Le Modèle Standard II

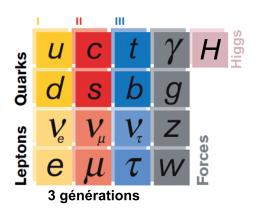
Sébastien Descotes-Genon

descotes@th.u-psud.fr

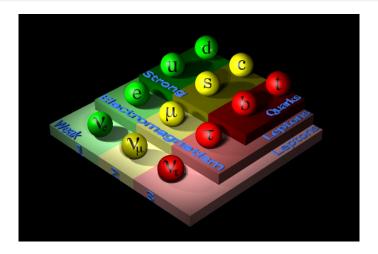
Laboratoire de Physique Théorique CNRS & Université Paris-Sud, 91405 Orsay, France

Science à l'école, CPPM, 19 juin 2014

Deux heures

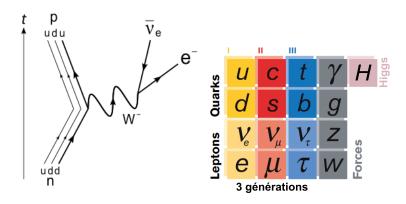

Première heure

- Notion de constituants élémentaires
- La matière dans le Modèle Standard
- Les interactions dans le Modèle Standard
- Le cas de l'interaction électromagnétique et de l'interaction forte

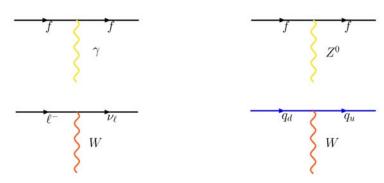

Deuxième heure

- Le cas de l'interaction faible
- Le boson de Higgs
- Les questions en suspens

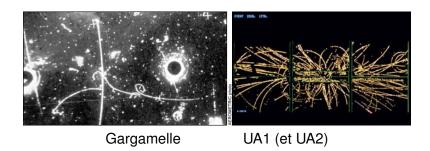
Le Modèle Standard


Des différences de sensibilités

- Faible : tout le monde
- Electromagnétique : tout le monde sauf les neutrinos
- Forte : seulement les quarks


L'interaction faible

Zoom sur l'interaction faible


- Portée très courte, pas d'état lié
- ullet Désintégration, en particulier désintégration eta
- ...via un boson W^{\pm} (virtuel) impliquant (u,d) et/ou (e,ν_e)
- ...ou leurs copies des autres familles
- ullet Certains bosons médiateurs (W^\pm) chargés électriquement

Quelques interactions des bosons faibles

- Photon inclus car bosons W^{\pm} chargés électriquement
- Des interactions chargées (W^{\pm}) faisant intervenir des quarks de types différents (changement de saveur)
- Des interactions neutres (photon, Z⁰) conservant la saveur
- Des interactions avec à la fois les quarks et les leptons (y compris les neutrinos !)

Des tests des bosons W et Z^0

Bosons W et Z intensivement étudiés au CERN

- 1973: Gargamelle observe $\bar{
 u}_{\mu} e^-
 ightarrow \bar{
 u}_{\mu} e^-$
- 1983: UA1 et UA2 découvrent les bosons W et Z⁰
- 1990-2000: le LEP étudie quantitativement leurs propriétés

Un drôle de mélange

Principe de superposition: si $|\psi_1\rangle$ et $|\psi_2\rangle$ solutions acceptables, solution plus générale $|\psi\rangle = c_1|\psi_1\rangle + c_2|\psi_2\rangle$, avec $|c_1|^2 + |c_2|^2 = 1$

Un drôle de mélange

Principe de superposition: si $|\psi_1\rangle$ et $|\psi_2\rangle$ solutions acceptables, solution plus générale $|\psi\rangle=c_1|\psi_1\rangle+c_2|\psi_2\rangle$, avec $|c_1|^2+|c_2|^2=1$

$$Z^0 \rightarrow u\bar{u}, Z^0 \rightarrow d\bar{d}$$
 $W^+ \rightarrow u\bar{d}$
 $W^+ \rightarrow u\bar{d}$

mais deux autres familles, qui ont les mêmes propriétés...

Un drôle de mélange

Principe de superposition: si $|\psi_1\rangle$ et $|\psi_2\rangle$ solutions acceptables, solution plus générale $|\psi\rangle=c_1|\psi_1\rangle+c_2|\psi_2\rangle$, avec $|c_1|^2+|c_2|^2=1$

$$Z^0
ightharpoonup u$$
 $Z^0
ightharpoonup u ar u, Z^0
ightharpoonup dar d$
 $W^+
ightharpoonup u ar d$

mais deux autres familles, qui ont les mêmes propriétés...

En toute généralité $Z^0 \to d'\bar{d}'$ et $W^+ \to u'\bar{d}'$, avec d' combinaison linéaire des représentants des 3 familles (d, s, b)

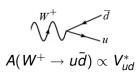
$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix}_{\text{interaction}} = V \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{\text{propagation}} \qquad V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

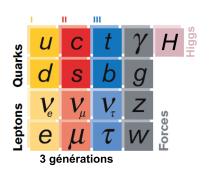
avec V matrice "de rotation" (unitaire)

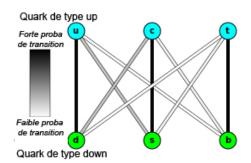
pour conserver la normalisation des états

L'asymétrie entre matière et antimatière

- Même rotation pour particule et antiparticule \Longrightarrow la redéfinition s'élimine pour $Z^0 \to u \bar{u}, d \bar{d}, c \bar{c}$ (idem pour γ et gluons)
- Mais pour W⁺ → ud, la matrice V est bien là! décrite par CKM, Cabibbo, Kobayashi, Maskawa


L'asymétrie entre matière et antimatière




- Même rotation pour particule et antiparticule $\implies \text{la redéfinition s'élimine pour } Z^0 \rightarrow u\bar{u}, d\bar{d}, c\bar{c}$ (idem pour γ et gluons)
- Mais pour W⁺ → ud̄, la matrice V est bien là! décrite par CKM, Cabibbo, Kobayashi, Maskawa
- V a une partie imaginaire, source d'asymétrie entre matière et antimatière (apparaît dans processus liés à l'interaction faible)

$$A(W^- o ar{u}d) \propto V_{ud},$$

Le jeu des trois familles

- Désintégration par interaction faible via W^{\pm}
- Très facile à l'intérieur d'une même famille
- Plus rare entre familles
- Très bien vérifié...mais pourquoi ces valeurs ?

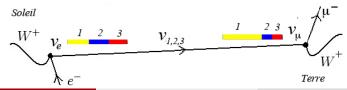
Les neutrinos se mélangent eux aussi

$$\begin{pmatrix} \nu_{\rm e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}_{\rm interaction} = U \begin{pmatrix} \nu_{\rm 1} \\ \nu_{\rm 2} \\ \nu_{\rm 3} \end{pmatrix}_{\rm propagation} \begin{array}{c} U \text{ matrice décrite par PMNS,} \\ \text{Pontecorvo, Maki,} \\ \text{Nakagawa, Sakata} \\ \end{pmatrix}$$

Les neutrinos se mélangent eux aussi

$$\begin{pmatrix} \nu_{\rm e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}_{\rm interaction} = U \begin{pmatrix} \nu_{\rm 1} \\ \nu_{\rm 2} \\ \nu_{\rm 3} \end{pmatrix}_{\rm propagation} \begin{array}{c} U \text{ matrice décrite par PMNS,} \\ \text{Pontecorvo, Maki,} \\ \text{Nakagawa, Sakata} \\ \end{pmatrix}$$

Idem donc pour $W^+ \rightarrow e^+ \nu_e$, sauf que

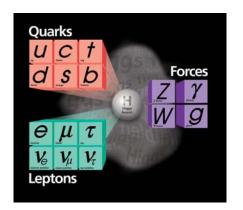

- presque tous les quarks sont lourds et se désintègrent rapidement
- les neutrinos sont très légers et ne se désintègrent pas

Les neutrinos se mélangent eux aussi

$$\begin{pmatrix} \nu_{\rm e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}_{\rm interaction} = U \begin{pmatrix} \nu_{\rm 1} \\ \nu_{\rm 2} \\ \nu_{\rm 3} \end{pmatrix}_{\rm propagation} \begin{array}{c} U \text{ matrice décrite par PMNS,} \\ \text{Pontecorvo, Maki,} \\ \text{Nakagawa, Sakata} \\ \end{pmatrix}$$

Idem donc pour $W^+ \rightarrow e^+ \nu_e$, sauf que

- presque tous les quarks sont lourds et se désintègrent rapidement
- les neutrinos sont très légers et ne se désintègrent pas
- ν_e combinaison de 3 états ν_1, ν_2, ν_3 , de masses différentes, se propageant à des vitesses légèrements différentes
- la composition de l'état change sur de longues distances ! $|\nu_e\rangle \rightarrow c_e(L)|\nu_e\rangle + c_u(L)|\nu_u\rangle + c_\tau(L)|\nu_\tau\rangle$ oscillation de neutrinos

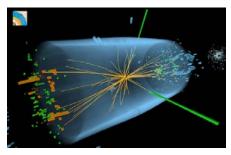


Le boson de Higgs

La dernière pièce du Modèle Standard

Vision actuelle de la physique des particules, très bien testée

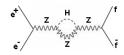
- depuis plus d'un siècle: électromagnétisme, électron, photon
- 1960-70: interaction forte, quarks
- 1990-2010: interaction faible, neutrinos


Un ingrédient du Modèle Standard encore à étudier

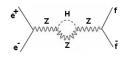
le boson de (Brout-Englert-)Higgs

- pour unifier forces électromagnétique et faible
- pour donner une masse aux particules

CERN, 4 juillet 2012

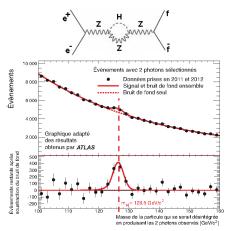


Une nouvelle particule a été observée... et plus on l'étudie, plus elle ressemble au boson de Higgs!


 Brout, Englert, Higgs (1964): Une théorie cohérente de l'interaction faible si on ajoute un boson supplémentaire

 Brout, Englert, Higgs (1964): Une théorie cohérente de l'interaction faible si on ajoute un boson supplémentaire

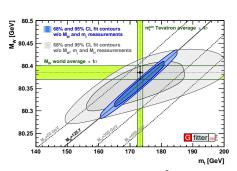
- LEP (1990-2000)
 - Produit sans succès: $M_H > 114.4 \text{ GeV/c}^2 (95\% \text{ CL})$
 - $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ mesuré avec sensibilité au boson de Higgs via des effets quantiques $M_H = 129^{+74}_{-49}$ GeV/c²


 Brout, Englert, Higgs (1964): Une théorie cohérente de l'interaction faible si on ajoute un boson supplémentaire

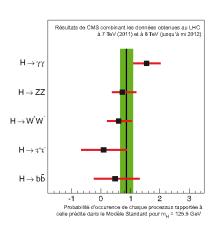
- LEP (1990-2000)
 - Produit sans succès: $M_H > 114.4 \text{ GeV/c}^2 (95\% \text{ CL})$
 - $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ mesuré avec sensibilité au boson de Higgs via des effets quantiques $M_H = 129^{+74}_{-49}$ GeV/c²

Tevatron (2011): Assez de statistique pour exclure [100-103] et [147-195] GeV/c²

 Brout, Englert, Higgs (1964): Une théorie cohérente de l'interaction faible si on ajoute un boson supplémentaire



- LEP (1990-2000)
 - Produit sans succès: $M_H > 114.4 \text{ GeV/c}^2$ (95% CL)
 - $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ mesuré avec sensibilité au boson de Higgs via des effets quantiques $M_H = 129^{+74}_{-49}$ GeV/c²


Tevatron (2011): Assez de statistique pour exclure [100-103] et [147-195] GeV/c²

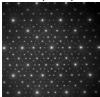
• LHC (2012): Higgs produit et observé $M_H \simeq 125 \text{ GeV/c}^2$

Un Higgs très Modèle Standard

 $M_H \simeq 125 \, {\rm GeV/c^2}$ en bon accord avec mesures du LEP sur W et Z

Couplages du Higgs aux autres particules en bon accord avec Modèle Standard

De la masse oui, mais pas de toute la masse


Boson de Higgs responsable de la masse des particules

De la masse oui, mais pas de toute la masse

Boson de Higgs responsable de la masse des particules élémentaires

Élémentaire

électron, muon, tau, neutrinos...

Masse = Higgs (100%)

Composite

3 quarks (proton, neutron...) ou quark+antiquark (pion, kaon...)

Masse des quarks (Higgs, \sim 1%) + E de "liaison" (inter. forte, \sim 99%)

De la masse oui, mais pas de toute la masse

Boson de Higgs responsable de la masse des particules élémentaires

Élémentaire électron, muon, tau, neutrinos...

Masse = Higgs (100%)

Composite

3 quarks (proton, neutron...) ou quark+antiquark (pion, kaon...)

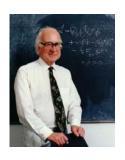
Masse des quarks (Higgs, \sim 1%) + E de "liaison" (inter. forte, \sim 99%)

Energie de liaison : $M_{\text{composite}} = \sum m_{\text{constituants}} - E_{\text{liaison}}$

- Atome: $M_H = m_p + m_e 13.6 \text{ eV/c}^2$ (1/100 000 000 du tout)
- Noyau: $M_D = m_p + m_n 2.2 \cdot 10^6 \text{ eV/c}^2$ (1/1000 du tout)
- Quark: $M_p = 2m_u + m_d + 0.93 \cdot 10^9 \text{ eV/c}^2$ (99% du tout)

Le mécanisme de Higgs

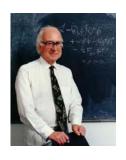
Propagation de la lumière dans un milieu


- Indice de réfraction n = $c_{\text{vide}}/c_{\text{milieu}}$
- Vitesse de la lumière différente de celle prédite par la relativité c_{vide}
- … alors que les équations (Maxwell) ont une formulation relativiste!?
- Solution du paradoxe: l'interaction de la lumière avec son environnement!

Le mécanisme de Higgs

Propagation de la lumière dans un milieu

- Indice de réfraction n = $c_{\text{vide}}/c_{\text{milieu}}$
- Vitesse de la lumière différente de celle prédite par la relativité c_{vide}
- ... alors que les équations (Maxwell) ont une formulation relativiste!?
- Solution du paradoxe: l'interaction de la lumière avec son environnement!

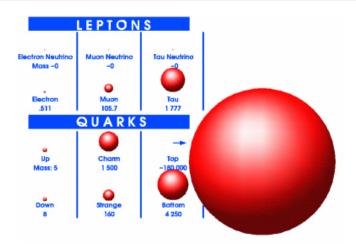

Problème similaire dans le Modèle Standard

- Eqs. (origine géométrique): m = 0 pour toutes les particules
- Milieu (champ de Higgs) qui interagit et les "freine" plus ou moins
- ... ce qui les rend (pour nous) plus ou moins massives

Le mécanisme de Higgs

Propagation de la lumière dans un milieu

- Indice de réfraction n = $c_{\text{vide}}/c_{\text{milieu}}$
- Vitesse de la lumière différente de celle prédite par la relativité c_{vide}
- … alors que les équations (Maxwell) ont une formulation relativiste!?
- Solution du paradoxe: l'interaction de la lumière avec son environnement!

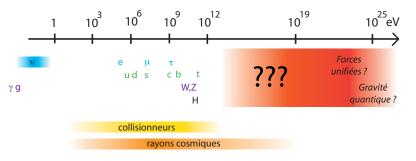


Problème similaire dans le Modèle Standard

- Eqs. (origine géométrique): m = 0 pour toutes les particules
- Milieu (champ de Higgs) qui interagit et les "freine" plus ou moins
- ...ce qui les rend (pour nous) plus ou moins massives

Témoin de ce Mécanisme de Higgs dans le Modèle Standard : une particule, le boson de Higgs (excitation du champ de Higgs)

Des masses très hierarchiques



- Masses/interaction avec champ de Higgs a priori arbitraires
- Prennent des valeurs très différentes : pourquoi ?

Quelques questions en suspens

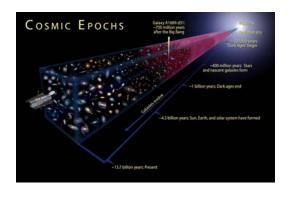
Au-delà du Modèle Standard

- Masse et propriétés du boson de Higgs en parfait accord avec les attentes basées sur les expériences antérieures
- Chaque montée en énergie a donné lieu à des découvertes: sous-structure, nouvelle interaction, nouvelles particules

Modèle Standard très efficace, mais pas parfaitement satisfsaisant

- Nombreux paramètres (19 !) fixés à des valeurs arbitraires
- Pourquoi trois familles, avec la même structure d'interactions ?
- Pourquoi trois interactions très différentes ? Et la gravitation ?

De nouveaux alliés

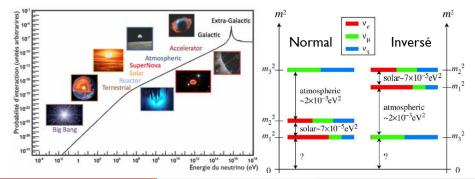

Dans les accélérateurs, produire de nouvelles particules

- production directe particule-antiparticule ($E = 2m_X c^2$) [haute E]
- processus avec ces particules comme intermédiaires [basse E]

De nouveaux alliés

Dans les accélérateurs, produire de nouvelles particules

- production directe particule-antiparticule ($E = 2m_X c^2$) [haute E]
- processus avec ces particules comme intermédiaires [basse E]


D'autres voies vers les très hautes énergies ?

- phénomènes astrophysiques (rayons cosmiques)
- histoire de l'univers (rayonnement de fond cosmologique)
- ⇒Observation et non expérience (contrôle des conditions initiales)

Neutrinos

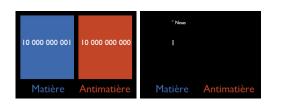
Particules les moins bien connues du Modèle Standard (avec le Higgs)

- Neutrinos venant de supernovae, Soleil, rayons cosmiques entrant dans l'atmosphère, réacteurs nucléaires, accélérateurs
- Oscillation de neutrinos avec différents L: différences de masse très faibles, paramètres de mélange
- Echelle de masse ? Propre antiparticule ? Plus de 3 neutrinos ?

L'asymétrie matière-antimatière

Collisionneurs

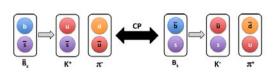
- Comparer probabilités désintégration particule et antiparticule
- Asymétries en accord avec matrice Cabibbo-Kobayashi-Maskawa



L'asymétrie matière-antimatière

Collisionneurs

- Comparer probabilités désintégration particule et antiparticule
- Asymétries en accord avec matrice Cabibbo-Kobayashi-Maskawa

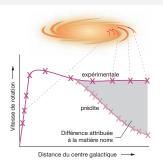

Cosmologie

- Big bang: E → particule + antiparticule
- Disparition de l'un au détriment de l'autre
- Asymétrie beaucoup trop large pour CKM!

L'asymétrie matière-antimatière

Collisionneurs

- Comparer probabilités désintégration particule et antiparticule
- Asymétries en accord avec matrice Cabibbo-Kobayashi-Maskawa

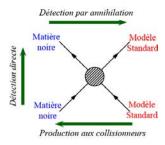


Cosmologie

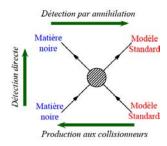
- Big bang: E → particule + antiparticule
- Disparition de l'un au détriment de l'autre
- Asymétrie beaucoup trop large pour CKM!

Nouveaux mécanismes d'asymétrie à des énergies plus élevées ?

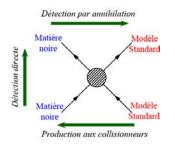
Matière noire et nouvelle physique

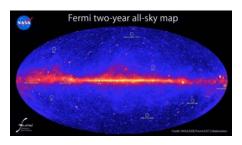


En se basant sur les lois de la gravitation, pas assez de matière visible

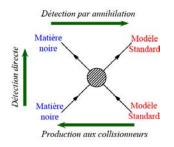

- Pour expliquer la dynamique des grandes structures (galaxies...)
- Pour décrire l'évolution de l'Univers (ray. de fond cosmologique)

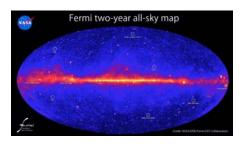
Matière "noire"


- lourde, stable, neutre, interagissant peu avec son environnement, hormis par interaction gravitationnelle (halos ? filaments ?)
- particule nouvelle χ , hors du Modèle Standard ?

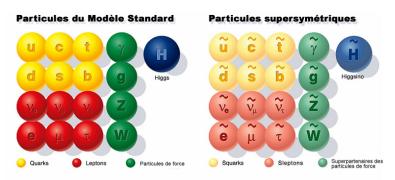


• La produire en accélérateur (si assez "légère")



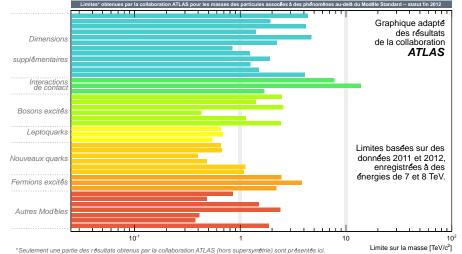

- La produire en accélérateur (si assez "légère")
- La détecter lors de son passage sur Terre \implies interaction avec noyau $\chi + X \rightarrow \chi + X$ (recul du noyau)

- La produire en accélérateur (si assez "légère")
- La détecter lors de son passage sur Terre
 - \Longrightarrow interaction avec noyau $\chi + X \rightarrow \chi + X$ (recul du noyau)
- Voir son annihilation en observant le ciel
 - \Longrightarrow rayons gamma monochromatiques ($E_{\gamma}=M_{\chi}c^2$)
 - ⇒excès de rayons cosmiques de haute énergie



- La produire en accélérateur (si assez "légère")
- La détecter lors de son passage sur Terre
 - \Longrightarrow interaction avec noyau $\chi + X \rightarrow \chi + X$ (recul du noyau)
- Voir son annihilation en observant le ciel
 - \Longrightarrow rayons gamma monochromatiques ($E_{\gamma}=M_{\chi}c^2$)
 - ⇒excès de rayons cosmiques de haute énergie
- Détecter sa présence par observations astronomiques
 - ⇒déformation d'images par lentilles gravitationnelles

Au-delà du Modèle Standard


- De nouvelles symétries (limiter le nombre de paramètres ?),
- De nouvelles interactions (cadre plus cohérent ?),
- De nouvelles dimensions (accomoder la gravitation ?)...

- Ne pas être en désaccord avec les observations antérieures
- Avoir des conséquences observables...


Ne rien voir, c'est déjà apprendre (1)

- Produire des paires de nouvelles particules-antiparticules
- Collisions au LHC 8 → 14 TeV de nouvelles particules ?



Ne rien voir, c'est déjà apprendre (2)

- Sensibilité quantique à des particules virtuelles lourdes
- Phénomènes rares plus sensibles à de nouvelles particules
- Plus de statistique avec le prochain run des déviations ?

En conclusion

Une partie des réponses se trouvera certainement au CERN, pour les expérimentateurs comme pour les théoriciens !

Des questions?

