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Outline

1. Homogeneous inflation

2. Cosmological perturbations: from quantum
fluctuations to observations

3. Beyond the simplest models

More details can be found in

* Lectures on inflation and cosmological perturbations,
arXiv:1001.5259 [astro-ph.CO]

« Inflation, quantum fluctuations and cosmological perturbations

(Cargese lectures) arXiv:hep-th/0405053



Standard cosmological model

General relativity: G, = 887G Ty

FLRW geometry (spatial homogeneity and isotropy)

dr?

1 —kr

ds® = —dt°4a?(t) [ >+ r2(d6* + sin® 0 d?)

Matter: 7/' = Diag(—p, P, P, P)

Friedmann equations (d)Q 81G K



Cosmological evolution

«  Three regimes with different eqs of state P = wp
1. Radiation dominated regime (w = 1/3)
2. Matter dominated regime (w = ()
3. Dark energy dominated regime ( w = —1)

- Evolution of the scale factor (for w # —1)

p+3H(p+P)=0 = poxag 0t

a(t) oc t? with ¢= <1 (w=P/p=const)

3(1 4+ w)

 The Hot Big Bang model has been very successful but
leaves several puzzles unsolved...



Flatness problem

 Deviation from flatness:

H25<é>2:% _ R ‘ Q_1:87TGP_1
 3H

a

« Assuming a small curvature term initially
H2 X p X a—3(1—|—w) ‘ (CLH)_2 x al—i—Sw
w > —1/3 M| — 1| increases with time !

« Today, |2 — 1] <1072 |2 — 1| must have been
extremely small in the past !

1Qnuc — 1 < 0(10_16>




Horizon problem

* Horizon = maximum distance covered by a particle

o dt
For aradial lightray  dr = @) [ds2 = —dt* +a*(t) (dr* +...) }
t / a(t) ot
dt dlna /
A or(tist) = — 4
. Using aH oc g~ (1H3w)/2 \\
| \\.///
. 1+3w
hor = 7 —|—23w (aH)™* [1 - (%) ’ ] comoving space

e If w>—1/3 ,thisis finite, With Apor ~ (aH)™"



Horizon problem

In standard
cosmology...

Y

>\hor (tls) (aflsHls)_l
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Anor(to)  (aoHo)™' <a0)1/2

Last scattering surface

Causally disconnected
regions ? —_—

How to explain the quasi-isotropy
of the CMB ? or
T

10>



Inflation

« A period of acceleration in the early Universe

a >0 < (aH) ldecreases

The horizon can be much bigger than
the Hubble radius.

* [nflation also solves the flathess u

K
a2 H?2

problem . O_1—

 Inflation also provides an explanation for the origin of the
primordial perturbations, which will give birth to
structures in the Universe.



Scalar field inflation

* How to getinflation ? Ar(d
= -"""(p+3P)
a 3
« Cosmological constant: P = —p butnoend...

 Scalar field

. . V(o
p= %& +V(¢), P= %gb? - V() (@)

iIn @ homogeneous universe

dv
— =0

b+ 3HY+ =



Slow-roll regime

1. . .
S0°<V(9), b<3HS P~ —p
* Slow-roll equations
8rG .
H2 ~ 7; 1% 3H¢+ V' ~ 0
« Slow-roll parameters
2 /1 2 Z
_mp v =m 27 1 mp =
+ Number of e-folds N = In Zene
a
H ¢en
dN = —dIna = —Hdt = ——d¢ N(gb)f:/ ’ ;/
¢ ¢ sV’




How much inflation ?

Inflation must last long enough
to solve the horizon problem.

Radiation era: the (comoving)
Hubble radius («H#)~! increases like a

Slow-roll inflation: ()~ decreases like a

N

aO ~ In Tend ~ In(1029 T@’I’Ld ) TO ~ 10_46\/
Qop To 1016GeVv

Taking into account the matter dominated era

In—29_ ~n(1027) ~ 62
Aend




Example 1

1
Potential of the form V(gp) = §m2¢2
Slow-roll: o> mp
g
2 V/ m2 _ 2 V// mP
_ P —n 'P — - — A
€:7<v) . TETPY T g2

Integration of the slow-roll egs of motion yields

O — Px = — \/7um(t—t*)

Using dina  H _ 3H2
dp 4V CmEV 2mp
one finds (qb _ 42 ) ,
a4 = Qppg EXP | — end = N(¢)~ _¢L2__
4mP 4mP




Example 2

. . 2 ¢
« Exponential potential: V(¢) = Vpexp [—\/7
qmp

 Exact solution

a(t) < t?, oo(t) =+/2gmp In

\/ Vo t
q(3¢—1) mp

mp (V\* _1 _ 2V 2
= — n=mp
2 V q V4 q

» Slow-roll (¢ > 1)

€




Main families of inflation models

Huge number of models of inflation
Three main categories...

« Large field models V(o)

¢ ~ mp initally. /

The scalar field rolls down toward
the minimun of the potential. ¢

Typically V(qb) =V ¢n



Main families of inflation models

 Small field models
The initial value of the scalar field is
small, typically near a maximum. L/\L
gb p
v =vo [1- (%) |
7!
 Hybrid models

V() = Vo [1 + (—
L

Requires a second field to end inflation



Hybrid inflation
Potential: V(p,x) = lm2¢2 Ly 242 4 1y ( 2 _ M2>2
' X5 A 4 \X

Effective mass:  m% = —AM~ 4+ N¢?

A
If &> ¢c= VM

1 1
then Verr(¢) = 5m2¢2 + Z/\M4

If ¢ <oc ,end of inflation...



Higgs inflation

- Non-minimal coupling of the Higgs to gravity: £ = ¢H'HR

2 2
/d‘lx\/* [MP LA %@Lhaﬂh - % (h? - v2)2]

 From the Jordan frame to the Einstein frame

) £h2
Guv = Guv = Q2g,uz/ QZ =1+ W

SE_/d4x\/—[ PR——(?ux@“x Vi(x )]

with the new field X defined by X - \/ Q2 +6§4h2/M1%



Higgs inflation

. | 2
Potential — 2 (h(x)? - 22
otentia V(x) a0 1 (h(x)* —v?)
AME 2
For h> Mp/\/g Viy) ~ P [1+ ( X >]
) 4¢7 P V6Mp
The potential is very flat: _ _ 4Mp AME

€

—3ept 1T T2
Number of e-folds before the end of inflation

~ ghz_hgnd hend:MP/\/g
8 Mp/¢

Observational constraints

N (h)

~ 47 % 107
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