Limitations théoriques pour les machines futures

Futur de la Physique des particules @ St Gervais

Motivations théoriques pour les machines futures

Futur de la Physique des particules @ St Gervais

Colloque St Gervais, Futur des particules, J.Orloff

Dominance du MS

- Avec son scalaire, le Modèle Standard est désormais complet
- Pour m_H=125GeV, valide au moins jusque $E \approx 10^{10} \text{ GeV}!!!$

⇒métrologie du secteur scalaire (couplages...) est un élément incontournable du futur

 Constructions au-delà de + en + contraintes: l'écriture de nouvelles lois est-elle finie, ne laissant « que » l'affinage des paramètres et la phénoménologie d'un modèle figé???

Motivations au-delà : Th

- 1 Gravité quantique
- 2 Brisure EW
- 3 Structure saveurs
- 4 CP fort
- 5 Quantif. charges U(1)_Y
- 6 Unification jauge
- 7 Hiérarchie E_{EW} E_{NP/Planck}
- 8 Méta-stabilité vide EW
- (9 Constante cosmologique)
- $(SU(3)_c x SU(2)_L: pourquoi 3, 2, L?...)$
- 4 Colloque St Gervais, Futur des particules, J.Orloff

Motivations au-delà: phéno/cosmo

- <u>**1 Masse des neutrinos:</u>** demandent au moins v_R (et M_R ?), ou triplets, ou ...; Dirac ou Majorana? Nature des masses inconnue!!!</u>
- <u>2 Asymétrie Baryonique</u>: condition initiale, avec ajustement à 10⁻⁹(!) dans MS
- <u>3 Matière Noire:</u> demande une validation non-gravitationnelle (DD, DI)
- <u>4 Inflation</u>: inflaton=incontournable scalaire(s); doit coupler au MS échelle E_{infl} =10¹⁰⁻¹⁸GeV (BICEP)
- «3-sigmites» (g-2, asymétrie t-tbar, $B \rightarrow K^* ll, R_K, ...)$

5 Colloque St Gervais, Futur des particules, J.Orloff

Vertus de diverses extensions

		Th. motivations									Cosmo/pheno motivations			
	Extensions \ Vertus	1:QG	2:EW	3:Flav	4:SCP	5:CQ	6:GU	7:Hie	8:Met	9:Cos	1:v	2:BA	3:DM	4:Infl
+fermions	Heavy v_R								?		+++	+++		
	Triplet fermions								?		++			
	Vector-like quarks		-	+			+		?					
+ scalars	2 HDM			-				-	+			++		
	Inert doublet								+				++	+?
	H singlet(s)								++				++	+++
	H triplet								+		++			
	Composite H		++					++(?)	?					
	Axions				+++								+++	
+ symmetries	Z'(s)										+?		++	
	SU(5), SO(10)					+++	-		-		++	++		+
	L-R Symmetry							-	+		++			+?
	Flavor Symmetry			+++										
+ global	Extra-dimensions	?		+			+	+++	+	+?		?	+	+?
	Little Higgs		+++	?		-	?	-	?				++	
	1-10 TeV Susy-GUT	+	+=	-	+?	+++	+++	++(+)	++		+	++	+++	++
	Superstrings	+++	?	?	?	?	?	++	?	?	?	?	?	?

6 Colloque St Gervais, Futur des particules, J.Orloff

Remarques

- Rares sont les extensions qui résolvent plus d'un problème à la fois
- Ceci explique l'intérêt de SUSY(-GUT), malgré la tension sur la naturalité avec m_{squark}>1.3 TeV (et plus...)
- Aucune extension ne pointe solidement vers 10-100 TeV (sauf après exclusions inférieures, comme m_{squark})
- La seule divergence quadratique de M_h (p.ex. Arkani-Hamed récemment) n'est pas un bon argument <u>pour</u> la NP dans cette zone: à mon sens, ce serait plutôt <u>contre</u>!
- Difficile de miser sur une direction particulière: une déviation peut venir de n'importe quel secteur (précision, énergie, neutrino, DM)

Plots

M_h implications on M_{SUSY}

Running of couplings in SM

SM Stability

