Heavy Lepton:     annihilates into       that carries lepton number and 
decays weakly

� �

Phalen, Pierce, Weiner 0901.3165

(� TeV) (� 100s GeV)

...... [jump to conclusions]
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‘Conclusions’

Mostly data-driven, but not only

- PAMELA, FERMI, HESS
- DAMA, CoGeNT, CRESST
- DM simulations ?

I picked 3 recent ideas:
1. Minimal DM: the simplest, so-far-overlooked WIMP possibility?
2. Asymmetric DM: a paradigm of a ‘new’ production mechanism?
3. Secluded DM: the harbinger of a rich dark sector?

but the list of new interesting directions is bottomless.

‘New’ DM models (newborn of infant)
are growing and reaching maturity * It’s fair to say that, 

like any newborn, 
they build on the expertise 
of giants, 
i.e. ‘old’ SuSy DM.


