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Transfer function |
If we start from an “initial” spectrum; (k).
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Transfer function |

If we start from an “initial” spectrum; (k).
If growth is the same on all scale:

D(z) 5.()

o(k,z) = D(z)""

Notation
0(k,z) = D(2)dp(k) with D(0) = 1.

and:
P(k) = |0]; = D(2)* Py(k)
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Transfer function ||

In the linear regime, we have seen that evolution
depends on scale
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Transfer function ||

In the linear regime, we have seen that evolution
depends on scale:

5(k, 2) = D(2)T(k)do(k) with T(0) = 1

And so:
P(k) = T (k)" Py(k)

The power spectrum keeps record of the tranfer func
tion.

Structure formation & Clusters for Cosmology — Sep. 2014 — p.3/29



Transfer function: CDM |11

In the radiation dominated area, we have seen that
evolution on large scales:

6 o<t o< at)?

as long as\ > ct while A\ < ¢t are frozen.
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In the radiation dominated area, we have seen that
evolution on large scales:

6 o<t o< at)?

as long as\ > ct while A\ < ¢t are frozen.

There Is a break in the tranfer function at the scale of
horizon.

In the matter dominated area, we have seen that
evolution Is independant df.

After equality epoch, growth restarts on all scales
(DM). The scale of horizon is written in the spectrum.
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Transfer function: CDM |11

In the radiation dominated area, we have seen that
evolution on large scales:

6 o<t o< at)?

as long as\ > ct while A\ < ¢t are frozen.

There is a break In the tranfer function at the scale of
horizon.

In the matter dominated area, we have seen that
evolution is iIndependant d@f.

After equality epoch, growth restarts on all scales
(DM). The scale of horizon is written in the spectrum.
Baryon oscillate and are damped.

Low mass particles free-steaming.
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Transfer function: |V

iso baryons
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Comoving sound horizon size
RW metric:

ds* = —c*dt* + a(t)*[dx* + ..]
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Comoving sound horizon size
RW metric:
ds* = —c*dt* + a(t)*[dx* + ..]
For a source moving at speed
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dy = ——vdt

a(t)

Structure formation & Clusters for Cosmology — Sep. 2014 — p.6/29



Comoving sound horizon size
RW metric:
ds* = —c*dt* + a(t)*[dx* + ..]
For a source moving at speed

|
dy = ——vdt

a(t)

For a sound wave:

Y - ["c da
Xs(a)Z/O a (t)csdt_/o \/§a(t)2H(a)\/1+

NSt

Qp
Q2
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Comoving sound horizon sizel |

Two Important epochs:
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Two Important epochs:

 The last scatering surface,(@nda, = H%Z)

« The end of the drag area,|.
e 2z, Imprint in CMB (peak)
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Comoving sound horizon sizel |

Two Important epochs:
« The last scatering surface.(@anda, = ﬁ)
« The end of the drag area,|.
e 2z, Imprint in CMB (peak)
« zg Imprintin P(k) (BAO)
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Non linear regime
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Non linear regime

General problem very complex
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1- dimensional approximation allows analytical
calculations.
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Newtonian problem.
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Non linear regime

General problem very complex

1- dimensional approximation allows analytical
calculations.

Spherical model (Lemaitre, 1933)

Newtonian problem. Solution already seen:

Dark Matter + Dark Energy
effect the expansion of the universe
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Spherical Perturbation |
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Spherical Perturbation |

Qo

Hot = (0= sin(6)
ol
Rt) = 5o (1= cos0)
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Spherical Perturbation |

Qo

Hot = (0= sin(6)
ol
Rt) = 5o (1= cos0)

Density at maximum:
~ 3
. . [ Ro
P Po é
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Spherical Perturbation |1
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Spherical Perturbation |1

At maximum: R,, <> ¢ = 7
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Spherical Perturbation |1

At maximum: R,, <> ¢ = 7

3H2 4(Qg—1)3

Pm = 3rG 2
- ()
HO tm — ~ L

_
2(Cp — 1)3/2
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Spherical Perturbation |1

At maximum: R,, <> ¢ = 7

~

3H2 4(Qg—1)3

" 327G Q2
. Q)
HO tm — = 0
2(Q — 1)3/2
l.e.
— 372
fm = 32m G2,
: . Om, _ 1
with: 1+ A, = p? andp = —= (EdS)
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Spherical Perturbation |1

At maximum: R,, <> ¢ = 7

~

3H2 4(Qg—1)3

" 327G Q2
N Q
HO tm — ~ 0
2(Q — 1)3/2
l.e.
— 372
fm = 32m G2,
with: 14+ A,, = %m andp = — (EdS)
9
A, =—7°—1 ~4.
m 1677 59
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Virialization |
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Virialization |

At 2t,, solution reaches a singularity.
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Virialization |

At 2t,, solution reaches a singularity.
During collapse kinetic energy prevents singularity.

Initially : g2
87

R;

T =0andV, = —
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Virialization |

At 2t,, solution reaches a singularity.
During collapse kinetic energy prevents singularity.

Initially : g2
87

R;

T=0andV;, = —
In the final stage (virialization):

1
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Virialization |

At 2t,, solution reaches a singularity.
During collapse kinetic energy prevents singularity.
Initially :

aG M?
T=0andV, = —
all Rz
In the final stage (virialization):
1
Ty=—=V
f 9 f

Energy conservation:

1

Structure formation & Clusters for Cosmology — Sep. 2014 — p.11/29



Virialization |

At 2t,, solution reaches a singularity.
During collapse kinetic energy prevents singularity.
Initially :

aG M?
T=0andV, = —
all Rz
In the final stage (virialization):
1
Ty=—=V
f 9 f

Energy conservation:
1
Vi=T+V; =2V,

SO. 1
R = -R,
=9
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Virialization I |
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Virialization |1
Contrast density at virialization:

) 2

1+ A,
T
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Virialization |1
Contrast density at virialization:

9
1+Av:1—67rz><23
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Virialization |1
Contrast density at virialization:

9
1+ A, = 1—67r2 x 23 x (2%/3)3
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Virialization |1
Contrast density at virialization:

9
14+ A, = 1—67r2 x 23 % (22/3)3 ~ 178
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Virialization |1
Contrast density at virialization:

9
1+ A, = 1—67r2 x 23 % (22/3)3 ~ 178

let’s estimate the linear expected amplitude at viriliza-
tion.
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Virialization |11
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Virialization |11

00
1+ 2

5(2) — (50(t/t0)2/3 —

0o linear amplitude today.

Structure formation & Clusters for Cosmology — Sep. 2014 — p.13/29



Virialization |11

0
5(=) = dult/to)*"* = T
0o linear amplitude today.
~ 3Pm B 640,
T T—cosg)*  B(1— 42/4)
b ot
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Virialization |11

0
5(=) = dult/to)*"* = T
0o linear amplitude today.
~ 3Pm B 640,
T T—cosg)*  B(1— 42/4)
b ot

SO.

¢ (Ot ’ )2
= (%) i+
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Virialization |V
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Virialization |V

and
. ¢2 ¢2 64pmt72n
P = (1 | ) 242
4 10 (67T) t
wz ¢2 64 372 3¢2

— (1 4
T~ 10362 5ce - Pt 50
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Virialization |V

and
. @DZ ¢2 64pmt72n
P = (1 | ) 242
4 10 (67T) t
wQ ¢2 64 372 3¢2

— (14 — (1 -
A+ T~ 1036 3arae — Pt 300

so with : p = p(1 + 0)

5 3 3 (67t _3(6m)20 1 + 2
200 20 \ t,, 20 1+ 2
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Conclusion
(for the spherical collapse model)
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Conclusion
(for the spherical collapse model)

3(6 2/3
Om = ( ;TO) (142,,) = 1.06(1+2,,)whenA,,, ~ 4.5
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Conclusion
(for the spherical collapse model)

3(6 2/3
O = ( ;TO) (142,) = 1.06(1+z,,)whenA,,, >~ 4.5
and
3(6 2/3
O = 2%/3 (6m) (1+2z,) = 1.68(1+2,, ) whenA, ~ 177.

20
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Conclusion
(for the spherical collapse model)

3(6m)*/3
Om = ( ;TO) (142,,) = 1.06(1+2,,)whenA,,, ~ 4.5
and
2/3
O = 22/33(650) (1+2z,) = 1.68(1+2,, ) whenA, ~ 177.

Transition into the non linear regime Is extremely
rapid.
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Conclusion
(for the spherical collapse model)

3(6m)*/3
Om = ( ;TO) (142,,) = 1.06(1+2,,)whenA,,, ~ 4.5
and
2/3
O = 22/33(650) (1+2z,) = 1.68(1+2,, ) whenA, ~ 177.

Transition into the non linear regime Is extremely
rapid.

1+ 2,\°
F0r2<zv,A:177( +Z>
|
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Velocity dispersion |
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Velocity dispersion |

Cluster masd/ Is not an observable quantity...
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Velocity dispersion |

Cluster masd/ Is not an observable quantity...
The self-similar hypothesis comes in (Kaiser, 1986).
The mass s :

! 4
Ma = %pARS _ %Qmpc(l +2)3(1 + AR,
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Velocity dispersion |

Cluster masd/ Is not an observable quantity...
The self-similar hypothesis comes in (Kaiser, 1986).
The mass s :

4 4
Ma = %mzﬁ - g@mpc(l +2)3(1+ AR
so that)M andz are the only two numbers to
characterize a clustef\(is set by the cosmology...or

by the cosmologist!)
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Velocity dispersion ||
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Velocity dispersion ||

The “radius” of the cluster folows:
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Velocity dispersion ||

The “radius” of the cluster folows:

3 M3
Ra = ¢
AT Qpo(1+ A)1 + 2
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Velocity dispersion ||

The “radius” of the cluster folows:

3 M3
Ra = ¢
AT Qpo(1+ A)1 + 2

Assume isothermal distribution:
2

B 2 Gr

p(r)

with < v? >= o2 +0§ + 02 = 30°
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Velocity dispersion ||

The “radius” of the cluster folows:

3 M3
Ra = ¢
AT Qpo(1+ A)1 + 2

Assume isothermal distribution:

0.2

B 2 Gr

p(r)

with < v? >= 02 + 0, + 0 = 30° SO
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Velocity dispersion ||

Numerically:

A,

o = 1130(hM5)Y? <1—78> v 1+ zkm/s
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Velocity dispersion ||

Numerically:

A,

o = 1130(hM5)Y? <1—78> v 1+ zkm/s

Scaling laws (dependene on mass and redshift).
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Velocity dispersion |V

Numerically: good agreement with numerical
simulations (Bryan and Norman, 1998).

CDM270 CHDM512

virial mass (M_,,.)

—_
(=]

OCDM256 o (km/s)

« 7=0.0
7z=0.0

0 z=05(0.3)
z=05(0.3)

2 z7z=10

-z=10

Virial mass (M)

a (km/s)
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Application 1o the gas temper a-
ture;
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Application 1o the gas temper a-
ture;

1 3
§,umpV2 — §]€T

which leads to :
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Application 1o the gas temper a-
ture;

1 3
§,umpV2 — §]€T

which leads to :
G M

15
X Rn
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Application 1o the gas temper a-
ture;

1 3
§,umpV2 — §]€T

which leads to :
G M

15
a:_RA

so that:

T, = Ara M (1 + 2)(QA/178)1/3
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The mass function

Inspired from Press and Schechter (1974)
The density fielgb(x) has to be smoothed:

e d

o(x) = /5(x + u)Wgr(u)du

and
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The mass function

Inspired from Press and Schechter (1974)
The density fielgb(x) has to be smoothed:

e d

o(x) = /5(x + u)Wgr(u)du

and

02(x) = o*(R)
For a top hat window (!):

M(R) = ?R%
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The mass function

dV will be Included in a NL object with mass greater
thanM if included in a fluctuation of radius R and
witch Is satisfying the non linear criteria ¢ dn,).

+00 +00
/ dm ,0/.7'}5 d5 ~ P .Fg(é)dd

M ONL
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The mass function

dV will be Included in a NL object with mass greater
thanM if included in a fluctuation of radius R and
witch Is satisfying the non linear criteria ¢ dn,).

+00 +00
/ dm ,0/.7'}5 d5 ~ P .Fg(é)dd

M ONL

for a sharp threshold:

/ - mn(m)dm = p - F(v)dv

M UNT,
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The mass function

Following the spherical model:

v _ 5NL
NL O'(M)
Just derive against/:
0 Ino
N(M) = —
M) = = ean ™ mar” V)
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The mass function

Following the spherical model:

v _ 5NL
NL O'(M)
Just derive against/:
0 Ino
N(M) = —
M) = = ean ™ mar” V)

Press and Schechter use a Gaussian:

Fo) =\ 2 exp(= )

Structure formation & Clusters for Cosmology — Sep. 2014 — p.23/29



The mass function

Following the spherical model:

ONL
o(M)

UNI =

Just derive against/:

Press and Schechter use a Gaussian:

Fo) =\ 2 exp(= )

and test it against numerical simulations...
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But...

Structure formation & Clusters for Cosmology — Sep. 2014 — p.24/29



But...

0.001

0.0001
10-8
10-#

10-7

g e N L e ."_.I..

10-#
1018

D.001

0.0001

...
o
@

n{>M) (h-'Mpc)-2
o

1014
M (h-TMg)

luiﬁ

0.00

0.00M

izt

108 k- !

ACDM

1014 . 1‘]15
M (h-'M,)

Ly, =250 h-'Mpc
Npur =N, =128

It actually works! (Borgani et al., 2000)
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M or e accur ate N(m)
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M or e accur ate N(m)

A, Jenkins el al

Log,(dn/dlog, M / t"Mpe})
Log,|tn/d1og, M / {rtpa)®)

FOF groups 50 groups

13 14 = 13 1d
Log o {M/h0,) | =T L e

ACDM

Lag,dn /dlog, M / (brMpe)}
Log,jdn /dlog, M  (h*Mpa)}

FOF groups S0 groups

13 1d 13 1d
Log {4,/ B, Log, (W, h1,)

Jenkins et al. (2001)
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M or e accur ate N(m)
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More accurate N(m)

Jenkins et al. (2001)
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M or e accur ate N(m)

(=]

/poldn/ding ]2;}

In(M/py(dn/ding
| ]

Aln(M
&

ng~!

Jenkins et al. (2001)
Universal mass function.
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e-PSformula
ST (Steth & Tormen, 1999) expression {6ér:

F(v) = \EC exp(—0.5Av°)(1. + (1./(AV)2)Q)
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e-PSformula
ST (Steth & Tormen, 1999) expression {6ér:

F(v) = \EC exp(—0.5Av°)(1. + (1./(AV)2)Q)

with
Allows to investigate structure formation.
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M or e accur ate N(m)
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M or e accur ate N(m)

n(>M) [°/Mpc®)

ntropyFOF

VOBOZ

relative residual
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Conclusions

« There Is a convincing modeling of dark matter
distribution and evolution in both linear and
non-linear regimes to constrain cosmological
scenario.
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Conclusions

* There Is a convincing modeling of dark matter
distribution and evolution in both linear and
non-linear regimes to constrain cosmological
scenario.

 Allows to investigate structure formation.
History of individual structure Is missing:
merging tree— semi-analytical method “SAM”
In order to model galaxy formation :
assembly/evolution.
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Conclusions

* There Is a convincing modeling of dark matter
distribution and evolution in both linear and
non-linear regimes to constrain cosmological
scenario.

 Allows to investigate structure formation.
History of individual structure Is missing:
merging tree— semi-analytical method “SAM”
In order to model galaxy formation :
assembly/evolution.

« Warning: data come through “light” which is
coming from baryons and this was almost not
discussed in these lectures...
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