Le boson de Higgs au LHC ... l'univers ... et l'au-delà

Y.S.

Colloque de St-Gervais, IN2P3

Boson de Higgs et Modèle Standard

Il faut "autre chose" pour:

- Expliquer l'origine des masses de particules
- Préserver les symétries de jauge au niveau fondamental
- Permettre l'unitarisation de la théorie (ou au moins retarder le problème)

Boson de Higgs et Mécanisme BEH

On postule l'existence d'un champ scalaire présent dans tout l'univers

Le potentiel associé à ce champ est au minimum pour une valeur non-nulle

⇒ brisure spontanée de la symétrie électrofaible (EWSB) ... Les bosons Z et W± acquièrent une masse

Les symétries de jauge sont préservées au niveau fondamental

⇒ c'est la propagation dans le vide « rigidifié » qui brise spontanément la symétrie

Les fermions élémentaires interagissent avec le champ et acquièrent une masse

> (i.e. les composantes de chiralité gauches et droites se mélangent !)

Y. Sirois – IN2P3/CNRS - LLR Ecole Polytechnique

Boson de Higgs: État de l'art (1)

- Masse et spin-parité en combinant $H \rightarrow \gamma\gamma$ et $H \rightarrow 4\ell \Rightarrow S^{CP} = 0^{++}$ $M_{H} (ATLAS) = 125.46 \pm 0.41 \text{ GeV}$ $M_{H} (CMS) = 125.03 \pm 0.30 \text{ GeV}$
- Intensité du signal ($\mu = \sigma/\sigma_{SM}$) en combinant tous les canaux ATLAS: $\mu = 1.30^{+0.18}_{-0.17}$ CMS: $\mu = 1.00 \pm 0.09(stat.)^{+0.08}_{-0.07}(theo.) \pm 0.07(syst.)$
- Couplages aux fermions et aux bosons: CMS Pre

Boson de Higgs: État de l'art (2)

- SM-like Higgs at ~125.7 GeV is compatible with global EWK data at 1.3 σ (p = 0.18)
- Indirect constraints now superior to some precise direct W, Z measurements

Indirect (EWK fit): $M_W = 80.359 \pm 0.011$ Direct (World average): $M_W = 80.385 \pm 0.015$

Boson de Higgs: État de l'art (3)

Désintégrations rares ou interdites

Expected limit at ~5.1 x SM (will be probed with 25 x more data !)

H has non-universal couplings to leptons ! Origin of the families lie in the scalar sector ... $\begin{array}{l} B(H \rightarrow \mu \tau) = 0.89 \pm 0.38 \\ \mbox{The CMS combined excess is 2.5 σ} \\ \mbox{(local p-value below 10^{-2} at M_{H} \sim 125 GeV)} \end{array}$

On The H Boson So far ...

- Higgs boson discovery is now firmly established at $M_{\rm H} \sim 125 \text{ GeV}$
 - ✓ Couplings to fermions and to weak bosons (verified to ~10-30% precision) consistent with the minimal scalar sector required for the BEH mechanism
 - ✓ Custodial symmetry verified (~ 15% precision) and the existence of a boson with non-universal family couplings established ($\tau\tau$ evidence + no µµ signal)
 - ✓ Provides unitarization of the theory ! (at least partially additional or different structure still possible but postponed)
- Culmination of a reductionism strategy evolving from the question of the *structure of matter* to that of the *very origin of interactions* (local gauge symmetries) and matter (interactions with Higgs field)
- The Higgs boson is not a gauge boson (mass not protected by symmetries of the theory) ... all other "problems" of the SM remain

$$\mathscr{L}_{SM} = \mathscr{L}_{gauge}(A_a, \psi_i) + \mathscr{L}_{Higgs}(S)$$

Natural

verified with high precision; stable with respect to quantum corrections; highly symmetric (gauge and flavour symmetries) $\mathscr{L}_{\text{Higgs (Symm. Break.)}}(\phi, A_{a}, \psi_{i})$

Ad hoc

but necessary (other mass terms forbidden by EWK gauge symmetries); unstable with respect to quantum corrections; at the origin of flavour structure and all other problems of the SM

BACCALAURÉAT GÉNÉRAL

SESSION 2015

Boson de Higgs ... et au-delà: les grandes questions

- Peut-on éviter l'arbitraire pour masse du boson de Higgs et/ou contraindre le secteur scalaire ? Déduire le boson de symétries géométriques ? Faire émerger l'auto-couplage à partir des couplages de jauge ?
- Le secteur scalaire « Higgs » est-il relié à l'inflation et/ou à l'énergie noire ?
- Le secteur scalaire de « Higgs » déstabilise-t'il le vide ?
- Le secteur scalaire de « Higgs » est-il un portail vers la matière noire ?
- Le secteur scalaire de « Higgs » est-il responsable de la baryogénèse ?
- Le secteur scalaire permet (est à l'origine ?) de distinguer les familles de fermions ... mais comment générer la structure ?
- Le secteur scalaire de « Higgs » parle-t-il aux neutrinos $(v_L \leftrightarrow v_R)$?

DURÉE DE L'ÉPREUVE : 10-30 ans – COEFIFICIENT 6 L'usage de collisionneurs est permis

Le Choix Malicieux de la Masse

Le boson de Higgs « SM-like » à 125 GeV est compatible avec SUSY ... et il n'y a pas d'indication pour l'échelle de brisure de Supersymétrie !

Why Precision at HL-LHC ?: For Discovery

Snowmass 2013 CMS extrapolation

$L (fb^{-1})$	κγ	κw	κ _Z	ĸg	κ _b	κ _t	κτ	KZY	BRinv
300	[5,7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[14, 18]
3000	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[7, 11]

HL-LHC experiments will each achieve 2-10% precision on the Hff and HVV couplings

Gupta & Wells

How large are expected		ΔhVV	$\Delta h \bar{t} t$	Δhbb
deviations on couplings	Mixed-in Singlet	6%	6%	6%
from RSM physics ?	Composite Higgs	8%	tens of %	tens of %
from Dom physics :	Minimal Supersymmetry	< 1%	3%	$10\%^a, 100\%^b$

HL-LHC experiments will each achieve ~30% precision λ in SM case ... but HH prod. could be enhanced from BSM

Delicate HH prod. cancellation in SM ... enhanced with anomalous ttH couplings

HL-LHC experiments sensitive to rare decay BSM enhancement (possibly >> 10%)

BSM easily competes with SM decays ... with $H \rightarrow bb$, $H \rightarrow \tau\tau$ because of small couplings; ... with $H \rightarrow ZZ^*$, WW* because of V off-shell; ... with $H \rightarrow \gamma\gamma$, $Z\gamma$ because of loops

Conclusions

- Le boson scalaire découvert à m_H ~125 GeV au LHC par ATLAS et CMS a les propriétés attendues pour le boson de Higgs prédit par le mécanisme BEH (secteur scalaire minimal pour le SM)
- L'origine du mécanisme et de la masse m_H et/ou les liens avec la cosmologie et la matière noire, impliquent une extension du secteur scalaire ⇒ déviations pour les couplages et/ou nouveaux bosons
- L'exploration du secteur scalaire pourra être déterminante au LHC/HL-LHC en profitant des hautes énergies (nouveaux bosons) et de la haute luminosité (mesures de précision, désintégrations rares)
- Cette exploration profite déjà d'avancées spectaculaires dans la compréhension et la modélisation des bruits de fond du MS