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Transfer function I
If we start from an “initial” spectrumδi(k).
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Transfer function I
If we start from an “initial” spectrumδi(k).

If growth is the same on all scale:

δ(k, z) =
D(z)

D(zi)
δi(k)

Notation

δ(k, z) = D(z)δ0(k) with D(0) = 1.

and:

P (k) = |δ|2k = D(z)2P0(k)
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Transfer function II
In the linear regime, we have seen that evolution
depends on scalek
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Transfer function II
In the linear regime, we have seen that evolution
depends on scalek :

δ(k, z) = D(z)T (k)δ0(k) with T (0) = 1
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Transfer function II
In the linear regime, we have seen that evolution
depends on scalek :

δ(k, z) = D(z)T (k)δ0(k) with T (0) = 1

And so:
P (k) = T (k)2P0(k)

The power spectrum keeps record of the tranfer func-

tion.
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Transfer function: CDM III
In the radiation dominated area, we have seen that
evolution on large scales:

δ ∝ t ∝ a(t)2

as long asλ ≥ ct while λ ≤ ct are frozen.
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as long asλ ≥ ct while λ ≤ ct are frozen.
There is a break in the tranfer function at the scale of
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evolution is independant ofk.
After equality epoch, growth restarts on all scales
(DM). The scale of horizon is written in the spectrum.
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Transfer function: CDM III
In the radiation dominated area, we have seen that
evolution on large scales:

δ ∝ t ∝ a(t)2

as long asλ ≥ ct while λ ≤ ct are frozen.
There is a break in the tranfer function at the scale of
horizon.
In the matter dominated area, we have seen that
evolution is independant ofk.
After equality epoch, growth restarts on all scales
(DM). The scale of horizon is written in the spectrum.
Baryon oscillate and are damped.

Low mass particles free-steaming.
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Transfer function: IV
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Comoving sound horizon size I
RW metric:

ds2 = −c2dt2 + a(t)2[dχ2 + ...]
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Comoving sound horizon size I
RW metric:

ds2 = −c2dt2 + a(t)2[dχ2 + ...]

For a source moving at speedv:

dχ =
1

a(t)
vdt

Structure formation & Clusters for Cosmology – Sep. 2014 – p.6/29



Comoving sound horizon size I
RW metric:

ds2 = −c2dt2 + a(t)2[dχ2 + ...]

For a source moving at speedv:

dχ =
1

a(t)
vdt

For a sound wave:

χS(a) =

∫ a

0

a−1(t)cSdt =

∫ a

0

c√
3

da

a(t)2H(a)
√

1 + 3

4

Ωb

Ωr
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Comoving sound horizon size II
Two important epochs:
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Comoving sound horizon size II
Two important epochs:

• The last scatering surface (z∗ anda∗ = 1

1+z∗
)
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Comoving sound horizon size II
Two important epochs:

• The last scatering surface (z∗ anda∗ = 1

1+z∗
)

• The end of the drag area (zd).

• z∗ imprint in CMB (peak)
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Comoving sound horizon size II
Two important epochs:

• The last scatering surface (z∗ anda∗ = 1

1+z∗
)

• The end of the drag area (zd).

• z∗ imprint in CMB (peak)
• zd imprint in P (k) (BAO)
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Non linear regime
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Non linear regime
General problem very complex

Structure formation & Clusters for Cosmology – Sep. 2014 – p.8/29



Non linear regime
General problem very complex
1- dimensional approximation allows analytical
calculations.

Structure formation & Clusters for Cosmology – Sep. 2014 – p.8/29



Non linear regime
General problem very complex
1- dimensional approximation allows analytical
calculations.
Spherical model (Lemaître, 1933)

Structure formation & Clusters for Cosmology – Sep. 2014 – p.8/29



Non linear regime
General problem very complex
1- dimensional approximation allows analytical
calculations.
Spherical model (Lemaître, 1933)
Newtonian problem.

Structure formation & Clusters for Cosmology – Sep. 2014 – p.8/29



Non linear regime
General problem very complex
1- dimensional approximation allows analytical
calculations.
Spherical model (Lemaître, 1933)
Newtonian problem. Solution already seen:
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Spherical Perturbation I
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Spherical Perturbation I

H̃0 t =
Ω̃0

2(Ω̃0 − 1)3/2
(φ− sin(φ))

R(t) =
Ω̃0R̃0

2(Ω̃0 − 1)
(1− cos(φ))
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Spherical Perturbation I

H̃0 t =
Ω̃0

2(Ω̃0 − 1)3/2
(φ− sin(φ))

R(t) =
Ω̃0R̃0

2(Ω̃0 − 1)
(1− cos(φ))

Density at maximum:

ρ̃ = ρ̃0

(

R̃0

R̃

)3
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Spherical Perturbation II
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Spherical Perturbation II
At maximum:R̃m ↔ ψ = π
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Spherical Perturbation II
At maximum:R̃m ↔ ψ = π

ρ̃m =
3H̃2

0

32πG

4(Ω̃0 − 1)3

Ω̃2

0

H̃0 tm =
Ω̃0

2(Ω̃0 − 1)3/2
π
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Spherical Perturbation II
At maximum:R̃m ↔ ψ = π

ρ̃m =
3H̃2

0

32πG

4(Ω̃0 − 1)3

Ω̃2

0

H̃0 tm =
Ω̃0

2(Ω̃0 − 1)3/2
π

i.e.

ρ̃m =
3π2

32πGt2m

with : 1 + ∆m = ρ̃m
ρ

andρ = 1

6πGt2
(EdS)
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Spherical Perturbation II
At maximum:R̃m ↔ ψ = π

ρ̃m =
3H̃2

0

32πG

4(Ω̃0 − 1)3

Ω̃2

0

H̃0 tm =
Ω̃0

2(Ω̃0 − 1)3/2
π

i.e.

ρ̃m =
3π2

32πGt2m

with : 1 + ∆m = ρ̃m
ρ

andρ = 1

6πGt2
(EdS)

∆m =
9

16
π2 − 1. ≃ 4.55
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Virialization I
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Virialization I
At 2tm solution reaches a singularity.
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Virialization I
At 2tm solution reaches a singularity.

During collapse kinetic energy prevents singularity.

Initially :

T = 0 and Vi = −αGM
2

Ri
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Virialization I
At 2tm solution reaches a singularity.

During collapse kinetic energy prevents singularity.

Initially :

T = 0 and Vi = −αGM
2

Ri

In the final stage (virialization):

Tf = −1

2
Vf
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Virialization I
At 2tm solution reaches a singularity.

During collapse kinetic energy prevents singularity.

Initially :

T = 0 and Vi = −αGM
2

Ri

In the final stage (virialization):

Tf = −1

2
Vf

Energy conservation:

Vi = T + Vf =
1

2
Vf
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Virialization I
At 2tm solution reaches a singularity.

During collapse kinetic energy prevents singularity.

Initially :

T = 0 and Vi = −αGM
2

Ri

In the final stage (virialization):

Tf = −1

2
Vf

Energy conservation:

Vi = T + Vf =
1

2
Vf

so:
Rf =

1

2
Ri
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Virialization II
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Virialization II
Contrast density at virialization:

1 + ∆v =
9

16
π2
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Virialization II
Contrast density at virialization:

1 + ∆v =
9

16
π2 × 23
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Virialization II
Contrast density at virialization:

1 + ∆v =
9

16
π2 × 23 × (22/3)3
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Virialization II
Contrast density at virialization:

1 + ∆v =
9

16
π2 × 23 × (22/3)3 ≃ 178
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Virialization II
Contrast density at virialization:

1 + ∆v =
9

16
π2 × 23 × (22/3)3 ≃ 178

let’s estimate the linear expected amplitude at viriliza-

tion.
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Virialization III
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Virialization III

δ(z) = δ0(t/t0)
2/3 =

δ0
1 + z

δ0 linear amplitude today.
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Virialization III

δ(z) = δ0(t/t0)
2/3 =

δ0
1 + z

δ0 linear amplitude today.

ρ̃ =
8ρm

(1− cosψ)3
=

64ρm
ψ6(1− ψ2/4)

t =
tm
π
(ψ − sinψ) =

tm
π

ψ3

6
[1− ψ2

20
]
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Virialization III

δ(z) = δ0(t/t0)
2/3 =

δ0
1 + z

δ0 linear amplitude today.

ρ̃ =
8ρm

(1− cosψ)3
=

64ρm
ψ6(1− ψ2/4)

t =
tm
π
(ψ − sinψ) =

tm
π

ψ3

6
[1− ψ2

20
]

so:

ψ6 =

(

6πt

tm

)2

[1 +
ψ2

10
]
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Virialization IV
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Virialization IV
and

ρ̃ = (1 +
ψ2

4
− ψ2

10
)
64ρmt

2
m

(6π)2t2

= (1 +
ψ2

4
− ψ2

10
)
64

36π2
3π2

32πGt2
= ρ(1 +

3ψ2

20
)
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Virialization IV
and

ρ̃ = (1 +
ψ2

4
− ψ2

10
)
64ρmt

2
m

(6π)2t2

= (1 +
ψ2

4
− ψ2

10
)
64

36π2
3π2

32πGt2
= ρ(1 +

3ψ2

20
)

so with : ρ̃ = ρ(1 + δ)

δ =
3

20
ψ2 =

3

20

(

6πt

tm

)2/3

=
3(6π)2/3

20

1 + zm
1 + z
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Conclusion
(for the spherical collapse model)
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Conclusion
(for the spherical collapse model)

δm =
3(6π)2/3

20
(1+zm) = 1.06(1+zm)when∆m ≃ 4.5

and
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Conclusion
(for the spherical collapse model)

δm =
3(6π)2/3

20
(1+zm) = 1.06(1+zm)when∆m ≃ 4.5

and

δm = 22/3
3(6π)2/3

20
(1+zv) = 1.68(1+zm)when∆v ≃ 177.
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Conclusion
(for the spherical collapse model)

δm =
3(6π)2/3

20
(1+zm) = 1.06(1+zm)when∆m ≃ 4.5

and

δm = 22/3
3(6π)2/3

20
(1+zv) = 1.68(1+zm)when∆v ≃ 177.

Transition into the non linear regime is extremely
rapid.
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Conclusion
(for the spherical collapse model)

δm =
3(6π)2/3

20
(1+zm) = 1.06(1+zm)when∆m ≃ 4.5

and

δm = 22/3
3(6π)2/3

20
(1+zv) = 1.68(1+zm)when∆v ≃ 177.

Transition into the non linear regime is extremely
rapid.

For z < zv, ∆ = 177

(

1 + zv
1 + z

)3
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Velocity dispersion I
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Velocity dispersion I
Cluster massM is not an observable quantity...
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Velocity dispersion I
Cluster massM is not an observable quantity...
The self-similar hypothesis comes in (Kaiser, 1986).
The mass is :

M∆ =
4π

3
ρ∆R

3 =
4π

3
Ωmρc(1 + z)3(1 + ∆)R3

∆
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Velocity dispersion I
Cluster massM is not an observable quantity...
The self-similar hypothesis comes in (Kaiser, 1986).
The mass is :

M∆ =
4π

3
ρ∆R

3 =
4π

3
Ωmρc(1 + z)3(1 + ∆)R3

∆

so thatM andz are the only two numbers to
characterize a cluster (∆ is set by the cosmology...or
by the cosmologist!)
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Velocity dispersion II
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Velocity dispersion II
The “radius” of the cluster folows:

Structure formation & Clusters for Cosmology – Sep. 2014 – p.17/29



Velocity dispersion II
The “radius” of the cluster folows:

R∆ = 3

√

3

4πΩmρ0(1 + ∆)

M 1/3

1 + z
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Velocity dispersion II
The “radius” of the cluster folows:

R∆ = 3

√

3

4πΩmρ0(1 + ∆)

M 1/3

1 + z

Assume isothermal distribution:

ρ(r) =
σ2

2πGr

with < v2 >= σ2x + σ2y + σ2z = 3σ2
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Velocity dispersion II
The “radius” of the cluster folows:

R∆ = 3

√

3

4πΩmρ0(1 + ∆)

M 1/3

1 + z

Assume isothermal distribution:

ρ(r) =
σ2

2πGr

with < v2 >= σ2x + σ2y + σ2z = 3σ2 so

σ =

√

GM

r
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Velocity dispersion III
Numerically:

σ = 1130(hM15)
1/3

(

∆Ωm

178

)1/6√
1 + z km/s
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Velocity dispersion III
Numerically:

σ = 1130(hM15)
1/3

(

∆Ωm

178

)1/6√
1 + z km/s

Scaling laws (dependene on mass and redshift).
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Velocity dispersion IV
Numerically: good agreement with numerical
simulations (Bryan and Norman, 1998):
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Application to the gas tempera-
ture:
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Application to the gas tempera-
ture:

1

2
µmpV

2 =
3

2
kT

which leads to :
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Application to the gas tempera-
ture:

1

2
µmpV

2 =
3

2
kT

which leads to :

Tx ∝
GM∆

R∆
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Application to the gas tempera-
ture:

1

2
µmpV

2 =
3

2
kT

which leads to :

Tx ∝
GM∆

R∆

so that:

Tx = ATMM
2/3
15 (1 + z)(Ωm∆/178)

1/3
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The mass function
Inspired from Press and Schechter (1974)
The density fieldρ(x) has to be smoothed:

δ̃(x) =

∫

δ(x+ u)WR(u)du

and

δ̃2(x) = σ2(R)
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The mass function
Inspired from Press and Schechter (1974)
The density fieldρ(x) has to be smoothed:

δ̃(x) =

∫

δ(x+ u)WR(u)du

and

δ̃2(x) = σ2(R)

For a top hat window (!):

M(R) =
4π

3
R3ρ
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The mass function
dV will be included in a NL object with mass greater
thanM if included in a fluctuation of radius> R and
witch is satisfying the non linear criteria (δ > δNL).
∫ +∞

M

mn(m)dm = ρ

∫

Fδ(δ)s(δ)dδ ∼ ρ

∫ +∞

δNL

Fδ(δ)dδ
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The mass function
dV will be included in a NL object with mass greater
thanM if included in a fluctuation of radius> R and
witch is satisfying the non linear criteria (δ > δNL).
∫ +∞

M

mn(m)dm = ρ

∫

Fδ(δ)s(δ)dδ ∼ ρ

∫ +∞

δNL

Fδ(δ)dδ

for a sharp threshold:
∫ +∞

M

mn(m)dm = ρ

∫ +∞

νNL

F(ν)dν
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The mass function
Following the spherical model:

νNL =
δNL

σ(M)

Just derive againstM :

N(M) = − ρ

M2σ(M)
δNL

ln σ

lnM
F(νNL)
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The mass function
Following the spherical model:

νNL =
δNL

σ(M)

Just derive againstM :

N(M) = − ρ

M2σ(M)
δNL

ln σ

lnM
F(νNL)

Press and Schechter use a Gaussian:

F(ν) =

√

2

π
exp(−ν

2

2
)
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The mass function
Following the spherical model:

νNL =
δNL

σ(M)

Just derive againstM :

N(M) = − ρ

M2σ(M)
δNL

ln σ

lnM
F(νNL)

Press and Schechter use a Gaussian:

F(ν) =

√

2

π
exp(−ν

2

2
)

and test it against numerical simulations...
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But...
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But...

It actually works! (Borgani et al., 2000)
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More accurate N(m)
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More accurate N(m)

Jenkins et al. (2001)
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More accurate N(m)
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More accurate N(m)

Jenkins et al. (2001)
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More accurate N(m)

Jenkins et al. (2001)

Universal mass function.
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e-PS formula
ST (Steth & Tormen, 1999) expression forF :

F(ν) =

√

2A

π
C exp(−0.5Aν2)(1.+ (1./(Aν)2)Q)

with A = 0.707 C = 0.3222 Q = 0.3.
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e-PS formula
ST (Steth & Tormen, 1999) expression forF :

F(ν) =

√

2A

π
C exp(−0.5Aν2)(1.+ (1./(Aν)2)Q)

with A = 0.707 C = 0.3222 Q = 0.3.

Allows to investigate structure formation.
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More accurate N(m)
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More accurate N(m)
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Conclusions
• There is a convincing modeling of dark matter

distribution and evolution in both linear and
non-linear regimes to constrain cosmological
scenario.
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Conclusions
• There is a convincing modeling of dark matter

distribution and evolution in both linear and
non-linear regimes to constrain cosmological
scenario.

• Allows to investigate structure formation.
History of individual structure is missing:
merging tree→ semi-analytical method “SAM”
in order to model galaxy formation :
assembly/evolution.
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Conclusions
• There is a convincing modeling of dark matter

distribution and evolution in both linear and
non-linear regimes to constrain cosmological
scenario.

• Allows to investigate structure formation.
History of individual structure is missing:
merging tree→ semi-analytical method “SAM”
in order to model galaxy formation :
assembly/evolution.

• Warning: data come through “light” which is
coming from baryons and this was almost not
discussed in these lectures...
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