Structure formation & Clusters for Cosmology

Alain Blanchard

alain.blanchard@irap.omp.eu

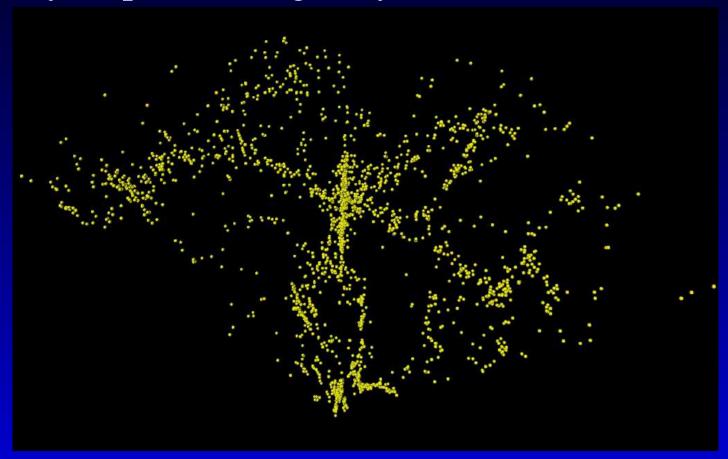
3D surveys

3D surveys

Velocity dispersion in galaxy clusters.

3D surveys

Velocity dispersion in galaxy clusters.



$$v = H_0 D + v_{pec} \cos(\theta)$$

So:

$$D_{obs} = D_{true} + H_0^{-1} V_{pec} \cos(\theta)$$

So:

$$D_{obs} = D_{true} + H_0^{-1} V_{pec} \cos(\theta)$$

Measures
$$\sigma_{1D} = \sigma_{3D}/\sqrt{3}$$

So:

$$D_{obs} = D_{true} + H_0^{-1} V_{pec} \cos(\theta)$$

Measures $\sigma_{1D} = \sigma_{3D}/\sqrt{3}$ Infers mass:

$$\sigma^2 = \alpha' \frac{GM}{R}$$

So:

$$D_{obs} = D_{true} + H_0^{-1} V_{pec} \cos(\theta)$$

Measures $\sigma_{1D} = \sigma_{3D}/\sqrt{3}$ Infers mass:

$$\sigma^2 = \alpha' \frac{GM}{R}$$

Zwicky (\sim 1930) inferred the presence of dark matter.

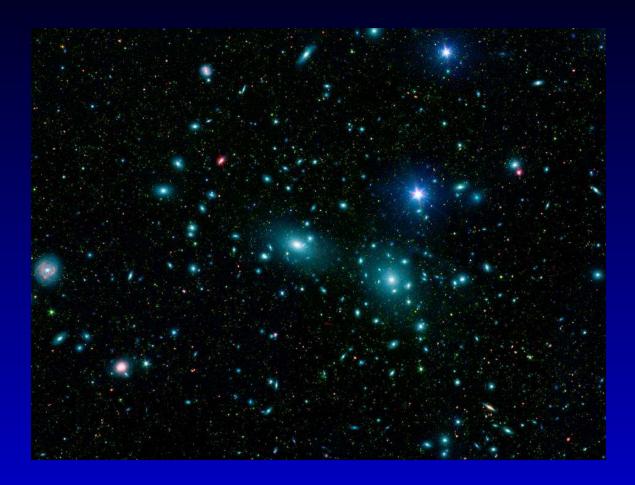
So:

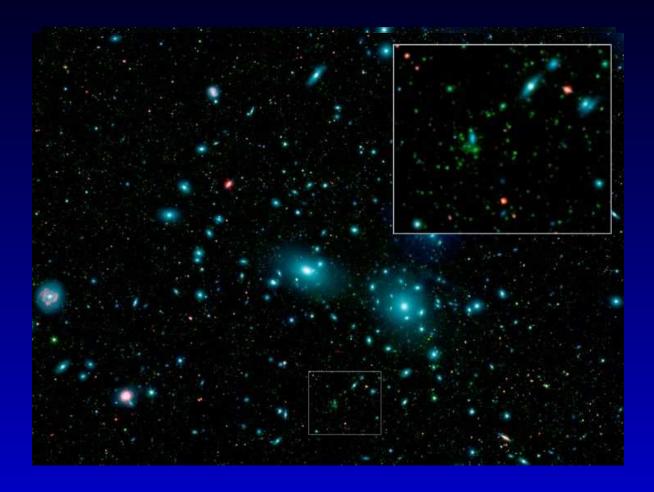
$$D_{obs} = D_{true} + H_0^{-1} V_{pec} \cos(\theta)$$

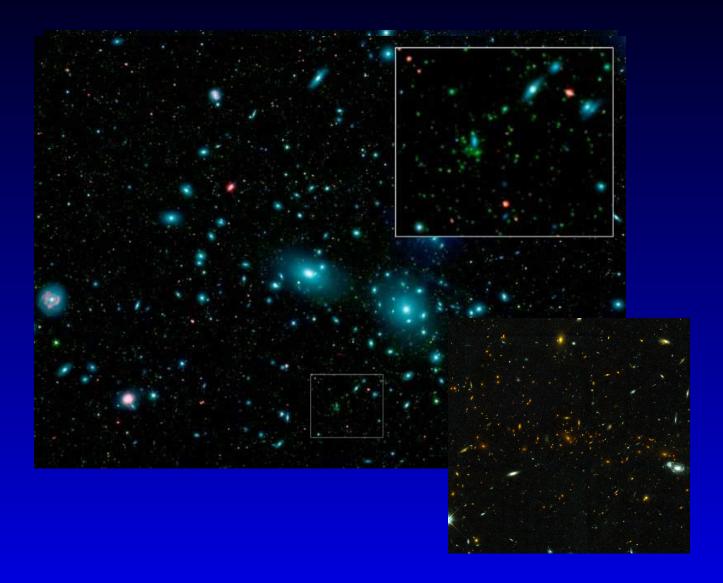
Measures $\sigma_{1D} = \sigma_{3D}/\sqrt{3}$ Infers mass:

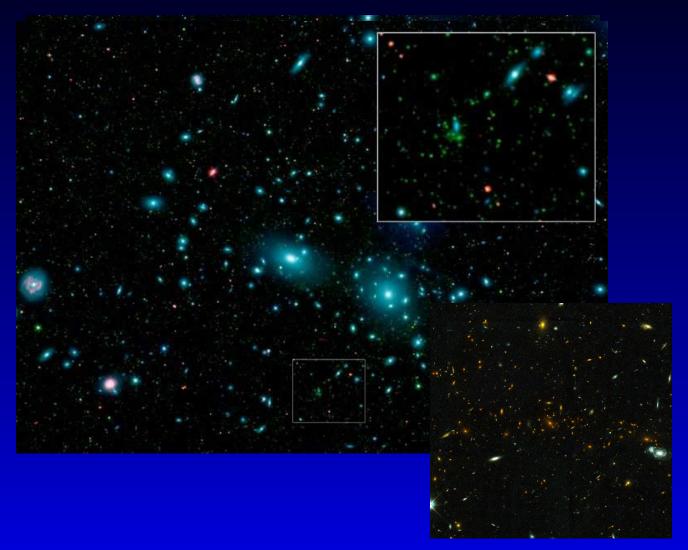
$$\sigma^2 = \alpha' \frac{GM}{R}$$

Zwicky (\sim 1930) inferred the presence of dark matter.

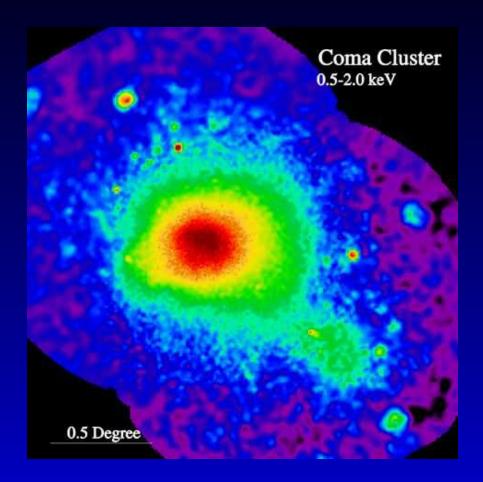


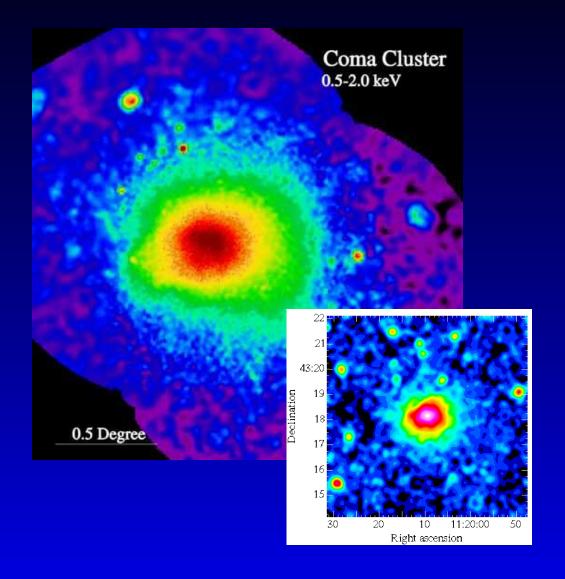


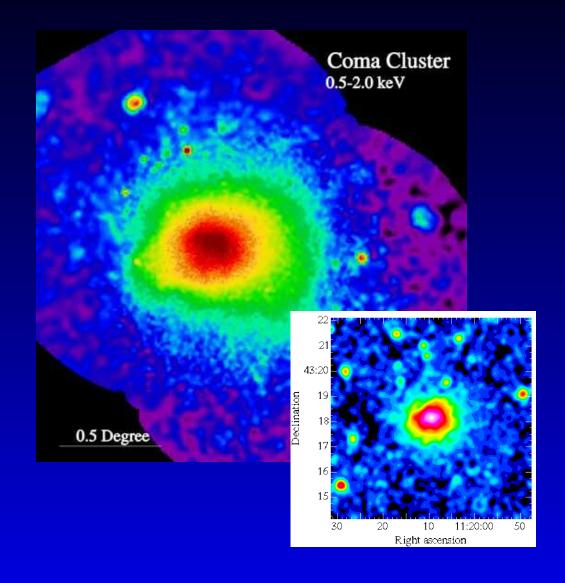


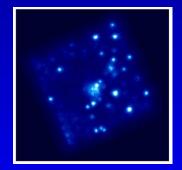


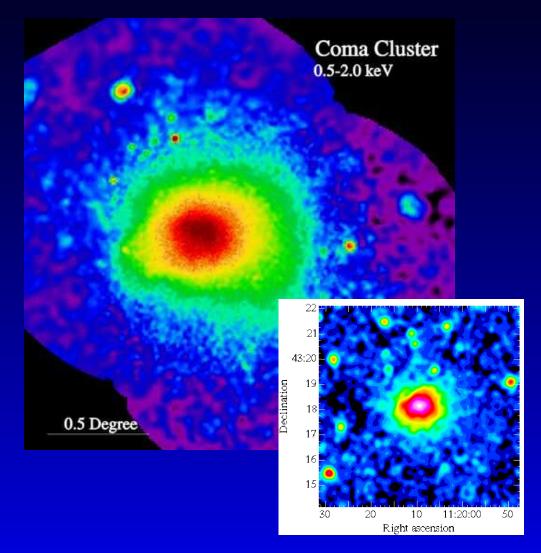
Optical data: Stars, metals, velocity dispersion \rightarrow Mass...

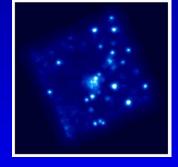








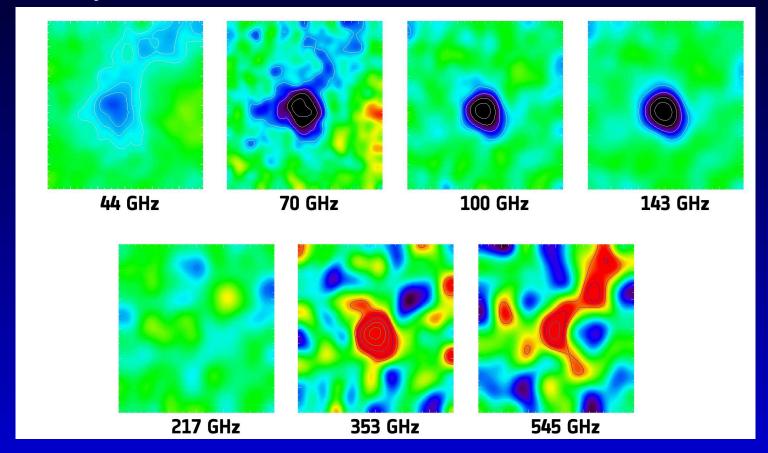




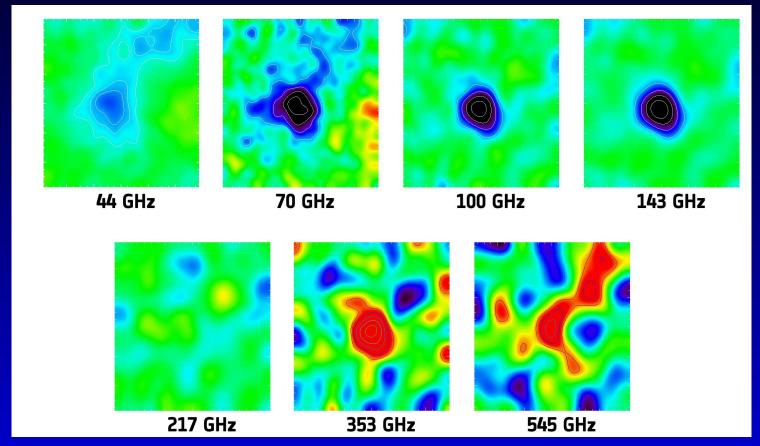
X-ray data : Gas, metals, temperature \rightarrow

Mass...

A2319 by Planck

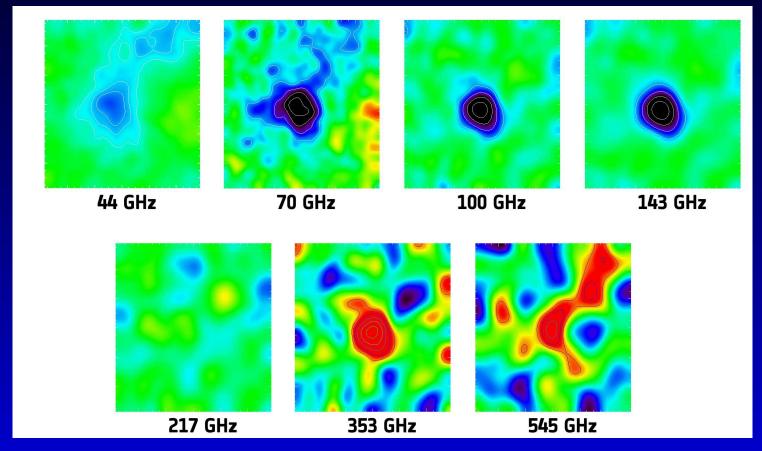


A2319 by Planck



SZ Signal : Gas mass \times temperature \rightarrow Mass...

A2319 by Planck



SZ Signal : Gas mass \times temperature \rightarrow Mass...

No dimming with redshift

Clusters are unique objects in astrophysics:

 Baryons content can be measured/estimated

- Baryons content can be measured/estimated
- Metals content can be estimated

- Baryons content can be measured/estimated
- Metals content can be estimated
- Mass content can be estimated

- Baryons content can be measured/estimated
- Metals content can be estimated
- Mass content can be estimated
- in redundant ways

- Baryons content can be measured/estimated
- Metals content can be estimated
- Mass content can be estimated
- in redundant ways
- → fundamental probes for cosmology

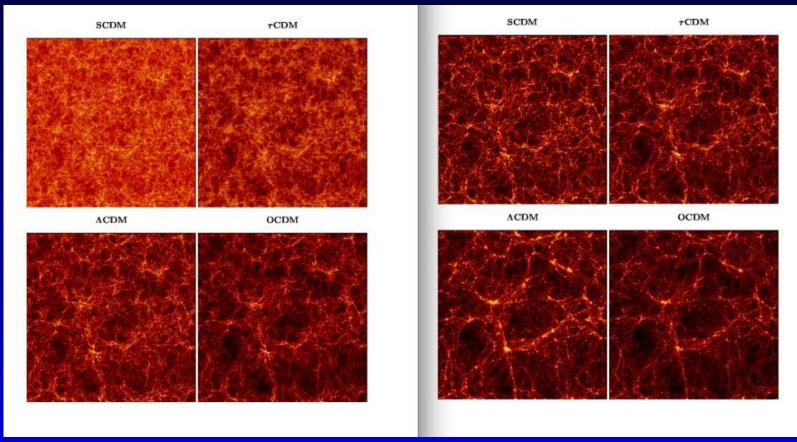
Cluster as cosmological tools

Cluster as cosmological tools

Important progresses are due to numerical simulations:

Cluster as cosmological tools

Important progresses are due to numerical simulations:



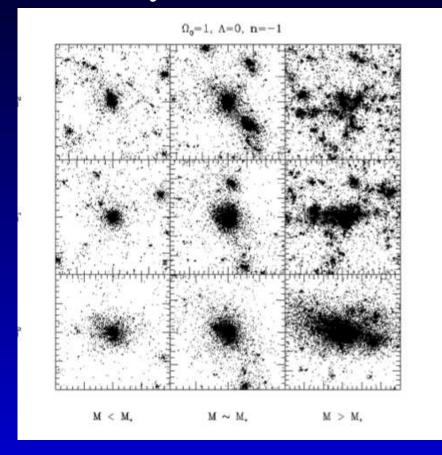
Clusters as cosmological tools

Clusters as cosmological tools

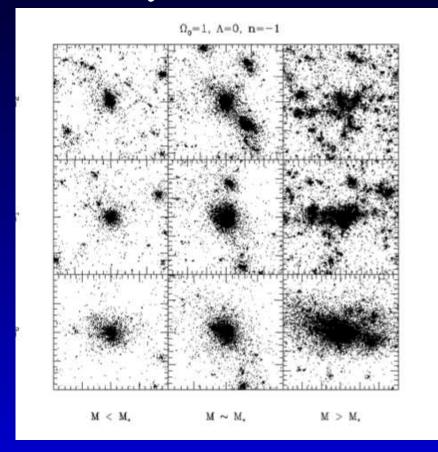
Clusters Self-similarity from simulations:

Clusters as cosmological tools

Clusters Self-similarity from simulations:



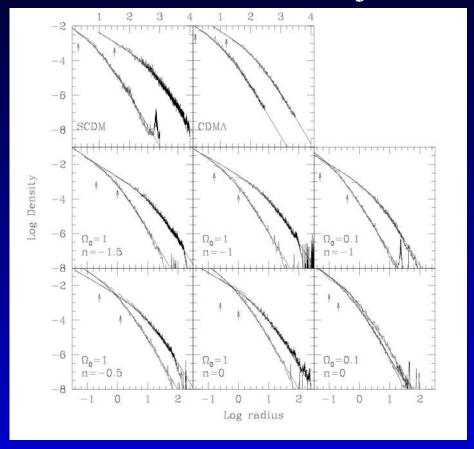
Clusters Self-similarity from simulations:



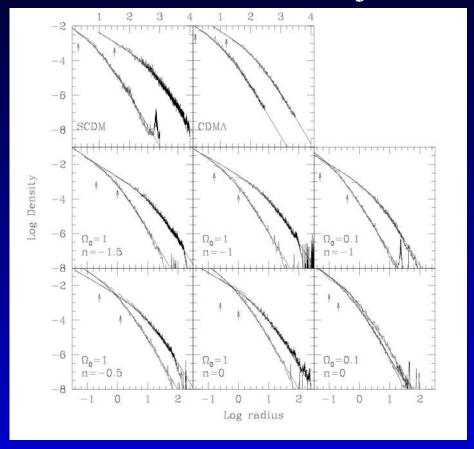
$$\sigma(M_*) \sim 1$$

Clusters are *almost* self similar objects:

Clusters are *almost* self similar objects:



Clusters are *almost* self similar objects:



NFW profiles

From numerical simulations DM halo appear to be well fitted by the so-called NFW profile:

$$\frac{\rho(r)}{\rho_c} = \frac{\delta_c}{(r/r_c)(1.+r/r_c)^2}$$

Two parameters: mass in some radius (for instance $\Delta=200$) and one parameter: the concentration c: $r_c=r_{200}/c$

NFW profiles

From numerical simulations DM halo appear to be well fitted by the so-called NFW profile:

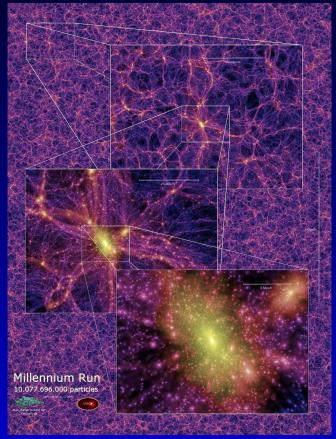
$$\frac{\rho(r)}{\rho_c} = \frac{\delta_c}{(r/r_c)(1.+r/r_c)^2}$$

Two parameters: mass in some radius (for instance $\Delta = 200$) and one parameter: the concentration c: $r_c = r_{200}/c$

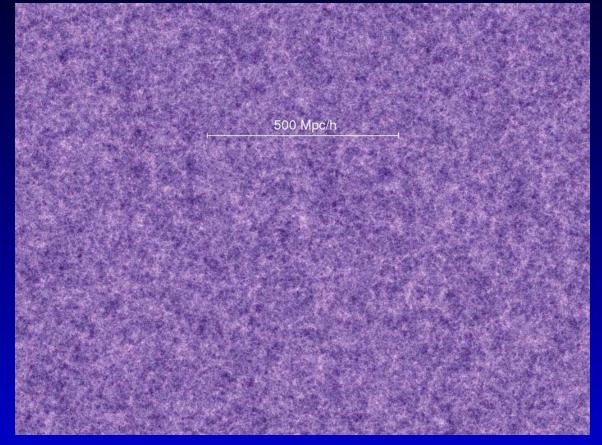
allows analytical M(r)

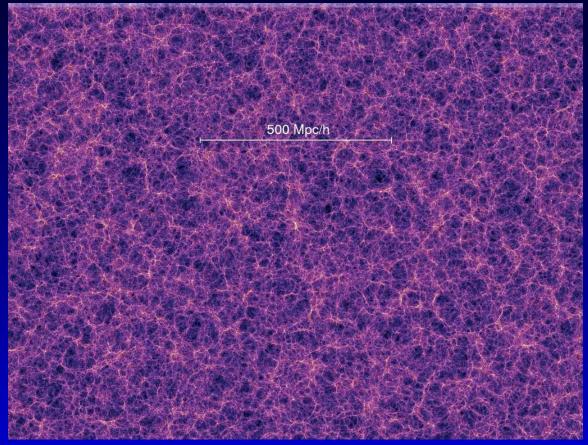
More recent simulations of Clusters:

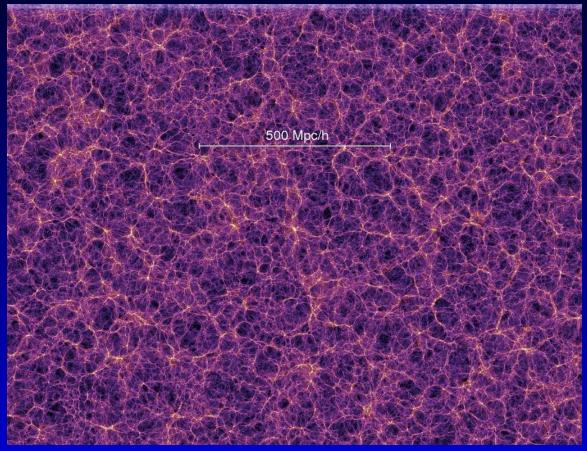
More recent simulations of Clusters:



Millenium simulation: much more detailled pictures...







Let's first define clusters...

Let's first define clusters...
From previous pictures, it is not clear...

Let's first define clusters...
From previous pictures, it is not clear...
By convention, clusters are defined as regions with contrast density above some threshold:

$$\frac{\langle \rho_c \rangle}{\rho_r} > 1 + \Delta_{th}$$

Let's first define clusters...
From previous pictures, it is not clear...
By convention, clusters are defined as regions with contrast density above some threshold:

$$\frac{\langle \rho_c \rangle}{\rho_r} > 1 + \Delta_{th}$$

Which geometry (spheres, friend-of-friend, ...)?

Let's first define clusters...
From previous pictures, it is not clear...
By convention, clusters are defined as regions with contrast density above some threshold:

$$\frac{\langle \rho_c \rangle}{\rho_r} > 1 + \Delta_{th}$$

Which geometry (spheres, friend-of-friend, ...) ? Which reference density (ρ_r) ? $\rho_u(z)$, $\rho_c(z)$

Let's first define clusters...
From previous pictures, it is not clear...
By convention, clusters are defined as regions with contrast density above some threshold:

$$\frac{\langle \rho_c \rangle}{\rho_r} > 1 + \Delta_{th}$$

Which geometry (spheres, friend-of-friend, ...)? Which reference density (ρ_r) ? $\rho_u(z)$, $\rho_c(z)$ Which reference contrast (Δ_{th}) ? Δ_v , 178, 200, 500, 2000...

$$\delta_m = \frac{3(6\pi)^{2/3}}{20}(1+z_m) = 1.06(1+z_m) \text{when} \Delta_m \simeq 4.5$$

and

$$\delta_m = \frac{3(6\pi)^{2/3}}{20}(1+z_m) = 1.06(1+z_m) \text{when} \Delta_m \simeq 4.5$$

and

$$\delta_m = 2^{2/3} \frac{3(6\pi)^{2/3}}{20} (1+z_v) = 1.68(1+z_m) \text{when} \Delta_v \simeq 177.$$

$$\delta_m = \frac{3(6\pi)^{2/3}}{20}(1+z_m) = 1.06(1+z_m) \text{when} \Delta_m \simeq 4.5$$

and

$$\delta_m = 2^{2/3} \frac{3(6\pi)^{2/3}}{20} (1+z_v) = 1.68(1+z_m) \text{when} \Delta_v \simeq 177.$$

Transition into the non linear regime is extremely rapid.

$$\delta_m = \frac{3(6\pi)^{2/3}}{20}(1+z_m) = 1.06(1+z_m) \text{when} \Delta_m \simeq 4.5$$

and

$$\delta_m = 2^{2/3} \frac{3(6\pi)^{2/3}}{20} (1+z_v) = 1.68(1+z_m) \text{when} \Delta_v \simeq 177.$$

Transition into the non linear regime is extremely rapid.

For
$$z < z_v$$
, $\Delta = 177 \left(\frac{1+z_v}{1+z} \right)^3$

$$\delta_m = \frac{3(6\pi)^{2/3}}{20}(1+z_m) = 1.06(1+z_m) \text{when} \Delta_m \simeq 4.5$$

and

$$\delta_m = 2^{2/3} \frac{3(6\pi)^{2/3}}{20} (1+z_v) = 1.68(1+z_m) \text{when} \Delta_v \simeq 177.$$

Transition into the non linear regime is extremely rapid.

For
$$z < z_v$$
, $\Delta = 177 \left(\frac{1+z_v}{1+z} \right)^3$

Can be generalized to other models

$$N(M, z) = -\frac{\rho}{m^2 \sigma(M)} \delta_s \frac{d \log \sigma}{d \log M} \mathcal{F}(\frac{\delta_s}{\sigma(M)})$$

$$N(M, z) = -\frac{\rho}{m^2 \sigma(M)} \delta_s \frac{d \log \sigma}{d \log M} \mathcal{F}(\frac{\delta_s}{\sigma(M)})$$

estimation of $\sigma(M) \leftrightarrow P(k)$

$$N(M,z) = -\frac{\rho}{m^2 \sigma(M)} \delta_s \frac{d \log \sigma}{d \log M} \mathcal{F}(\frac{\delta_s}{\sigma(M)})$$

estimation of $\sigma(M) \leftrightarrow P(k)$ estimation of $\sigma(M,z)) \to \mathbf{growing\ rate}$ of fluctuations.

$$N(M, z) = -\frac{\rho}{m^2 \sigma(M)} \delta_s \frac{d \log \sigma}{d \log M} \mathcal{F}(\frac{\delta_s}{\sigma(M)})$$

estimation of $\sigma(M) \leftrightarrow P(k)$ estimation of $\sigma(M,z)) \rightarrow$ **growing rate** of fluctuations.

Test beyond geometrical characterisation of the universe. (Oukbir and A.B, 1992)

From mass to observables

From mass to observables

Cluster mass M is not an observable quantity...

From mass to observables

Cluster mass M is not an observable quantity... The self-similar hypothesis comes in (Kaiser, 1986).

Cluster mass M is not an observable quantity... The self-similar hypothesis comes in (Kaiser, 1986). The mass is:

$$M_{\Delta} = \frac{4\pi}{3}\rho_c R^3 = \frac{4\pi}{3}\Omega_m \rho_0 (1+z)^3 (1+\Delta) R_{\Delta}^3$$

Cluster mass M is not an observable quantity... The self-similar hypothesis comes in (Kaiser, 1986). The mass is:

$$M_{\Delta} = \frac{4\pi}{3}\rho_c R^3 = \frac{4\pi}{3}\Omega_m \rho_0 (1+z)^3 (1+\Delta) R_{\Delta}^3$$

so that M and z are the only two numbers to characterize a cluster. (you can add further ingredients like c NFW concentration parameter, ν ...)

Application to the x-ray temperature:

Application to the x-ray temperature:

$$T_x \propto \frac{GM_{\Delta}}{R_{\Delta}}$$

Application to the x-ray temperature:

$$T_x \propto \frac{GM_{\Delta}}{R_{\Delta}}$$

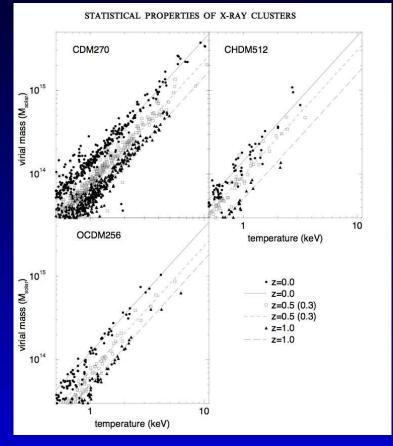
so that:

$$T_x = A_{TM} M^{2/3} (1+z) (\Omega_m \Delta/178)^{1/3}$$

(this depends on the choice of ρ_r).

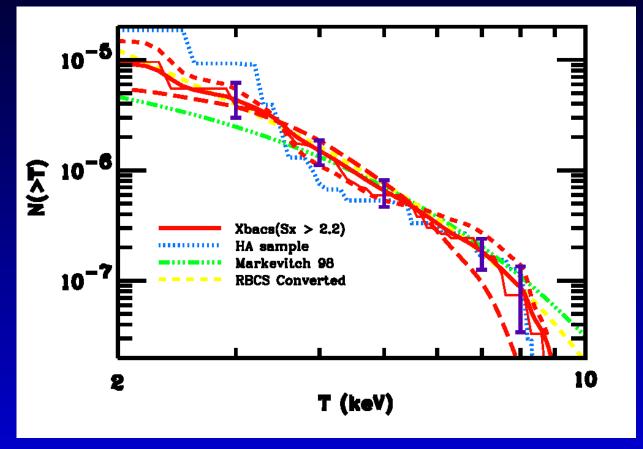
Seems to work well:

Seems to work well:



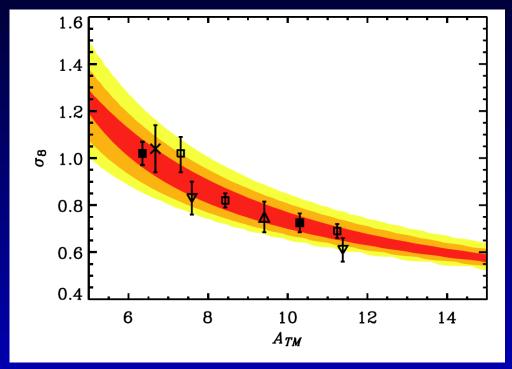
Fitting $N(T_x)$

Fitting $N(T_x)$



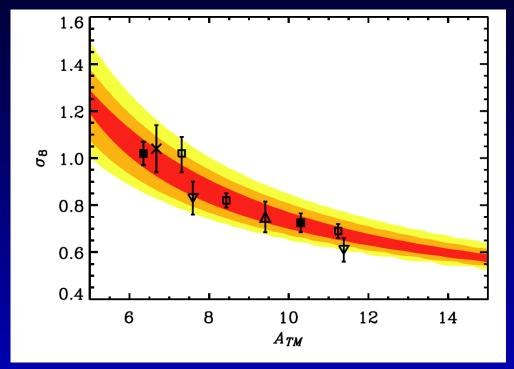
Measuring local matter fluctuations:

Measuring local matter fluctuations:



Evard et al (2002), Pierpaoli et al. (2003), Seljak (2002), Vauclair et al. (2003), Viana et al. (2003)

Measuring local matter fluctuations:



Evard et al (2002), Pierpaoli et al. (2003), Seljak (2002), Vauclair et al. (2003), Viana et al. (2003) Consistency and degeneracy...

Let do the same for the x-ray luminosity (Bremstrahlung):

Let do the same for the x-ray luminosity (Bremstrahlung):

$$L_x \propto n^2 V T^{1/2}$$

Let do the same for the x-ray luminosity (Bremstrahlung):

$$L_x \propto n^2 V T^{1/2}$$

leading to:

$$Lx \propto M^{4/3} (1+z)^{7/2} \propto T^2 (1+z)$$

Let do the same for the x-ray luminosity (Bremstrahlung):

$$L_x \propto n^2 V T^{1/2}$$

leading to:

$$Lx \propto M^{4/3} (1+z)^{7/2} \propto T^2 (1+z)$$

Observations leads to $L_x \propto T^3$!

Let do the same for the x-ray luminosity (Bremstrahlung):

$$L_x \propto n^2 V T^{1/2}$$

leading to:

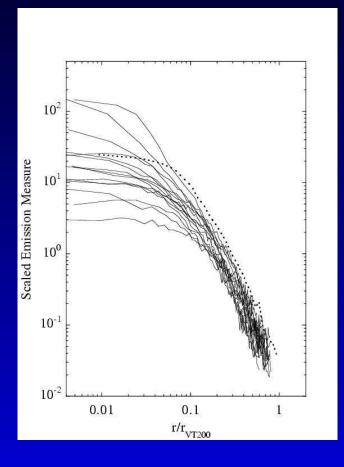
$$Lx \propto M^{4/3} (1+z)^{7/2} \propto T^2 (1+z)$$

Observations leads to $L_x \propto T^3$!

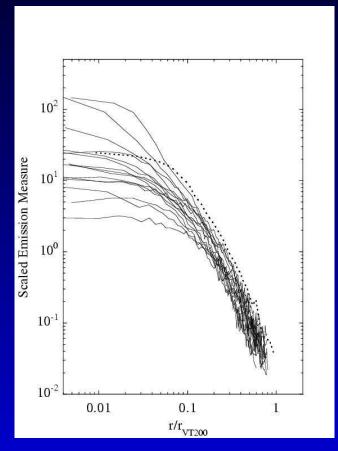
Gas in clusters needs extra heating.

Scaling of the gas content:

Scaling of the gas content:



Scaling of the gas content:



So clusters may be self-similar after all...

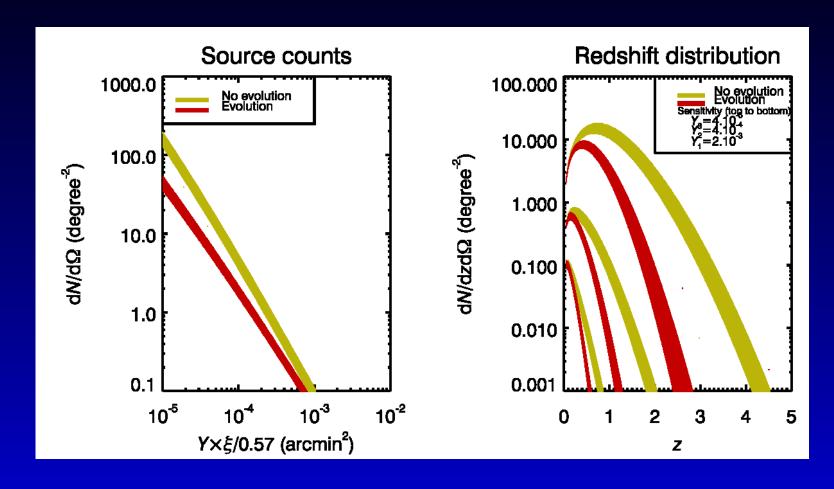
$$Y = KM_g T_g D_a^{-2}$$

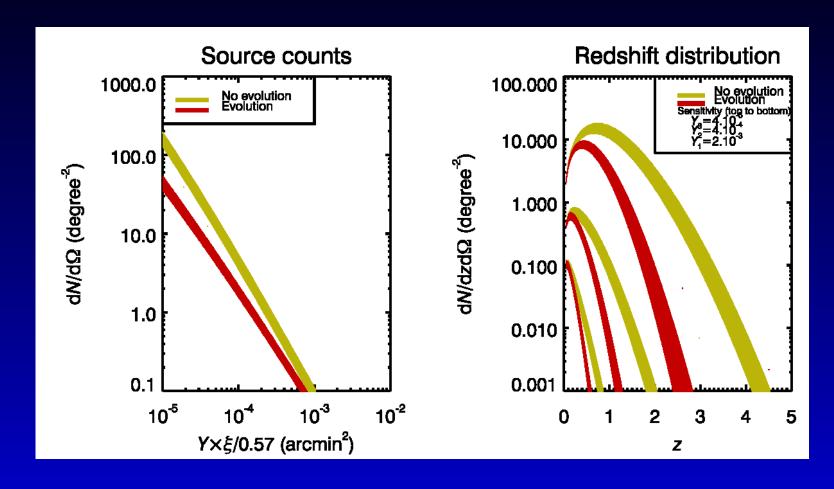
$$(1) Y = KM_gT_gD_a^{-2}$$

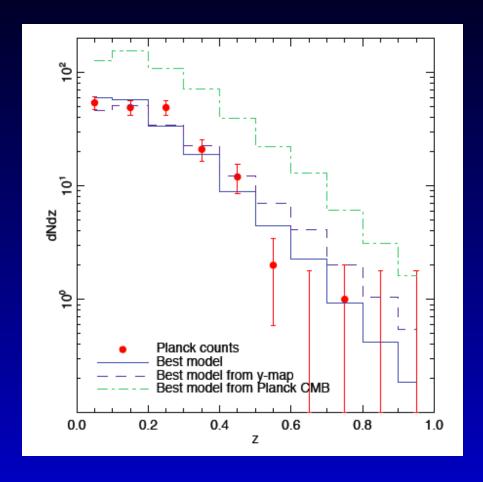
Leading to the scaling law

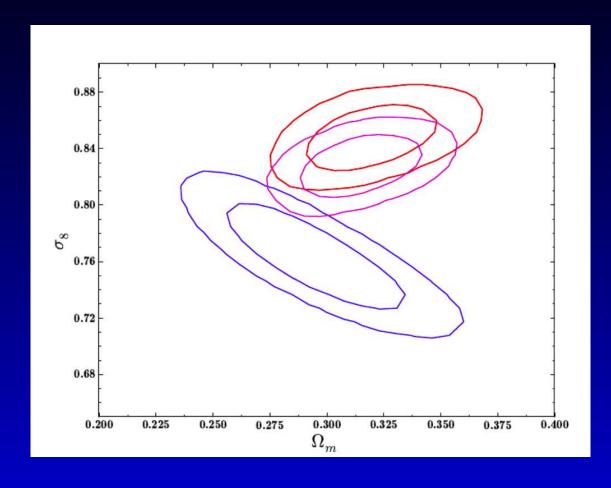
$$Y = \kappa \xi A_{TM} f_B M^{5/3} h^{8/3} \left(\Omega_M \frac{\Delta(z, \Omega_M)}{178} \right)^{1/3} (1+z) D^{-2}$$

where $\kappa = 1.816.10^{-4}$ and ξ accounts for the difference between T_x and T_q .









Rather than using clusters to constraint the Cosmology, why not using the Cosmology to constraint the **physical state** of clusters?

Rather than using clusters to constraint the Cosmology, why not using the Cosmology to constraint the **physical state** of clusters? Let's assume:

$$T_x = A_{TM}M^{2/3}(1+z)(\Omega_m\Delta/178)^{1/3}(1+z)$$

Rather than using clusters to constraint the Cosmology, why not using the Cosmology to constraint the **physical state** of clusters? Let's assume:

$$T_x = A_{TM}M^{2/3}(1+z)(\Omega_m\Delta/178)^{1/3}(1+z)$$

Try to estimate A_{TM}

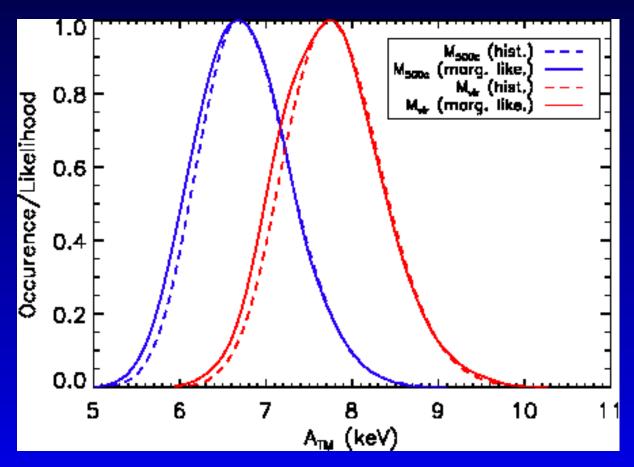
Use CosmoMC on SNIa+P(k)+CMB + $N(T_x)$

Use CosmoMC on SNIa+P(k)+CMB + $N(T_x)$

Estimates parameters inclusing A_{TM} :

Use CosmoMC on SNIa+P(k)+CMB + $N(T_x)$

Estimates parameters inclusing A_{TM} :



Use CosmoMC on (SNIa+P(k))+CMB + $N(T_x)$

Use CosmoMC on (SNIa+P(k))+CMB + $N(T_x)$ Estimates A_{TM} (Tinker)

Use CosmoMC on (SNIa+P(k))+CMB + $N(T_x)$

Estimates A_{TM} (Tinker)

$$A_{TM} = 7.7 \pm 0.7 \text{ keV } (R_{vir})$$

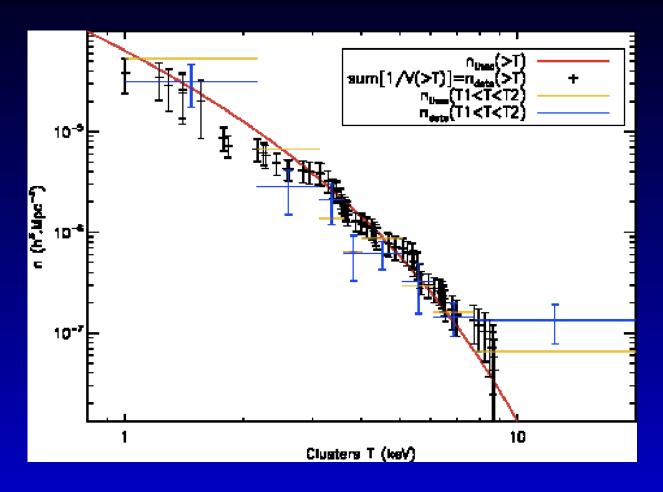
Use CosmoMC on (SNIa+P(k))+CMB + $N(T_x)$

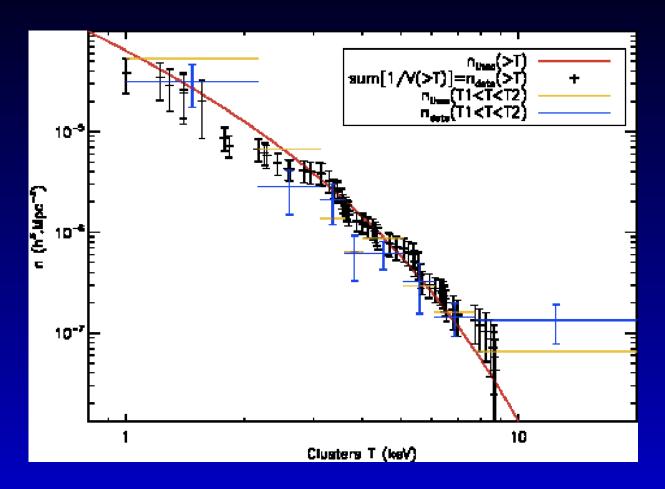
Estimates A_{TM} (Tinker)

$$A_{TM} = 7.7 \pm 0.7 \text{ keV } (R_{vir})$$

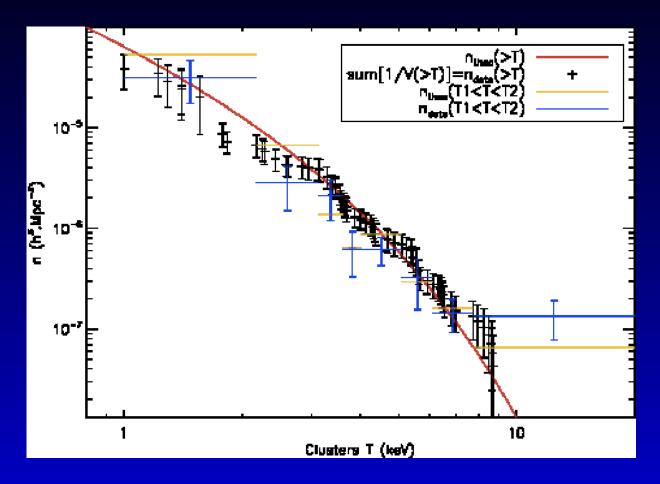
$$A_{TM} = 6.7 \pm 0.6 \text{ keV } (R_{500})$$

S.Ilic & A.B.





We need large sample of clusters...



We need large sample of clusters... X-ray, SZ, optical