Double Chooz (latest results)

seminar @ CPPM (Marseille) June 2014

Anatael Cabrera

CNRS / IN2P3 @ APC (Paris)

neutrino oscillations...

(very fast reminder)

neutrino oscillations: a cartoon

Let's take ν_{μ} (a popular example) to start with...

disappearance appearance

all observations (many!) follow well one model: 3v oscillation

"mixing": a common phenomenon...

4

a (CNRS-IN2P3 & APC)

ingredients for neutrino oscillations...

5

Anatael Cabrera (CNRS-IN2P3 & APC)

4000

Lisi et al opinion (Jan. 2014)

No ranges for single parameters (all data included):

TABLE I: Results of the global 3ν oscillation analysis, in terms of best-fit values and allowed 1, 2 and 3σ ranges for the 3ν mass-mixing parameters. See also Fig. 3 for a graphical representation of the results. We remind that Δm^2 is defined herein as $m_3^2 - (m_1^2 + m_2^2)/2$, with $+\Delta m^2$ for NH and $-\Delta m^2$ for IH. The CP violating phase is taken in the (cyclic) interval $\delta/\pi \in [0, 2]$. The overall χ^2 difference between IH and NH is insignificant ($\Delta \chi^2_{1-N} = +0.3$).

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5}~{\rm eV^2}$ (NH or IH)	7.54	7.32 - 7.80	7.15-8.00	6.99 - 8.18
$\sin^2 \theta_{12} / 10^{-1}$ (NH or IH)	3.08	2.91 - 3.25	2.75-3.42	2.59 - 3.59
$\Delta m^2/10^{-3} \text{ eV}^2 \text{ (NH)}$	2.44	2.38 - 2.52	2.30-2.59	2.22 - 2.66
$\Delta m^2 / 10^{-3} \text{ eV}^2 \text{ (IH)}$	2.40	2.33 - 2.47	2.25 - 2.54	2.17 - 2.61
$\sin^2 \theta_{13} / 10^{-2}$ (NH)	2.34	2.16 - 2.56	1.97-2.76	1.77 - 2.97
$\sin^2 \theta_{13} / 10^{-2}$ (IH)	2.39	2.18 - 2.60	1.98-2.80	1.78 - 3.00
$\sin^2 \theta_{23} / 10^{-1}$ (NH)	4.25	3.98 - 4.54	3.76-5.06	3.57 - 6.41
$\sin^2 \theta_{23} / 10^{-1}$ (IH)	4.37	$4.08-4.96 \oplus 5.31-6.10$	3.84-6.37	3.63 - 6.59
δ/π (NH)	1.39	1.12 - 1.72	$0.00 - 0.11 \oplus 0.88 - 2.00$	
δ/π (IH)	1.35	0.96 - 1.59	$0.00 - 0.04 \oplus 0.65 - 2.00$	

Fractional uncertainties (defined as 1/6 of 3σ ranges):

δm²	2.6 %	\rightarrow	KamLAND
∆m²	3.0 %	\rightarrow	MINOS/T2K and Reactor (@Nu2014)
$sin^2 \theta_{12}$	5.4 %	\rightarrow	Solar
$\sin^2\theta_{13}$	8.5 %	\rightarrow	Reactor
$\sin^2\theta_{23}$	~11 %	\rightarrow	SuperKamiokande + T2K (@Nu2014)

non-accelerator experiments drive current knowledge...

the Double Chooz collaboration[®]

the experiment's rationale...

Chooz Reactors Power: 8.5GWth ⇒~10²¹V/s (N4s: very powerful)

experimental setup.

Near <L>=408m ~270IBD/day ~120mwe

Target: 8.2t

Oct.2014

0

Far <L>=1056m ~40IBD/day ~300mwe Target: 8.2t April 2011

IBD interaction (inverse- β decay)...

•high & well known σ^{IBD} [$\tau_{neutron} = (881.5 \pm 1.5)$ s]

•IBD manifests via trigger-coincidence

Ist trigger → e+(prompt) [ionisation ⊕ annihilation]

2nd trigger→n-Gd capture (delay @ ~8MeV)

• Energy(v) ~ Energy(e+) + 0.8 MeV

• major rejection of radioactivity background...

time/space coincidence

•delay @ 8MeV (radioactivity dominates ≤3MeV)

why IBD ⊕ Gd?
 •small & shallow (high S/BG)
 •no need for ultra-purity
 → inexpensive ‰ precision!!

MINOS' Δm_{32}^2 input (convert $\rightarrow \Delta m_{31}^2$).

arXiv:1403.4667

 $\Delta m_{32}^2 = [2.28, 2.46] \times 10^3 eV^2$ (@68LC NH) $\Delta m_{32}^2 = [2.32, 2.53] \times 10^3 eV^2$ (@68LC IH)

the world of $\theta_{13...}$

θ_{13} -reactor measurements...

reactor precision is unsurpassable \rightarrow setting θ_{13} for several decades to go!

(also measurement by T2K, MINOS, etc)

Lisi et al opinion (Jan. 2014)

15

SK atm: We continue to find an overall preference of atmospheric data for the first octant – which currently wins over other data.

14

our detectors...

the DC detectors...

• far detector (FD)...

17

- data taking since spring 2011
- 3 data-releases: DC-I (Nov.2011), DC-II (June 2012), **DC-III (now) (!!!)**
- DC "single-detector" phase → virtually finished (systematics eclipse)
- near detector (ND)...
 - building→ summer 2014
 - DC "multi-detector" phase → major systematics cancellation (appetiser later)
- our virtual near detector (MC) (man-power-wise most expensive detector)...
 - CRITICAL during single-detector phase → un-oscillated spectrum (reference)
 - ingredients...
 - σ^{IBD} cross-section normalisation (neutron lifetime)
 - σ^{IBD} shape (kinematics by Vogle & Beacom)
 - ILL data (β spectrum data) $\implies v$ flux [by Schreckenbach et al + Huber + Muller et al]
 - Bugey4 v-spectrum (nearby reactor core) [by Bugey4 collaboration]
 - reduce systematics (else ILL driven)
 - Chooz-BI and Chooz-B2 reactor data [by Chooz EdF company]
 - MC simulation based (data + reactor + physics + detector)

engineer's view

MC's view

_					-
	7-7	• 1 • •	= 🚯 =	•••	- 🚧 🛔
	* *	100000000000	<u> 2, 3, 4, 8, 8</u> 8	Con Contra	· · ·
777		1.0,0,0,0		5 . 15 . L . 15 .	5 5 5 5 5 5 T
	all a gar				and the second
	1890	000			681
	100	<u>)</u>)))))	<u>5-8-3</u>		100
) 🚯 🤇		000
			ی 🔶 🄇		
	() (()) (0 ()) 🔶 🌘) 🔃
	49 Q () () ()) 🕄 🄇		ê (ê (h:
	100	10-0 -0			a Carti
	1833			<u>Bool</u>	Co Eti
	6.60	N S S	چ 💿 🍖	660	G.C.
		S.S.S.S.		0,000	C.
1					
	- IV	4 11 //			

our favourite view...

our readout...

state of the art FADC based waveform digitisers @ electronics readout

event-wise data quality flagging (→ not a single cut to clean data)
still squeezing further information for analysis (→ higher precision)

same readout+DAQ both ID and IV

(OV readout based on M64+MAROC, similar OPERA)

NOTE: all PMTs working (white means: no charge)

our top μ -tracker/veto (Outer-Veto)...

22

the near detector...

status

done

done

june

summer

summer

- IV instrumentation →
- detector is closed \rightarrow
- chimney mechanics→
- •filling→

24

•shielding (water+steel)→

3

• data-taking commissioning→ Sept.~Oct.

a hot summer for DC...

calibration...

energy reconstruction (1)...

• integrated data and MC calibration scheme...

- MC treated independently (as two detectors)
- MC (no free knobs \rightarrow lab measurement + calibration)

• Linearised-PE & Alpha Calibration...

- def: $PE = \alpha(PE, \#PMT hit) \times [\Sigmaqi \times g(qi)]$
- conversion $Q[\Delta \sim 5\%] \rightarrow PE[\Delta \leq 0.5\%]$ @ H-n peak center
- impact: **stability (+++)**, **linearity (++)**, uniformity (+)
- source: gain non-linear [@electronics] + other (zeroes, etc)

• Uniformity Calibration...

- def: create H-n response full volume MAP
- conversion $PE(\rho,z)[\Delta \le 8\%] \rightarrow PE(center) [\Delta \le 0.5\%]$
- impact: uniformity (+++)
- MeV (or absolute) Energy Calibration...
 - conversion: $PE(0, \tau) \rightarrow MeV(0, \tau)$
 - use ²⁵²Cf @ (ρ =0, z=0, t= τ) → H-n peak: 2.223MeV
 - DATA to MC equalisation (prior <0.5% agreement)

energy reconstruction (2)...

• Drift Stability Calibration...

- def: $PE(t) \rightarrow PE(\tau)$, where τ : time MeV definition
- response drift by +0.5%/years (unknown)
- impact: **stability (+)**

Charge Non-Linearity Calibration...

- readout driven-non-linearity $\rightarrow \Delta(H-n,Gd-n) = \sim 1\%$
- validation with C-n peak @ 5MeV & ¹²B spectrum
- impact: **linearity (+)**

• Light Non-Linearity Calibration...

- \bullet single- γ scintillation quenching measurement
 - many calibration sources @ center
- conversion: $MeV(e+) \rightarrow MeV(single-\gamma)$ [only MC]
- impact: linearity (++)

• Overall performance...

- from Q(q, ρ ,z,t) [RMS~10%] to MeV [RMS \leq 1.0%]
- better detection systematics $\rightarrow \theta^{13}$, BGs, Δm^2 .

response coherence all throughout...

a: statistical term b: constant term c: e.g. electric noise

Data

a=0.0773±0.0025 b=0.0182±0.0014 c=0.0174±0.0107

MC

a=0.0770±0.0018 b=0.0183±0.0011 c=0.0235±0.0061

• remarkable agreement data to MC throughout full energy range

•identical curves (\rightarrow no free knobs in MC)

•most relevant region for θ_{13} is ≤ 4 MeV

•excellent precision: peak position and widths (highly non-trivial)

•true for peaks in center or <u>anywhere in NT and GT</u>

•C-n peak (mainly from GC) \rightarrow slight different response in GC (worse)

constant term of resolution ~1.8% (powerful calorimetry)

dominated by stochastic term

our analyses (I,II and <u>today</u> III)...

status Gd-III improvement...

• more statistics (2×)

31

•new selection Gd-III (wide-open + more efficient)

•new energy (more accurate + non-linear correction)

•new BG vetoes (remarkable active BG rejection)

•all BGs measured by data (no MC) (reduce systematics when measuring θ_{13})

•

translates into

• improvement of δ (stat) (better S/BG + more stats)

• improvement of $\delta(BG)$ (~3x wrt Gd-II)

•improvement of δ(detection) (~2x wrt Gd-II)

 major improvement with ND (flux systematics now eclipses)

experiment systematics (nut-shell)

systematics	rate	shape (energy spectrum)	single detector (%)	multi detector (%)	suppression factor
δ (detection)	yes	no	0.6 (relative to MC)	≤0.2 (cancellation)	~3x
δ (flux)	yes	yes (smooth-ish)	1.7 (relative to MC)	(). (cancellation)	~ 0x
δ (BG)	yes	YES (sharp-ish)	0.3	0.3 (no cancellation)	none

•3 systematics → all uncorrelated

• **multi-detector** → cancellation (large variations)

• <u>all errors are in the ‰ level</u>

•redundancy is a must (like in LEP, etc)

the new Gd-III selection...

Gd-IBD selection criteria...

selection details...

	Gd-III IBD candidate criteria		
u -tagging	Energy(ID)≥20MeV & Charge(IV)≥30k(a.u.) ^{NEW!!}	μ-Veto	
Δ t(μ)	lms		
QmQt	≤0. 2 <u>New!</u> !		
RMS(time,charge)	2D cut	Light Noise	
ΔQ	30k(a.u.) NEW!!	Selection	
	[0.5,150] µ s <mark>new!!</mark>		
E(delay)	[4,10]MeV	IBD Soloction	
E(prompt)	[0.5,20.0]MeV	Selection	
Multiplicity	[-0.2,0.6]ms (relative to prompt) ■		
OV veto	yes		
IV veto	Yes NEW!!	BG	
FV veto	Yes NEW!!	Rejection	
Li+He veto	Yes NEW!!		
	17359 IBD candidates (including BG)		

no oscillation expectation: 17359 (only IBD) 467.9days

Light Noise rejection...

large (an increasing) amount of "light noise" (a few types)

(spontaneous light emission from PMT bases)

after light noise rejection (>99.9% rejection and inefficiency <0.012%) •<u>stable event rate</u> (radioactivity dominated)

•<u>clean energy spectra</u> (>10x more light-noise than physics in trigger rate)
IBD candidates track reactor activity.

daily IBD candidate variation (no BG subtraction)

MC uses reactor power info (100x→ negligible stats)
accurate reactor power tracking (data~MC)

excellent data/MC agreement on Gd-n peak

energy reconstruction (dominating still?)
Gd multi-γ de-excitation physics model
scintillator quenching (non-linearity)
n-capture physics model (thermalisation)

flux systematics...

Bugey4 our "near" detector now...

39

DC used Bugey as effective ND (via MC)

(technique reduces \sim 30% the dominant flux uncertainty \rightarrow used by KamLAND, etc)

major δ (flux) cancellation (with ND)...

DC most isoflux experimental setup

 \implies ~90% δ (flux) suppression

 $\delta(\text{flux})^{\text{FD}}=1.7\% \rightarrow \delta(\text{flux})^{\text{FD+ND}}=0.1\%$ (preliminary)

"Reactor Induced Systematics for Multi-Detector 13 Experiments"

Cucoanes, Novella, Cabrera et al. (preparing for submission)

detection systematics...

δ (detection) systematics budget...

component	efficiency	error (FD only)	error (FD+ND)
l ms μ veto (offline)	95.5%	<0.1%	<0.1%
DAQ & Trigger	100.0%	<0.1%	<0.1%
vetoes inefficiency	99.3%	0.1%	<0.1%
IBD selection	98.9%	0.2%	<0.2%??
Spill in/out (MC)	100.0%	0.3%	<0.1%
Gd Fraction	97.5%	0.4%	<0.1%
Scintillator Proton#	100.0%	0.3%	<0.1%
total	91.5%	0.6%	0.2%

δ (detection)^{FD only} = 0.63%

~0.5% dominated by MC inaccuracies (major ND cancellation → no MC)
 ~0.3% N_{proton} (major ND cancellation → same scintillator)
 some cancellation since functionally identical detectors (response, acceptance, etc)
 δ(detection)^{FD+ND} → 0.2% (seems feasible) [à la Daya Bay]

BACKGROUNDS

our background (BG) model...

DC goes accidentals-less...

 heavily studied for long (→ spatial reconstruction + detector model dependence): negligible

 (excellent spatial-reco tuning) sharpest distribution + spectacular data/MC agreement

 (IBD inefficiency @ Im <0.4%)</td>

 Anatael Cabrera (CNRS-IN2P3 & APC)

all about ⁹Li (the rest is \sim negligible)...

BG	rate (day	shape	energy range	S/BG (%)	δ (BG) (%)	suppresion (wrt Gd-II)
9	0.97	data (Li+He tag)	[0,12]MeV	2.6	0.78	1.3
fast-n stopped-µ	0.60±0.05	data (IV tag)	[0,20]MeV	I.6	0.13	1.9
accidental	0.070±0.005	data (off-time)	<3MeV	0.2	0.01	3.7
12	<0.003@68CL	neglected	[0,13]MeV	_	_	>7.0
13	<0.1	neglected	<2MeV	_	_	same

Li+He (He \leq 10%) dominates BG systematics budget by >90%

(energy spectrum data-driven \rightarrow <u>poor statistics</u>)

all other BG becoming negligible \rightarrow DC-III = IBDs + ⁹Li (effectively)

(fast-n is high but well know spectrum makes it innocuous)

our BG active BG rejection vetoes...

veto efficiency (%)	absolute (per veto)	uncorrelated fraction	relative (with all other vetoes)
IV veto	24	7	40
OV veto	62	7	41
FV veto	71	19	66
all vetoes	90	33	

Power(rejection) ~90%, estimated [12,20]MeV (high redundancy)

(VERY unusual for LS detector \rightarrow a volume of liquid flashing)

2xOFF data: powerful information before/after veto evolution

(scrutinising a few event-wise BG-only)

I week \rightarrow poor stats (spectral info fluctuations dominated) \rightarrow inconclusive

P(rejection)=(7.7±3.1) @ Gd-III

(in agreement with (9.9 ± 1.0) estimated between [12,20]MeV)

Gd-III measurement of θ | 3...

• (R+S) rate+shape analysis (baseline)

- (++) exploit full spectra and E/L signature of θ 13 (v-oscillations)
- (\pm) BG model dependent (hard not to) \rightarrow need to measure BG before (data ON)
 - (++) <u>better BG estimation</u> \rightarrow higher precision on θ I3
 - (++) includes 2xOFF data (pure inclusive BG: no model)
- (RRM) reactor rate modulation analysis (baseline)
 - (++) exploits 100% variations reactor power @ Chooz [only @ Chooz]
 - (++) measure inclusive BG (no model input or 2xOFF data)
 - (++) includes 2xOFF data (pure inclusive BG: no model)
 - (\pm) BG model dependent \rightarrow added precision(!!)
 - (unique DC) remarkable cross-check θ I 3 with and without BG model
- (RO) rate-only analysis (cross-check only)
 - (-) BG model dependent (hard not to be) → need to measure BG before (data ON)
 - (++) include 2xOFF data too

systematics recapitulation...

systematics	DC-Gd-II (%)		DC-Gd-III (%)		
δ (flux)	١.7		١.7		Ē
δ (detection)	1.0		0.6		1 inpu
exposure (days)	227.9 (8249 IBDs)		467.9 (17358 IBDs)		RRN
δ (BG) (input output)	1.6	0.9 (R+S) I.I (RRM)	0.8	0.3 (R+S) 0.5 (RRM)	
	Same -		R+S	input	

δ(BG) independent estimation: <u>no spectral info used</u>

 \implies input to R+S (mandatory) and RRM (optional)

 $\delta(BG)$ re-estimated by both R+S (spectra) and RRM

RRM analysis.

•exploit our 100% variations in reactor power... •measure BG and $sin^2(2\theta_{13})$ simultaneously •BG is inclusive \rightarrow account for unknown contributions \implies BG measurement without BG model • (trivial) fit is straight line... • **BG**^{inclusive}→ intercept • $sin^2(2\theta_{13}) \rightarrow slope$ •additionally, aid fit with extra BG constraints (pulls)... +2xOFF data (independent BG^{inclusive} measure) • provide a precious precise BG model cross-check •successful validation $< 1.5\sigma$ agreement +BG estimation (introduce BG model dependence)

• even more precision (once validated coherent)

the ultimate RRM results...

most precise rate-only (→i.e. not spectral info used)

(complementary to R+S although correlations exists)

R+S results...

•e+ energy model (via tuned MC)•scintillator non-linearity (3 parameters)


```
sin^2(2\theta_{13})=(0.09\pm0.03)
(\chi^2/n.d.f. = 51.4/40)
```

 $\delta(BG)^{III} \sim 3x$ time better than DC-II

disappearance probability...

R+S results...(2)

Parameter	Input C.V.	Input Error	Output C.V.	Output Error	
E-scale a'	-0.027	0.006	-0.026	+0.006, -0.005	
E-scale b'	1.012	0.008	1.011	+0.004, -0.007	
E-scale <i>c</i> ′	-0.0001	0.0006	-0.0006	+0.0006, -0.0005	
$FN+SM$ rate (d^{-1})	0.60	0.05	0.56	0.04	
$Li+He$ rate (d^{-1})	0.97	+0.41, -0.16	0.80	+0.15, -0.13	
Accidentals rate (d^{-1})	0.0701	0.0054	0.0708	0.0053	
Residual $\bar{\nu}_e$	1.57	0.47	1.49	0.47	
$\Delta m^2 \ (10^{-3} \ { m eV}^2)$	2.44	+0.09, -0.10	2.44	+0.09, -0.10	
$\sin^2 2\theta_{13}$			0.090	+0.033, -0.028	
$\chi^2/d.o.f.$			51.4/40		

remarkable improvement of Li+He constraint using spectral information (aided by rate)

 \rightarrow lower rate and more precise (improve S/BG too)

all results consistent between input and output (no tensions $> |\sigma)$)

many cross-checks done (not shown) \rightarrow robust θ 13 result

(release input BG constraints, IH vs MH, w/o 2xOFF data, etc)

a closer look to our $P(v_e \rightarrow v_e)$...

(colloquially named "E/L plot")

non-understood structure from \sim [4,8]MeV...

•range [0.5,4)MeV: excellent θ 13 driven spectral distorsion

•(θ_{13} direct impact) θ_{13} fits constrained mainly by info <4MeV (R+S analysis)

•range [4,8)MeV: structure (deviations $\leq 1.5\sigma$)

59

- •~[4,6]MeV: excess? (stats available → attempt to understand)
- •~[6,8]MeV: deficit? (IBD spectrum dies off→ unknown)
- (θ_{13} indirect impact) affect θ_{13}^{R+S} via a bias on the BG constraint? (i.e. ⁹Li mainly)

 \implies excellent agreement between R+S (shape sensitive) vs RRM (integral over all)

•negligible integrated effect \rightarrow all θ_{13} in excellent agreement!! (< σ_{nat})

our understanding today...

(regardless of origin) no direct impact to θ_{13} measurement

 \rightarrow negligible indirectly impact $\implies \delta(\text{Li+He})$ and $\delta(\sin^2(2\theta_{13}))$ immune

 \rightarrow tested R+S with hypothetical C-n-like peak ~5MeV \rightarrow maximal variation $\leq 0.3\sigma$

source	status	rationale		
detection	discarded	•no impact on shape		
energy	disfavoured	• <u>remarkable match full energy scale data/MC [0.5,8]MeV</u> •C-n peak (@5MeV) data/MC agreement to <0.5% •shifted energy spectrum by $\pm I \sigma \rightarrow$ not reproduced the observed E/L shape		
background	disfavoured (tension)	 reactor-OFF data tension @ 2σ→ no room for unknown BG (else tension will increase) all known BG well constrained (several methods)→ inconsistency on shape? (constrained to be small) BG only possible cause for excess→ what about deficit? (approx. equal significance) 		
flux	possible	 <u>large uncertainties at higher energies</u> due to ILL e- conversion, correction, burn-up, etc cause for both excess and deficit, but <u>unknown effect</u> data favours tension to flux constraint @ ~1.5σ (not significance still) 		
combination	possible	•impossible to discard		

no significant unambiguous origin found but strong hints... (rule out most possible scenario)

flux error consistency: binned-RRM analysis...

61

(energy) binned-RRM using world best θ_{13} as input

 \Rightarrow consistency check for possible BG and/or flux deviations (simultaneously)

3.0 σ tension relative to flux input error (yellow shaded) negligible tension <1 σ relative to BG

(other pieces of evidence consistently in the same direction)

(if flux related) does it correlated to reactor?...

62

search for empirical correlations in "difference" region ~[4,6]MeV (deficit region: no enough statistics)

no correlation was found on any BG-sensitive variable (time to last μ , etc)

strong correlation with reactor power→ more data (H) stronger correlation (empirical data-driven observation)

DC-III-Gd vs DC-II-Gd and DC-II-H

•not new!! just better resolved...

better stats (x2) (same flux info)
better energy (+50% better systematics)
better BGs (x3 better systematics)

same DC-III-Gd pattern visible with...

•DC-II-Gd... [also DC-I-Gd]

• different selection (\rightarrow different BGs)

•DC-II-H...

•very different BGs

• different detector volume (less precision)

•also CHOOZ? (same reactors, different everything)

RENO @ Nu2014...

Observation of new reactor v component at 5 MeV

Far : 1.775 +/- 0.708 (experimental) +/- 0.486 (expected shape error) $\rightarrow \sim 2.0\sigma$

how about Daya Bay?

Daya Bay PhD-thesis @ US (not official result)

→ first presentation @ ICHEP (next week)

beyond Gd-III...

$|\sigma|$ error projection (via R+S analysis)

remarkable improvement of DC-III new analysis (wrt DC-II)

Iσ within [0.010,0.014] with 3years FD+ND: BG systematics dependent→ <u>statistics dominated</u> (rate+spectrum projection uses latest BG model fromDC-III)

DC goals @ proposal...

reactors Vs: future?

•Mass Hierarchy not via Matter Effects \implies unique complementary to ORCA/PINGU/SK/LBNE

• Δm^2 , δm^2 and $\sin^2(2\theta_{12})$ to <1% error (\rightarrow input to δ_{CP} searches & 3ν model)

extremely sensitive to Super-Novae.

SN 1987

JUNO observations • diffuse SN background • core collapse SN (i.e. explosions→ short time)
what to remember?

Anatael Cabrera (CNRS-IN2P3 & APC)

conclusions...

• DC-Gd-III have been presented (@ LAL and Nu2014)...

- Gd-III improves everything by factors relative to Gd-II
 - higher efficiency, less BG (active BG rejection), data-driven BG estimations, etc
 - δ (detection)^{III} ~2× more precise δ (detection)^{III}
 - $\delta(\mathsf{BG})^{|||} \sim 3 \times$ more precise $\delta(\mathsf{BG})^{||}$
 - better energy reconstruction (fully accounting for non-linearities)
- (powerful) analysis is now ready for ND \rightarrow more already under preparation

• DC-Gd-III results...

- (relative Gd-II) \sim 2x more stats, but factor improvement in systematics...
- (R+S) $sin^2(2\theta_{13}) = (0.09 \pm 0.03)$ [corresponding BG (1.43±0.15)day⁻¹]
- (**RRM-All**) $sin^2(2\theta_{13}) = (0.09^{+0.03}_{-0.04})$ [corresponding BG: (1.55±0.17)day⁻¹]

• (RRM-2xOFF) $sin^2(2\theta_{13}) = (0.06 \pm 0.04)$ [corresponding BG (0.90 \pm 0.39) day⁻¹]

• DC projections...

• ND will run from end of summer 2014

• major systematics cancellation boosting $I\sigma$ error on $sin^2(2\theta_{13})$ up to 0.01 [only Gd-n]

• improvement in analysis are already in preparation