
Weak gravitational lensing

A. Benoit-Lévy 
University College London

46ème Ecole de GIF - La Cosmologie après PLANCK



Outline

CMB lensing

Cosmic shear 

Deflection of photons path in an inhomogeneous Universe

1. the lens equation
2. potential, convergence and shear
3. the lensing Jacobian
4. ellipticities estimation
5. cosmic shear

1. differences with cosmic shear
2. the lensing potential
3. impact on CMB power spectra
4. lensing reconstruction
5. Planck and beyond



1801
Soldner computes the deflection angle of a light ray passing near the sunJohann Georg yon Soldner and the Gravitational Bending of Light 939 

ON THE DEVIATION OF A LIGHT RAY FROM ITS MOTION 
ALONG A STRAIGHT LINE THROUGH THE ATTRACTION OF 
A CELESTIAL BODY WHICH IT PASSES CLOSE BY 

Herr Joh. Soldner 

Berlin, ~1arch 1801 ~ 

tn the present very imperfect condition of practical astronomy it will 
be ever more necessary to develop from theory, that is, from the general 
properties and interaction of  matter, all circumstances which may have an 
influence on the true or median position of a celestial body, so that one may 
derive from a good observation all the benefit which it is capable to yield. 

It is, of  course, true that already through observations and otherwise 
one was aware of  considerable deviations from an assumed law; such as 
was the case with the aberration of  light. There can, however, be deviations 
which are so small that it is ditficult to decide whether they are true deviations 
or errors of  observation. There can also be deviations which are considerable 
but, being combined with magnitudes one has not yet succeeded in clearly 
identifying, escape the observer. 

Of the latter kind may be the deviation of a light ray from straight line 
when it passes close by a celestial body and is considerably exposed to its 
attraction. For  then one can easily see that this deviation should be the 
greatest when, seen from the surface of the attracting body, the light ray 
comes in the horizontal direction, and will be zero when the light ray comes 
down vertically; thus the magnitude of deviation will be a function of  
altitude. But as the refration of light is also a function of altitude, these two 
magnitudes must be combined together; and therefore it may be that the 
deviation in its maximum would amount to several seconds [of an arc] 
without its being possible to identify it through observations. 

These are roughly the considerations which moved me to reflect further 
on the perturbation of  light rays, which according to my knowledge has 
so far been investigated by nobody. 

Before undertaking the investigation itself, I will make a few more 
general remarks, through which the calculation will be facilitated. As at 
first I will determine only the maximum of such bending, I will let the 
light ray pass horizontally to the surface of  the attracting body at the point 
of  observation, or I assume that the star, from which the light ray comes, 
is apparently caught in its rising. For  the sake of  facility in the undertaking 
I assume that the light ray does not come in at the point of  observation 

~ Astronomisehes Jahrbuchf i ir  das Jahr 1804 (C. F. E. Spfithcn, Berlin, 1801), pp. 161-172. 
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but leaves f rom there. One can easily see that this makes no difference 
concerning the determination of the figure of  its path. Furthermore, when 
a light ray comes horizontally to a point on the surface of the attracting 
body and continues its path, which at first is again horizontal, then one will 
easily notice that it will in this continuation of  its advance describe the same 
curved line which it has already followed. I f  one also draws a straight line 
through the point of  observation and the center of  the attracting body, 
then this line will become the main axis of the curved line serving for the 
path of  the light ray, insofar as below and above that straight line there will 
be described two entirely congruent segments of the curved line. 

Let now (Fig. 3) C be the center of  the attracting body, A a point on 
its surface. From A let a light ray go forth in the directionAD, or horizontally, 
with a velocity such that it goes the distance v in a second. The light ray will, 
however, instead of going on in the direction AD, be forced, because of the 
attraction of the celestial body, to describe a curved line AMQ whose nature 
we shall investigate. After a time t, computed from the moment  of  departure 
from A, the light ray will find itself at M on that curved tine, at a distance 
CM = r f rom the center of  the attracting body. Let g be the acceleration 
of gravity at the surface of  the body. Further, let CP = x, MP = y, and the 
angle MCP --  % The force with which the light ray at M will be pulled 

Jt ~ 2B 

Figure 3 of Sotdner's paper. (Reproduced from a photo- 
graph of a copy in the Crawford Library of the Royal 
Observatory of Edinburgh with permission of the 
Astronomer Royal for Scotland.) 

On the Deviation of  a Light Ray Through the Attraction of  a Celestial Body 947 

the final results, for here only the relation of  the speed of  light to the velocity 
of a body falling to the earth is concerned. The earth's radius and the 
acceleration of gravity :must therefore be taken at the specified degree of 
latitude, because the earth-spheroid is, with respect to bodily content, 
similar to a globe which has for its radius the earth's radius, or 6,369,514 
meters. 

When one puts these values for v and g into the equation for tan ~o, 
then one obtains, in sexagesimal seconds, oJ = 0".0009798, or in round figures, 
o)----0".001. As this maximum value is quite unobservable, it would be 
superfluous to go further; or to determine how this value decreases with 
height over the horizon; and by how much it becomes smaller when the 
distance of the star from which the light ray comes is assumed to be finite 
and corresponding to a given magnitude. Such is a determination that 
would present no difficulty. 

I f  one were to investigate by means of the given formula how much 
the moon would deviate a light ray when it goes by the moon and comes 
to the earth, then one must, after substituting the corresponding magnitudes 
and taking the radius of  the moon for unity, double the value found through 
the formula, because a light ray, which goes by the moon and comes to the 
earth describes two arms of a hyperbola. But regardless of  this, the maximum 
still must come to a much smaller value than in the case of the earth, because 
the mass of the moon, and therefore g, is much smaller. The bending must 
therefore depend only on the cohesion, on the dispersion of light, and on 
the atmosphere of  the moon; the universal attraction contributes nothing 
noticeable. 

I f  one substitutes in the formula for tan co the acceleration of  gravity 
on the surface of  the sun, and one takes the radius of that body for unity, 
then one finds co ~- 0".84. I f  one could observe the fixed stars very close 
to the sun, then one would have to take this very much into account. But since 
this is not known to happen, the perturbation caused by the sun can also be 
neglected. For  light rays which come from Venus, a star which Vidal [now] 
observes only two minutes [of an arc] away from the edge of the sun (see 
Herr  Lt. yon Zach's Monatliche Correspondenz, Vol. II, p. 87), the pertur- 
bation is much smaller, because the distances of  Venus and of the earth 
from the sun cannot be taken to be infinitely great. 

Through the combination of  several bodies which a light ray could 
encounter on its way the results would be somewhat larger, but for our 
observations still certainly unnoticeable. 

Therefore it is clear that nothing makes it necessary, at least in the 
present state of practical astronomy, that one should take into account 
the perturbation of light rays by attracting celestial bodies. 
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I must now face still a couple of  objections which one can perhaps make 
to me. 

I t  may be remarked that I have deviated from the usual procedures 
in that I have, already before making the calculations, assumed some generat 
properties of  curved lines, which usually happens only through [first] making 
them and should have been done here as well. But the computation is much 
shortened thereby; and why should one calculate where the point to be 
proven can be made much more evident through a small reflection. 

Hopefully, no one would find it objectionable that I treat a light ray 
as a heavy body. That  light rays have all the absolute [basic] properties 
of  matter one can see f rom the phenomenon of aberration which is possible 
only because light rays are truly material. And furthermore, one cannot 
think of a thing which exists and works on our senses that would not have 
the property of matter. 

Besides, there is nothing which you can call 
distinct f rom body and separate f rom void 
to be discovered as a kind of  third nature. 

Lucretius: On the Nature o f  Things, I, 431. 

At any rate, I do not believe that there is any need on my part  to apologize 
for having published the present essay just because the result is that all 
perturbations are unobservable. For it would still be just as important 
for us to know what is presented by theory, though it has no noticeable 
influence on praxis, as we are interested in what has in retrospect real influence 
on it. Our insights would by both be equally enlarged. One also demon- 
strates, for instance, that the daily aberration, the disturbance of  the rotation 
of the earth, and other similar things are unobservable. 
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908 A. Einstein. Einfiup der Schwerkrafi usw. 

Nach Gleichung (4) erleidet ein an einem Himmelskijrper 
vorbeigehender Lichtstrahl eine Ablenhng nach der Seite 
sinkenden Qravitationspotenti~s, also nach der dem Himmels. 
kijrper zugewandten Seite von der GrijBe 

wobei k die Gravitationskonstante, M die Masse des Himmels- 
kijrpers, A den Abstand des Lichtstrahles vom Mittelpunkt 
des Himmelsk5rpers bedeutet. Ein an der Some vmbeigehender 
Lichtstrahl erlitte demnach eine Ablenkung vom Betrage 4.10-6 

M 

Fig. 3. 

= 0,83 Boyensehmden. Um diesen Betrag er- 
scheint die Winkeldistanz des Sternes vom Sonnen- 
mittelpunkt durch die Kriimmung des Strahles 
vergrbbert. Da die Fixsterne der der Some 
zugewandten Himmelspartien bei totalen Sonnen- 
finsternissen sichtbar werden, ist diese Kon- 
sequenz der Theorie mit der Erfahrung ver- 
gleichbar. Beim Planeten Jupiter erreicht die 
zu erwartende Verschiebung etwa l/loo des an- 
gegebenen Betrages. Es ware dringend zu 
wtinsehen, daB sich Astronomen der hier auf- 

gerollten Frage anniihmen, auch wenn die im vorigen ge- 
gebenen Uberlegungen ungeniigend fundiert oder gar aben- 
teuerlich eracheinen sollten. Denn abgesehen von jeder Theaie  
mu6 man sich fragen, ob mit den heutigen Witteln ein EinfluB 
der Gravitationsfelder auf die Ausbreitung des Lichtes skh 
konstatieren 116t. 

P r a g ,  Juni 1911. 

(Eingegangen 21. Juni 1911.) 

Brief historical overview

1911
Einstein re-calcultes the same value by considering the equivalence principle 
(still Newtonian)
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1915 
GR value is computed to be exactly twice the Newtonian value: 1.7’’

Brief historical overview



1919
Eddington measures the displacement of position of stars during a Sun 
eclipse to be consistent wth GR prediction

Dyson and others. Ph~il. Trans., A, vool. 220, P'late 1. 
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332 SIR F. W. DYSON, PROF. A. S. EDDINGTON AND MR. C. DAVIDSON ON A 

Thus the results of the expeditions to Sobral and Principe can leave little doubt that 
a deflection of light takes place in the neighbourhood of the sun and that it is of the 
amount demanded by EINSTEIN'S generalised theory of relativity, as attributable to 
the sun's gravitational field. But the observation is of such interest that it will 
probably be considered desirable to repeat it at future eclipses. The unusually 
favourable conditions of the 1919 eclipse will not recur, and it will be necessary to 
photograph fainter stars, and these will probably be at a greater distance from the sun. 

1'0 

.9 

z~~~~~~~~~~~~~ L _ ..X-/ 

LU 

'6 - 

Lo o5 -' 

i 4 . 

C , '3- i 

'2/ / } - 

DISTANCE 90 60 50 40 30 25 
Diagram 2. 

This can be done with such telescopes as the astrographic wvith the object-glass stopped 
down to 8 inches, if photographs of the same high quality are obtained as in regular 
stellar work. It will probably be best to discard the use of coelostat mirrors. Thise 
are of great convenience for photographs of the corona and spectioscopIc observations, 
but for work of precision of the high order required, it is undesirable to introduce 
complications, which can be avoided, into the optical train. It would seem that some 
form of equatorial mounting (such as that employed in the Eclipse Expeditions of the 
Lick Observatory) is desirable. 

In conclusion, it is a pleasure to record the great assistance given to the Expeditions 
from many quarters. Reference has been made in the course of the paper to some 
of these. Especial thanks are due to the Brazilian noverument for- the hospitality 
and facilities accorded to the observers in Sobral. They were made guests of the 
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GR prediction

Newtonian prediction

Brief historical overview

(error bars are mentioned 
in the text of the article)



Objective of this lecture

linking the observations to theory

CFHTLenS: cosmological model comparison using 2D weak lensing 2207

3.3.4 Covariance of derived second-order functions

Expressions for the covariance of the derived second-order statistics
(equation 6) are straight-forward to obtain, and can be calculated
by integrating the covariance of the 2PCFs (Schneider et al. 2002b).
However, the necessary precision for the numerical integration re-
quires a large number of angular bins for which the 2PCF covariance
has to be calculated, which is very time-consuming. Consequently,
for all derived second-order functions we choose not to graft the
Clone covariance to the Gaussian covariance, but instead only use
the Clone to calculate the total covariance of the derived functions.
To include shot noise, we add to each galaxy’s shear an intrinsic
ellipticity as a Gaussian random variable with zero mean and disper-
sion σ ε = 0.38. The latter is calculated as σ 2

ε =
∑

i εiε
∗
i , where the

sum goes over all CFHTLenS galaxies in our redshift range. There-
fore, the covariance between the 184 Clone lines of sight gives us
the total covariance D + M + V. Contrary to the case of the 2PCFs
(previous section), this covariance stems from a pure ML estimate,
and therefore the inverse needs to be de-biased by the Anderson–
Hartlap factor α. With a typical number of angular scales of p =
10 to 15 the corresponding α is of the order of 0.9. We show that
our cosmological results are independent of the number of reali-
sations in Section 6.2. Note that for all the derived estimators, the
cosmology-dependence of the covariance is neglected.

For upcoming and future tomographic surveys such as Kilo De-
gree Survey,5 Dark Energy Survey,6 Hyper Suprime-Cam,7 Euclid8

(Laureijs et al. 2011) or Large Synoptic Survey Telescope,9 a much
larger suite of simulations will be necessary. The number of real-
izations n has to be substantially larger than the number of bins
p (Hartlap et al. 2007). For a multi-bin tomographic shear survey,
p can easily be of the order of several hundreds or more if other
probes are jointly measured such as galaxy clustering or magni-
fication. This necessitates on the order of a thousand and more
independent lines of sight. This number has to be multiplied by
many if a proper treatment of the cosmology-dependence is to be
taken into account. Moreover, a simple up-scaling of smaller sim-
ulated fields to full survey size might not be easy because of the
different area-scaling of the HSV term.

3.4 Ellipticity calibration corrections

We apply the shear calibration as described in Heymans et al. (2012),
which accounts for a potential additive shear bias c and multiplica-
tive bias m,

εobs = (1 + m) εtrue + c. (13)

The additive bias is found to be consistent with zero for ε1. The
second ellipticity component ε2 shows an S/N and size-dependent
bias which we subtract for each galaxy. This represents a correction
which is on average at the level of 2 × 10−3. The multiplicative
bias m is modelled as a function of the galaxy S/N and size r. It is
fit simultaneously in 20 bins of S/N and r (see Miller et al. 2013).
We use the best-fitting function m(S/N, r) and perform the global
correction to the shear 2PCFs [see equations (19) and (20) of Miller

5 kids.strw.leidenuniv.nl
6 www.darkenergysurvey.org
7 http://www.naoj.org/Projects/HSC/HSCProject.html
8 www.euclid-ec.org
9 http://www.lsst.org/lsst

Figure 6. The measured shear correlation functions ξ+ (black squares)
and ξ− (blue circles), combined from all four Wide patches. The error bars
correspond to the total covariance diagonal. Negative values are shown as
thin points with dotted error bars. The lines are the theoretical prediction
using the WMAP7 best-fitting cosmology and the non-linear model described
in Section 4.3. The data points and error bars are listed in Table B1.

et al. (2013)]. Accordingly, we calculate the calibration factor 1 +
K as the weighted correlation function of 1 + m,

1 + K(ϑ) =
∑

ij wiwj (1 + mi)(1 + mj )
∑

ij wiwj

. (14)

The final calibrated 2PCFs are obtained by dividing ξ+ and ξ− by
1 + K. The amplitude of 1 + K is around 0.91 on all scales. The
errors on the correlation function from the fit uncertainty are negli-
gible compared to our statistical errors. Furthermore, we calculate
the covariance matrix Cm for the correlation function from this
uncertainty, and show in Section 6.2 that the cosmological results
remain unchanged by adding this term to the analysis.

Fig. 6 shows the combined and corrected 2PCFs, which are the
weighted averages over the four Wide patches with the number of
pairs as weights. Note that the data points are strongly correlated, in
particular ξ+ on scales larger than about 10 arcmin. Cosmological
results using this data will be presented in Section 5. The correlation
signal split up into the contributions from the four Wide patches is
plotted in Fig. 7. There is no apparent outlier field. The scatter
is larger than suggested by the Poisson noise on large scales, in
agreement with the expected cosmic variance.

3.5 E and B modes

The aperture-mass dispersion is shown in the upper panel of Fig. 8.
The B mode is consistent with zero on all scales. We quantify this by
performing a null χ2 test, taking into account the B-mode Poisson
covariance C× as measured on the Clone,

χ2
B =

∑

ij

〈M×〉 (θi)
[
C−1

×
]
ij

〈M×〉 (θj ). (15)

Since here the covariance is entirely estimated from the Clone
line of sight, the inverse has to be de-biased using the Anderson–
Hartlap factor. We consider the B mode over the angular range
[5.5; 140] arcmin. As discussed before, the lower scale is where
the B mode due to leakage is down to a few per cent. The upper
limit is given by the largest scale accessible to the Clone, which is
much smaller than the largest CFHTLenS scale: it is 280 arcmin,
resulting in an upper limit of 〈M2

ap〉 of half that scale. The resulting
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Objective of this lecture

linking the observations to theory
to get constraints on cosmological parameters

CFHTLenS: cosmological model comparison using 2D weak lensing 2207
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gible compared to our statistical errors. Furthermore, we calculate
the covariance matrix Cm for the correlation function from this
uncertainty, and show in Section 6.2 that the cosmological results
remain unchanged by adding this term to the analysis.

Fig. 6 shows the combined and corrected 2PCFs, which are the
weighted averages over the four Wide patches with the number of
pairs as weights. Note that the data points are strongly correlated, in
particular ξ+ on scales larger than about 10 arcmin. Cosmological
results using this data will be presented in Section 5. The correlation
signal split up into the contributions from the four Wide patches is
plotted in Fig. 7. There is no apparent outlier field. The scatter
is larger than suggested by the Poisson noise on large scales, in
agreement with the expected cosmic variance.

3.5 E and B modes

The aperture-mass dispersion is shown in the upper panel of Fig. 8.
The B mode is consistent with zero on all scales. We quantify this by
performing a null χ2 test, taking into account the B-mode Poisson
covariance C× as measured on the Clone,

χ2
B =

∑

ij

〈M×〉 (θi)
[
C−1

×
]
ij

〈M×〉 (θj ). (15)

Since here the covariance is entirely estimated from the Clone
line of sight, the inverse has to be de-biased using the Anderson–
Hartlap factor. We consider the B mode over the angular range
[5.5; 140] arcmin. As discussed before, the lower scale is where
the B mode due to leakage is down to a few per cent. The upper
limit is given by the largest scale accessible to the Clone, which is
much smaller than the largest CFHTLenS scale: it is 280 arcmin,
resulting in an upper limit of 〈M2

ap〉 of half that scale. The resulting
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Figure 11. Marginalized posterior density contours (68.3 per cent, 95.5
per cent, 99.7 per cent) for CFHTLenS (blue contours), WMAP7 (green),
CFHTLenS+WMAP7 (magenta) and CFHTLenS+WMAP7+BOSS+R09
(black). The model is flat wCDM.

following tests are all performed under a flat !CDM model. The
results are listed in Table 5.

6.1 Derived second-order functions

As expected, the constraints from the derived second-order estima-
tors are less tight than from the 2PCFs, since they always involve in-
formation loss. Moreover, we use a smaller range of angular scales,
cutting off both on the lower and higher end, as discussed before.
All estimators give consistent results.

Aperture-mass dispersion and top-hat shear rms give very similar
constraints compared to the 2PCFs. The position and slope of the
banana are nearly identical, although the width is larger by a factor
of 2 (see Table 2). For 〈|γ |2〉, we analyse two approaches of dealing
with the finite survey–size E-/B-mode leakage:

(i) Ignoring the leakage. We fit theoretical models of the top-hat
shear rms (equations 7, A3) directly to the measured E-mode data
points 〈|γ |2〉(θ i). Since power is lost due to the leakage, we expect
σ8 %α

m to be biased low.

Figure 12. Marginalized posterior density contours (68.3 per cent, 95.5
per cent, 99.7 per cent) for CFHTLenS (blue contours), WMAP7 (green),
CFHTLenS+WMAP7 (magenta) and CFHTLenS+WMAP7+BOSS+R09
(black). The model is curved wCDM.

Table 5. Constraints from CFHTLenS orthogonal to the %m–σ 8
degeneracy direction. The main results from the 2PCF (first row)
are compared to other estimators.

Data α σ 8 (%m/0.27)α

2PCF 0.59 ± 0.02 0.79 ± 0.03

〈M2
ap〉 0.70 ± 0.02 0.79 ± 0.06

〈|γ |2〉 (ignoring offset) 0.60 ± 0.03 0.78+0.04
−0.05

〈|γ |2〉 (constant offset) 0.58 ± 0.03 0.80+0.03
−0.04

RE 0.56 ± 0.02 0.80+0.03
−0.04

COSEBIs (ϑmax = 100 arcmin) 0.60 ± 0.02 0.79+0.04
−0.06

COSEBIs (ϑmax = 250 arcmin) 0.64 ± 0.03 0.77+0.04
−0.05

2PCF, constant covariance 0.60 ± 0.03 0.78+0.03
−0.04

2PCF (ϑ ≥ 17 arcmin) 0.65 ± 0.02 0.78 ± 0.04

2PCF (ϑ ≥ 53 arcmin) 0.65 ± 0.03 0.79+0.07
−0.06
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Kilbinger et al, 2013 (CFHTLens)
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In the absence of lensing, the source would be 
seen at position β. Due to lensing, it is seen at 
position θ. All angles are small, so we have

we obtain the lens equation
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The lens equation

From GR we know that

If β=0, the source, lens, and observer are aligned 
and the image is a ring, an Einstein ring. We can 
then calculated the mass inside the lens

                                  Catherine Heymans              Lecture 1: Weak lensing for Cosmology

Strong lensing: Einstein Ring

The double Einstein ring SDSSJ0946+1006 3

Fig. 1.— HST/F814W overview of the lens system SDSSJ0946+1006. The right panel is a zoom onto the lens showing two
concentric partial ring-like structures after subtracting the lens surface brightness.

the effect of lensed features in the fit we proceeded it-
eratively. We first masked the lensed features manually,
then we performed galfit fits creating masks by 4-σ
clipping. Two iterations were needed to achieve conver-
gence.

The total magnitude of the lens obtained by sum-
ming the flux of the two Sérsic models is F814W =
17.110 ± 0.002 after correction for Galactic extinction
(Schlegel et al. 1998). The rest-frame V band abso-
lute magnitude is MV = −22.286 ± 0.025 using the K-
correction of Treu et al. (2006). The errors are dom-
inated by systematic uncertainties on the K-correction
term. The most concentrated Sérsic component c1 dom-
inates at the center and accounts for about 17.5% of the
total lens flux. The effective radius of c1 is about 0.4′′

whereas that of c2 is ∼ 3′′ with about 10% relative ac-
curacy. Similarly, the Sérsic indexes are nc1 # 1.23 and
nc2 # 1.75.

To measure the one dimensional light profile of the
lens galaxy, we used the IRAF task ellipse. Fig. 2
shows the radial change of ellipticity and position angle
of the light distribution. There is a clear indication of
a sharp change in position angle and ellipticity between
1−2′′. This isophotal twist is well captured by the double
Sérsic profile fit, that requires different PAs for the two
components. Therefore we conclude that the lens galaxy
is made of two misaligned components, having similar
surface brightness at radius ∼ 0.6′′.

For comparison, a single component Sérsic fit yields
n # 3.73, consistent with the typical light profiles of
massive early-type galaxies. The effective radius of the
composite surface brightness distribution is found to be
Reff = 2.02 ± 0.10 arcsec # 7.29 ± 0.37 h−1

70 kpc, where
we assumed a typical relative uncertainty of about 5%
as discussed in (Treu et al. 2006). It is also consistent
with an independent measurement reported by Bolton

et al. (2008, in prep.) who considered de Vaucouleurs
surface brightness distributions (n ≡ 4 by construction).
Note that we use the same convention for all characteris-
tic radii reported throughout. For elliptical distributions
radii are expressed at the intermediate radius (i.e. the
geometric mean radius r =

√
ab).

In addition, the stellar velocity dispersion σap = 263±
21 km s−1 was measured with SDSS spectroscopy within
a 3′′ diameter fiber. We convert this velocity dispersion
σap into the fiducial velocity σv,∗ that enters Fundamen-
tal Plane analyses and measured in an aperture of size
Reff/8 using the relation σv,∗/σap = (Reff/8/Rap)−0.04 #
1.08 (see Treu et al. 2006, and references therein)

Based on photometric redshifts available online on the
SDSS webpage (Oyaizu et al. 2007), we note that the
lens galaxy is the brightest galaxy in its neighborhood.
Another bright galaxy about 40 arcsec south-west of
SDSSJ0946+1006 exhibits perturbed isophotes (an ex-
tended plume) suggesting that it may have flown by re-
cently and might end up merging onto the lens galaxy.
Its photometric redshift is zphot = 0.20± 0.04 consistent
with SDSSJ0946+1006 redshift. The extended envelope
captured by the double Sérsic component fit also sup-
ports the recent flyby hypothesis (e.g. Bell et al. 2006).

2.3. Lensed structures

Two concentric partial ring-like structures are clearly
seen at radii 1.43± 0.01′′ and 2.07± 0.02′′ from the cen-
ter of the lens galaxy (Figure 1). Such a peculiar lensing
configuration – with widely different image separations of
nearly concentric multiple image systems – implies that
the rings come from two sources at different redshift, the
innermost (Ring 1) corresponding to the nearest back-
ground source 1 and the outermost (Ring 2) being sig-
nificantly further away along the optical axis.

Ring 1 has a typical cusp configuration with 3 merg-

Double Einstein ring
Gavazzi et al, 2008

Here the lens is at redshift 0.61 and 
the1st radius is 1.43’’. The 2nd is 2.07’’  



The lens equation

Defining the surface mass density for the lens plane

We can use the deflection angle to define a critical 
density such that when                we have an Eistein ring.

                                  Catherine Heymans              Lecture 1: Weak lensing for Cosmology

If we consider a circular symmetric lens with constant 
surface density. The mass contained in a radius r is Σπr2

                                  Catherine Heymans              Lecture 1: Weak lensing for Cosmology



The lens equation

In practice, lenses are more 
complicated but it is useful to the 
define the dimensionless surface 
mass density or convergence

                                  Catherine Heymans              Lecture 1: Weak lensing for Cosmology                                  Catherine Heymans              Lecture 1: Weak lensing for Cosmology

the value of κ marks the limit between 
strong and weak lensing.

In the following we will consider the weak lensing case, κ <<1.



We assume:

‣ Weak field,  α << 1
‣ Mass distribution split into cells of volume dV
‣ dm=ρ(r) dV
‣ Consider a light ray propagating along the 3rd axis with position (ξ, r3) near a 

mass element dm at position (ξ’, r3’)
‣ Use the Born approximation: near the deflector the light ray can be 

approximated as a straight line with impact parameter (ξ-ξ’)
‣ Total deflection is the sum of individual deflections

Let’s consider a mass distribution

Deflection for a mass distribution



Deflection for a mass distribution

Defining the surface mass density for the lens plane

We find the deflection angle
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Defining a potential

Deflection for a mass distribution

The deflection angle is the gradient of the lensing potential
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The distorsions induced by lensing are discribed by the Jacobian matrix

where the complex shear  is defined as

convergence, shear and Jacobian

Decomposition as trace and trace-free

Shear is a spin-2 field. Rings a bell?



Let’s re-write the Jacobian as

where the reduced shear is defined as

convergence, shear and Jacobian

The Jacobian describes the mapping between the source and image planes

The convergence will only change the size of the object, 
and the shear will distort the images 
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• The lensing potential thus obeys the Poisson equation

~r2 = 2 , (1.34)

which can be solved by means of the Greens function of the
Laplacian in two dimensions,

 (

~✓) =
1

⇡

Z
d

2✓0 (~✓0) ln |~✓ � ~✓0| . (1.35)

The gradient of this expression gives the deflection angle ~↵,

~↵(

~✓) =
1

⇡

Z
(~✓0)(~✓ � ~✓0)
|~✓ � ~✓0|2

d

2✓0 . (1.36)

This illustrates the superposition of individual deflection an-
gles we mentioned earlier: The point-mass deflection angles
of mass elements d2✓ are added up, taking their directions
into account.

1.4 Local imaging properties, shear and

magnification

• Since the deflection angle turns out to be the gradient of a
scalar potential, the lens equation reads

� = ✓ � ~r . (1.37)

The Jacobian matrix of this equation, which describes the local
properties of the lens mapping, has the components

Ai j =
@�i

@✓ j
= �i j �

@2 

@✓i@✓ j
; (1.38)

that is, local image distortions are given by the curvature matrix
of the lensing potential. From now on, we shall denote partial
derivatives of  by subscripts for brevity,

@ 

@✓i
=  i ,

@2 

@✓i@✓ j
=  i j . (1.39)

Source and image transformation
by the Jacobian matrix

• It is instructive to split a trace-free part off the Jacobian matrix
of the lens mapping. Since its trace is

TrA = 2 � ~r2 = 2(1 � ) , (1.40)

its trace-free part is

A � 1

2

ITrA = �
 
�

1

�
2

�
2

��
1

!
, (1.41)

A circle will be mapped into an ellipse with axes

If galaxies were intrinsically round, we would easily deduce the reduced shear

Action of the Jacobian matrix



Action of the Jacobian matrix

Isotropic stretch



anisotropic elongation

g1 >0

stretches an image along the x-axis 
and compresses along the y-axis

Action of the Jacobian matrix



anisotropic elongation

Action of the Jacobian matrix

g2 >0

stretches an image along the y=x 
direction and compresses along the 
y=-x direction
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Fig. 2. Illustration of the forward problem. The upper panels show how the original galaxy
image is sheared, blurred, pixelised and made noisy. The lower panels show the equivalent
process for (point-like) stars. We only have access to the right hand images.

Stars are far enough away from us to appear point-like. They therefore
provide noisy and pixelised images of the convolution kernel (lower panels of
Figure 2). The convolution kernel is typically of a similar size to the galaxies

Fig. 3. Illustration of the inverse problem. We begin on the right with a set of galaxy and
star images. The full inverse problem would be to derive both the shears and the intrinsic
galaxy shapes. However shear is the quantity of interest for cosmologists.
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Ellipticities estimation
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B.1. Ellipticity measurement. We first describe a simple shear measure-
ment method that would work in the absence of pixelisation, convolution
and noise. The centre of the image brightness I(x, y) can be defined via its
first moments

x̄ =

∫

I(x, y)xdxdy
∫

I(x, y)dxdy
,(B.1)

ȳ =

∫

I(x, y)y dxdy
∫

I(x, y)dxdy
,(B.2)

and we can then measure the quadrupole moments

Qxx =

∫

I(x, y)(x− x̄)2 dxdy
∫

I(x, y)dxdy
,(B.3)

Qxy =

∫

I(x, y)(x− x̄)(y − ȳ)dxdy
∫

I(x, y)dxdy
,(B.4)

Qyy =

∫

I(x, y)(y − ȳ)2 dxdy
∫

I(x, y)dxdy
.(B.5)

Gravitational lensing maps the unlensed image, specified by coordinates
(xu, yu), to the lensed image (xl, yl) using a matrix transformation

(

xu

yu

)

=A
(

xl

yl

)

,(B.6)

where

A=
(

1− g1 −g2

−g2 1 + g1

)

.(B.7)

Throughout GREAT08, the components of shear g1 and g2 are constant
across the image of a galaxy; this is usually a good approximation in real
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θ between the positive x axis and the major axis,

ε1 =
a− b

a + b
cos(2θ),(B.10)

ε2 =
a− b

a + b
sin(2θ).(B.11)

The quantity ε transforms under shear as

εl =
εu + g

1 + g∗εu
(B.12)

for |g| < 1, where the asterisk denotes complex conjugation [Seitz and Schnei-
der (1997)]. This can be Taylor expanded to first order in g, for each of the
two components i ∈ 1,2.

To obtain measurements of g, we next assume that there is no preferred
orientation for the shapes of galaxies in the absence of lensing. In this case,
when averaged over a large population of galaxies, 〈εu

1〉 = 〈εu
2〉 = 0, 〈εu2

1 〉 =
〈εu2

2 〉 and 〈εu
1ε

u
2〉 = 0. Therefore, on Taylor expanding (B.10) to first order

in g, we see that εl
i is roughly a very noisy estimate of gi since

√

〈εu2
i 〉 ∼

0.15, which is an order of magnitude larger than the typical value of gi. On
applying the symmetries for a large population we find

〈εl〉 & g.(B.13)

The need to sample a population of galaxies also explains the use of complex
notation for both ε and g: the two components of ε average cleanly to zero
in the absence of cosmic lensing, unlike a notation involving magnitude and
angle. See Figure 5 for a graphical representation of these parameters.

More commonly considered is the combination of quadrupole moments

χ =
Qxx −Qyy + 2iQxy

Qxx +Qyy
(B.14)

(sometimes known as “polarisation”), where we define components χ = χ1 +
iχ2 as before. This combination is more stable than ε in the presence of noise.
A purely elliptical shape has

χ1 =
a2 − b2

a2 + b2
cos(2θ),(B.15)

χ2 =
a2 − b2

a2 + b2
sin(2θ).(B.16)

In general, χ transforms under shear as

χl =
χu + 2g + g2χu∗

1 + |g|2 + 2'(gχu∗)
,(B.17)

Ellipticities estimation

Define an ellipticity

Bonnet & Mellier 1995
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Fig. 2. The shape of image ellipses
for a circular source, in dependence
on their two ellipticity components χ1

and χ2; a corresponding plot in term
of the ellipticity components εi would
look quite similar. Note that the ellip-
ticities are rotated by 90◦ when χ →
−χ (source: D. Clowe)

From source to image ellipticities. In total analogy, one defines the
second-moment brightness tensor Q(s)

ij , and the complex ellipticities χ(s) and
ε(s) for the unlensed source. From

Q(s)
ij =

∫
d2β I(s)(θ) qI [I(s)(β)] (βi − β̄i) (βj − β̄j)∫

d2β I(s)(θ) qI [I(s)(β)]
, i, j ∈ {1, 2} , (10)

one finds with d2β = detAd2θ, β − β̄ = A
(
θ − θ̄

)
, that

Q(s) = AQAT = AQA , (11)

where A ≡ A(θ̄). Using the definitions of the complex ellipticities, one finds
the transformations (e.g., Schneider & Seitz 1995; Seitz & Schneider 1997)

χ(s) =
χ − 2g + g2χ∗

1 + |g|2 − 2Re(gχ∗)
; ε(s) =






ε − g

1 − g∗ε
if |g| ≤ 1 ;

1 − gε∗

ε∗ − g∗
if |g| > 1 .

(12)

The inverse transformations are obtained by interchanging source and image
ellipticities, and g → −g in the foregoing equations.

Estimating the (reduced) shear. In the following we make the assump-
tion that the intrinsic orientation of galaxies is random,

E
(
χ(s)

)
= 0 = E

(
ε(s)
)

, (13)

which is expected to be valid since there should be no direction singled out in
the Universe. This then implies that the expectation value of ε is [as obtained

Assuming that the unlensed ellipticities average to zero,                   we have 
8 P. Schneider

by averaging the transformation law (12) over the intrinsic source orientation]

E(ε) =






g if |g| ≤ 1

1/g∗ if |g| > 1 .
(14)

This is a remarkable result (Schramm & Kaiser 1995; Seitz & Schneider 1997),
since it shows that each image ellipticity provides an unbiased estimate of the
local shear, though a very noisy one. The noise is determined by the intrinsic
ellipticity dispersion

σε =
√〈

ε(s)ε(s)∗
〉

,

in the sense that, when averaging over N galaxy images all subject to the
same reduced shear, the 1-σ deviation of their mean ellipticity from the true
shear is σε/

√
N . A more accurate estimate of this error is

σ = σε

[
1 − min

(
|g|2, |g|−2

)]
/
√

N (15)

(Schneider et al. 2000). Hence, the noise can be beaten down by averaging
over many galaxy images; however, the region over which the shear can be
considered roughly constant is limited, so that averaging over galaxy images is
always related to a smoothing of the shear. Fortunately, we live in a Universe
where the sky is ‘full of faint galaxies’, as was impressively demonstrated by
the Hubble Deep Field images (Williams et al. 1996) and previously from
ultra-deep ground-based observations (Tyson 1987). Therefore, the accuracy
of a shear estimate depends on the local number density of galaxies for which
a shape can be measured. In order to obtain a high density, one requires
deep imaging observations. As a rough guide, on a 3 hour exposure with a
4-meter class telescope, about 30 galaxies per arcmin2 can be used for a shape
measurement.

In fact, considering (14) we conclude that the expectation value of the
observed ellipticity is the same for a reduced shear g and for g′ = 1/g∗.
Schneider & Seitz (1995) have shown that one cannot distinguish between
these two values of the reduced shear from a purely local measurement, and
term this fact the ‘local degeneracy’; this also explains the symmetry between
|g| and |g|−1 in (15). Hence, from a local weak lensing observation one can-
not tell the case |g| < 1 (equivalent to detA > 0) from the one of |g| > 1
or detA < 0. This local degeneracy is, however, broken in large-field obser-
vations, as the region of negative parity of any lens is small (the Einstein
radius inside of which |g| > 1 of massive lensing clusters is typically <∼ 30′′,
compared to data fields of several arcminutes used for weak lensing studies
of clusters), and the reduced shear must be a smooth function of position on
the sky.

Whereas the transformation between source and image ellipticity appears
simpler in the case of χ than ε – see (12), the expectation value of χ cannot be
easily calculated and depends explicitly on the intrinsic ellipticity distribution

Averaged galaxy ellipticities provide a unbiased estimate of the reduced shear 

Ellipticities estimation

Seitz & Schneider 1997
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Two mains difficulties for current and future weak lensing experiments

Shape measurements Intrinsic ellipticities do not 
necessarily average to zero

Intrisic alignments!!

Examples from the Dark Energy Survey



Friedmann}Lemam( tre models remain the same as in the homogeneous and isotropic case, and
under this assumption the comoving distance w remains the same as in the unperturbed model.

To solve Eq. (6.6), we "rst construct a Green's function G(w,w!), which has to be a suitable linear
combination of either trigonometric or hyperbolic functions since the homogeneous equation (6.6)
is an oscillator equation. We further have to specify two boundary conditions. According to the
situation we have in mind, these boundary conditions read

x"0,
dx
dw

"! (6.7)

at w"0. The "rst condition states that the two light rays start from the same point, so that their
initial separation is zero, and the second condition indicates that they set out into directions which
di!er by !.

The Green's function is then uniquely determined by

G(w,w!)"!
f
!
(w!w!) for w'w!,

0 otherwise
(6.8)

with f
!
(w) given in Eq. (2.4). As a function of distance w, the comoving separation between the two

light rays is thus

x(!,w)"f
!
(w)!! 2

c! " "

"
dw! f

!
(w!w!)"#$

!
![x(!,w!),w!]% . (6.9)
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this transport equation is obtained by the method of Green’s function, to
yield

x(θ, w) = fK(w)θ− 2
c2

∫ w

0
dw′ fK(w−w′)

[
∇⊥Φ (x(θ, w′), w′) −∇⊥Φ(0) (w′)

]
.

(86)
A source at comoving distance w with comoving separation x from the fiducial
light ray would be seen, in the absence of lensing, at the angular separation
β = x/fK(w) from the fiducial ray (this statement is nothing but the defi-
nition of the comoving angular diameter distance). Hence, β is the unlensed
angular position in the ‘comoving source plane’ at distance w, where the ori-
gin of this source plane is given by the intersection point with the fiducial
ray. Therefore, in analogy with standard lens theory, we define the Jacobian
matrix

A(θ, w) =
∂β

∂θ
=

1
fK(w)

∂x
∂θ

, (87)

and obtain from (86)

Aij(θ, w) = δij−
2
c2

∫ w

0
dw′ fK(w − w′)fK(w′)

fK(w)
Φ,ik (x(θ, w′), w′) Akj(θ, w′) ,

(88)
which describes the locally linearized mapping introduced by LSS lensing. To
derive (88), we noted that ∇⊥Φ(0) does not depend on θ, and used the chain
rule in the derivative of Φ. This equation still is exact in the limit of validity
of the weak-field metric. Next, we expand A in powers of Φ, and truncate the
series after the linear term:

Aij(θ, w) = δij −
2
c2

∫ w

0
dw′ fK(w − w′)fK(w′)

fK(w)
Φ,ij (fK(w′)θ, w′) . (89)

Hence, to linear order, the distortion can be obtained by integrating along
the unperturbed ray x = fK(w)θ; this is also called the Born approximation.
Corrections to the Born approximation are necessarily of order Φ2. Through-
out this article, we will employ the Born approximation; later, we will com-
ment on its accuracy. If we now define the deflection potential

ψ(θ, w) :=
2
c2

∫ w

0
dw′ fK(w − w′)

fK(w) fK(w′)
Φ (fK(w′)θ, w′) , (90)

compare a light ray in the inhomogeneous universe with one in the homogeneous,
unperturbed universe. Apart from the conceptual difficulty, this ‘first-order ex-
pansion’ is not justified, as the light rays in an inhomogeneous universe can devi-
ate quite significantly from straight rays in the homogeneous reference universe –
much more than the lenght scale of typical density fluctuations. These difficulties
are all avoided if one starts from the exact equation of geodesic deviation, as
done here.

and the Jacobian matrix is defined the same as in the thin-lens case
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then Aij = δij − ψ,ij , just as in ordinary lens theory. In this approximation,
lensing by the 3-D matter distribution can be treated as an equivalent lens
plane with deflection potential ψ, mass density κ = ∇2ψ/2, and shear γ =
(ψ,11 − ψ,22)/2 + iψ,12.

6.2 Cosmic shear: the principle

The effective surface mass density. Next, we relate κ to fractional density
contrast δ of matter fluctuations in the Universe; this is done in a number of
steps:

1. To obtain κ = ∇2ψ/2, take the 2-D Laplacian of ψ, and add the term Φ,33

in the resulting integrand; this latter term vanishes in the line-of-sight
integration, as can be seen by integration by parts.

2. We make use of the 3-D Poisson equation in comoving coordinates

∇2Φ =
3H2

0Ωm

2a
δ (91)

to obtain

κ(θ, w) =
3H2

0Ωm

2c2

∫ w

0
dw′ fK(w′)fK(w − w′)

fK(w)
δ (fK(w′)θ, w′)

a(w′)
. (92)

Note that κ is proportional to Ωm, since lensing is sensitive to ∆ρ ∝ Ωm δ,
not just to the density contrast δ = ∆ρ/ρ̄ itself.

3. For a redshift distribution of sources with pz(z) dz = pw(w) dw, the ef-
fective surface mass density becomes

κ(θ) =
∫

dw pw(w)κ(θ, w)

=
3H2

0Ωm

2c2

∫ wh

0
dw g(w) fK(w)

δ (fK(w)θ, w)
a(w)

, (93)

with
g(w) =

∫ wh

w
dw′ pw(w′)

fK(w′ − w)
fK(w′)

, (94)

which is the source-redshift weighted lens efficiency factor Dds/Ds for a
density fluctuation at distance w, and wh is the comoving horizon dis-
tance, obtained from w(a) by letting a → 0.

The expression (92) for the effective surface mass density can be interpreted
in a very simple way. Consider a redshift interval of width dz around z, corre-
sponding to the proper radial distance interval dDprop = |c dt| = H−1(z)(1+
z)−1 c dz. The surface mass density in this interval is ∆ρ dDprop, where only
the density contrast ∆ρ = ρ− ρ̄ acts as a lens (the ‘lensing effect’ of the mean

and the 3-D matter distribution can be treated as an equivalent lens plane with 
potential     , convergence                           , and shear   
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Last step, integrate on all sources
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matter density of the Universe is accounted for by the relations between an-
gular diameter distance and redshift; see Schneider & Weiss 1988a). Dividing
this surface mass density by the corresponding critical surface mass density,
and integrating along the line-of-sight to the sources, one finds

κ =
∫ zs

0
dz

4πG

c2

Dang
d Dang

ds

Dang
s

dDprop

dz
∆ρ . (95)

This expression is equivalent to (92), as can be easily shown (by the way,
this is a good excersize for practicing the use of cosmological quantities like
redshift, distances etc.).

Limber’s equation. The density field δ is assumed to be a realization of a
random field. It is the properties of the random field that cosmologists can
hope to predict, and not a specific realization of it. In particular, the second-
order statistical properties of the density field are described in terms of the
power spectrum (see IN, Sect. 6.1). We shall therefore look at the relation
between the quantities relevant for lensing and the power spectrum Pδ(k) of
the matter distribution in the Universe. The basis of this relation is formed
by Limber’s equation. If δ is a homogeneous and isotropic 3-D random field,
then the projections

gi(θ) =
∫

dw qi(w) δ (fK(w)θ, w) (96)

also are (2-D) homogeneous and isotropic random fields, where the qi are
weight functions. In particular, the correlation function

C12 = 〈g1(ϕ1) g2(ϕ2)〉 ≡ C12(|ϕ1 − ϕ2|) (97)

depends only on the modulus of the separation vector. The original form of
the Limber (1953) equation relates C12 to the correlation function of δ which
is a line-of-sight projection. Alternatively, one can consider the Fourier-space
analogy of this relation: The power spectrum P12(&) – the Fourier transform
of C12(θ) – depends linearly on Pδ(k) (Kaiser 1992, 1998),

P12(&) =
∫

dw
q1(w) q2(w)

f2
K(w)

Pδ

(
&

fK(w)
, w

)
, (98)

if the largest-scale structures in δ are much smaller than the effective range
∆w of the projection. Hence, we obtain the (very reasonable) result that the
2-D power at angular scale 1/& is obtained from the 3-D power at length scale
fK(w) (1/&), integrated over w.

Comparing (93) with (98), one sees that κ(θ) is such a projection of δ
with the weights q1(w) = q2(w) = (3/2)(H0/c)2Ωmg(w)fK(w)/a(w), so that

Pκ(&) =
9H4

0Ω2
m

4c4

∫ wh

0
dw

g2(w)
a2(w)

Pδ

(
&

fK(w)
, w

)
. (99)

Then use Limber approximation to obtain the power spectrum of the convergence

Cosmic shear



In practice people consider real-space based observables 
that are related to the convergence power spectrum
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6.3 Second-order cosmic shear measures

We will now turn to statistical quantities of the cosmic shear field which are
quadratic in the shear, i.e., to second-order shear statistics. Higher-order sta-
tistical properties, which already have been detected in cosmic shear surveys,
will be considered in Sect. 9. As we shall see, all second-order statistics of
the cosmic shear yield (filtered) information about, and are fully described
in terms of Pκ. The most-often used second-order statistics are:

• The two-point correlation function(s) of the shear, ξ±(θ),
• the shear dispersion in a (circular) aperture,

〈
|γ̄|2
〉
(θ), and

• the aperture mass dispersion,
〈
M2

ap

〉
(θ).

Those will be discussed next, and their relation to Pκ($) shown. As a prepa-
ration, consider the Fourier transform of κ,

κ̂(!) =
∫

d2θ ei!·θ κ(θ) ; (100)

then, 〈
κ̂(!)κ̂∗(!′)

〉
= (2π)2 δD(! − !′)Pκ($) , (101)

which provides another definition of the power spectrum Pκ [compare with
eq. (123) of IN]. The Fourier transform of the shear is

γ̂(!) =

(
$2
1 − $2

2 + 2i$1$2

|!|2

)
κ̂(!) = e2iβ κ̂(!) , (102)

where β is the polar angle of the vector !; this follows directly from (42) and
(43). Eq. (102) implies that

〈
γ̂(!)γ̂∗(!′)

〉
= (2π)2 δD(! − !′)Pκ($). (103)

Hence, the power spectrum of the shear is the same as that of the surface
mass density.

Shear correlation functions. Consider a pair of points (i.e., galaxy im-
ages); their separation direction ϕ (i.e. the polar angle of the separation vector
θ) is used to define the tangential and cross-component of the shear at these
positions for this pair, γt = −Re

(
γ e−2iϕ

)
, γ× = −Im

(
γ e−2iϕ

)
, as in (17).

Using these two shear components, one can then define the correlation func-
tions 〈γtγt〉 (θ) and 〈γ×γ×〉 (θ), as well as the mixed correlator. However, it
turns out to be more convenient to define the following combinations,

ξ±(θ) = 〈γtγt〉 (θ) ± 〈γ×γ×〉 (θ) , ξ×(θ) = 〈γtγ×〉 (θ) . (104)

Due to parity symmetry, ξ×(θ) is expected to vanish, since under such a
transformation, γt → γt, but γ× → −γ×. Next we relate the shear correlation
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functions to the power spectrum Pκ: Using the definition of ξ±, replacing γ
in terms of γ̂, and making use of relation between γ̂ and κ̂, one finds (e.g.,
Kaiser 1992)

ξ+(θ) =
∫ ∞

0

d% %

2π
J0(%θ)Pκ(%) ; ξ−(θ) =

∫ ∞

0

d% %

2π
J4(%θ)Pκ(%) , (105)

where Jn(x) is the n-th order Bessel function of first kind. ξ± can be measured
as follows: on a data field, select all pairs of faint galaxies with separation
within ∆θ of θ and then take the average 〈εti εtj〉 over all these pairs; since
εi = ε(s)i + γ(θi), the expectation value of 〈εti εtj〉 is 〈γtγt〉 (θ), provided
source ellipticities are uncorrelated. Similarly, the correlation for the cross-
components is obtained. It is obvious how to generalize this estimator in the
presence of a weight factor for the individual galaxies, as it results from the
image analysis described in Sect. 3.5.

The shear dispersion. Consider a circular aperture of radius θ; the mean
shear in this aperture is γ̄. Averaging over many such apertures, one defines
the shear dispersion

〈
|γ̄|2
〉
(θ). It is related to the power spectrum through

〈
|γ̄|2
〉

(θ) =
1
2π

∫
d% % Pκ(%)WTH(%θ) , where WTH(η) =

4J2
1(η)
η2

(106)

is the top-hat filter function (see, e.g., Kaiser 1992). A practical unbiased
estimator of the mean shear in the aperture is ˆ̄γ = N−1

∑N
i=1 εi, where

N is the number of galaxies in the aperture. However, the square of this
expression is not an unbiased estimator of

〈
|γ̄|2
〉
, since the diagonal terms of

the resulting double sum yield additional terms, since E (εiε∗i ) = |γ(θi)|2+σ2
ε .

An unbiased estimate for the shear dispersion is obtained by omitting the
diagonal terms,

̂〈
|γ̄|2
〉

=
1

N(N − 1)

N∑

i$=j

εi ε∗j . (107)

This expression is then averaged over many aperture placed on the data field.
Again, the generalization to allow for weighting of galaxy images is obvious.
Note in particular that this estimator is not positive semi-definite.

The aperture mass. Consider a circular aperture of radius θ; for a point
inside the aperture, define the tangential and cross-components of the shear
relative to the center of the aperture (as before); then define

Map(θ) =
∫

d2ϑ Q(|ϑ|) γt(ϑ) , (108)
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3.3.4 Covariance of derived second-order functions

Expressions for the covariance of the derived second-order statistics
(equation 6) are straight-forward to obtain, and can be calculated
by integrating the covariance of the 2PCFs (Schneider et al. 2002b).
However, the necessary precision for the numerical integration re-
quires a large number of angular bins for which the 2PCF covariance
has to be calculated, which is very time-consuming. Consequently,
for all derived second-order functions we choose not to graft the
Clone covariance to the Gaussian covariance, but instead only use
the Clone to calculate the total covariance of the derived functions.
To include shot noise, we add to each galaxy’s shear an intrinsic
ellipticity as a Gaussian random variable with zero mean and disper-
sion σ ε = 0.38. The latter is calculated as σ 2

ε =
∑

i εiε
∗
i , where the

sum goes over all CFHTLenS galaxies in our redshift range. There-
fore, the covariance between the 184 Clone lines of sight gives us
the total covariance D + M + V. Contrary to the case of the 2PCFs
(previous section), this covariance stems from a pure ML estimate,
and therefore the inverse needs to be de-biased by the Anderson–
Hartlap factor α. With a typical number of angular scales of p =
10 to 15 the corresponding α is of the order of 0.9. We show that
our cosmological results are independent of the number of reali-
sations in Section 6.2. Note that for all the derived estimators, the
cosmology-dependence of the covariance is neglected.

For upcoming and future tomographic surveys such as Kilo De-
gree Survey,5 Dark Energy Survey,6 Hyper Suprime-Cam,7 Euclid8

(Laureijs et al. 2011) or Large Synoptic Survey Telescope,9 a much
larger suite of simulations will be necessary. The number of real-
izations n has to be substantially larger than the number of bins
p (Hartlap et al. 2007). For a multi-bin tomographic shear survey,
p can easily be of the order of several hundreds or more if other
probes are jointly measured such as galaxy clustering or magni-
fication. This necessitates on the order of a thousand and more
independent lines of sight. This number has to be multiplied by
many if a proper treatment of the cosmology-dependence is to be
taken into account. Moreover, a simple up-scaling of smaller sim-
ulated fields to full survey size might not be easy because of the
different area-scaling of the HSV term.

3.4 Ellipticity calibration corrections

We apply the shear calibration as described in Heymans et al. (2012),
which accounts for a potential additive shear bias c and multiplica-
tive bias m,

εobs = (1 + m) εtrue + c. (13)

The additive bias is found to be consistent with zero for ε1. The
second ellipticity component ε2 shows an S/N and size-dependent
bias which we subtract for each galaxy. This represents a correction
which is on average at the level of 2 × 10−3. The multiplicative
bias m is modelled as a function of the galaxy S/N and size r. It is
fit simultaneously in 20 bins of S/N and r (see Miller et al. 2013).
We use the best-fitting function m(S/N, r) and perform the global
correction to the shear 2PCFs [see equations (19) and (20) of Miller

5 kids.strw.leidenuniv.nl
6 www.darkenergysurvey.org
7 http://www.naoj.org/Projects/HSC/HSCProject.html
8 www.euclid-ec.org
9 http://www.lsst.org/lsst

Figure 6. The measured shear correlation functions ξ+ (black squares)
and ξ− (blue circles), combined from all four Wide patches. The error bars
correspond to the total covariance diagonal. Negative values are shown as
thin points with dotted error bars. The lines are the theoretical prediction
using the WMAP7 best-fitting cosmology and the non-linear model described
in Section 4.3. The data points and error bars are listed in Table B1.

et al. (2013)]. Accordingly, we calculate the calibration factor 1 +
K as the weighted correlation function of 1 + m,

1 + K(ϑ) =
∑

ij wiwj (1 + mi)(1 + mj )
∑

ij wiwj

. (14)

The final calibrated 2PCFs are obtained by dividing ξ+ and ξ− by
1 + K. The amplitude of 1 + K is around 0.91 on all scales. The
errors on the correlation function from the fit uncertainty are negli-
gible compared to our statistical errors. Furthermore, we calculate
the covariance matrix Cm for the correlation function from this
uncertainty, and show in Section 6.2 that the cosmological results
remain unchanged by adding this term to the analysis.

Fig. 6 shows the combined and corrected 2PCFs, which are the
weighted averages over the four Wide patches with the number of
pairs as weights. Note that the data points are strongly correlated, in
particular ξ+ on scales larger than about 10 arcmin. Cosmological
results using this data will be presented in Section 5. The correlation
signal split up into the contributions from the four Wide patches is
plotted in Fig. 7. There is no apparent outlier field. The scatter
is larger than suggested by the Poisson noise on large scales, in
agreement with the expected cosmic variance.

3.5 E and B modes

The aperture-mass dispersion is shown in the upper panel of Fig. 8.
The B mode is consistent with zero on all scales. We quantify this by
performing a null χ2 test, taking into account the B-mode Poisson
covariance C× as measured on the Clone,

χ2
B =

∑

ij

〈M×〉 (θi)
[
C−1

×
]
ij

〈M×〉 (θj ). (15)

Since here the covariance is entirely estimated from the Clone
line of sight, the inverse has to be de-biased using the Anderson–
Hartlap factor. We consider the B mode over the angular range
[5.5; 140] arcmin. As discussed before, the lower scale is where
the B mode due to leakage is down to a few per cent. The upper
limit is given by the largest scale accessible to the Clone, which is
much smaller than the largest CFHTLenS scale: it is 280 arcmin,
resulting in an upper limit of 〈M2

ap〉 of half that scale. The resulting
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3.3.4 Covariance of derived second-order functions

Expressions for the covariance of the derived second-order statistics
(equation 6) are straight-forward to obtain, and can be calculated
by integrating the covariance of the 2PCFs (Schneider et al. 2002b).
However, the necessary precision for the numerical integration re-
quires a large number of angular bins for which the 2PCF covariance
has to be calculated, which is very time-consuming. Consequently,
for all derived second-order functions we choose not to graft the
Clone covariance to the Gaussian covariance, but instead only use
the Clone to calculate the total covariance of the derived functions.
To include shot noise, we add to each galaxy’s shear an intrinsic
ellipticity as a Gaussian random variable with zero mean and disper-
sion σ ε = 0.38. The latter is calculated as σ 2

ε =
∑

i εiε
∗
i , where the

sum goes over all CFHTLenS galaxies in our redshift range. There-
fore, the covariance between the 184 Clone lines of sight gives us
the total covariance D + M + V. Contrary to the case of the 2PCFs
(previous section), this covariance stems from a pure ML estimate,
and therefore the inverse needs to be de-biased by the Anderson–
Hartlap factor α. With a typical number of angular scales of p =
10 to 15 the corresponding α is of the order of 0.9. We show that
our cosmological results are independent of the number of reali-
sations in Section 6.2. Note that for all the derived estimators, the
cosmology-dependence of the covariance is neglected.

For upcoming and future tomographic surveys such as Kilo De-
gree Survey,5 Dark Energy Survey,6 Hyper Suprime-Cam,7 Euclid8

(Laureijs et al. 2011) or Large Synoptic Survey Telescope,9 a much
larger suite of simulations will be necessary. The number of real-
izations n has to be substantially larger than the number of bins
p (Hartlap et al. 2007). For a multi-bin tomographic shear survey,
p can easily be of the order of several hundreds or more if other
probes are jointly measured such as galaxy clustering or magni-
fication. This necessitates on the order of a thousand and more
independent lines of sight. This number has to be multiplied by
many if a proper treatment of the cosmology-dependence is to be
taken into account. Moreover, a simple up-scaling of smaller sim-
ulated fields to full survey size might not be easy because of the
different area-scaling of the HSV term.

3.4 Ellipticity calibration corrections

We apply the shear calibration as described in Heymans et al. (2012),
which accounts for a potential additive shear bias c and multiplica-
tive bias m,

εobs = (1 + m) εtrue + c. (13)

The additive bias is found to be consistent with zero for ε1. The
second ellipticity component ε2 shows an S/N and size-dependent
bias which we subtract for each galaxy. This represents a correction
which is on average at the level of 2 × 10−3. The multiplicative
bias m is modelled as a function of the galaxy S/N and size r. It is
fit simultaneously in 20 bins of S/N and r (see Miller et al. 2013).
We use the best-fitting function m(S/N, r) and perform the global
correction to the shear 2PCFs [see equations (19) and (20) of Miller
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Figure 6. The measured shear correlation functions ξ+ (black squares)
and ξ− (blue circles), combined from all four Wide patches. The error bars
correspond to the total covariance diagonal. Negative values are shown as
thin points with dotted error bars. The lines are the theoretical prediction
using the WMAP7 best-fitting cosmology and the non-linear model described
in Section 4.3. The data points and error bars are listed in Table B1.

et al. (2013)]. Accordingly, we calculate the calibration factor 1 +
K as the weighted correlation function of 1 + m,

1 + K(ϑ) =
∑

ij wiwj (1 + mi)(1 + mj )
∑

ij wiwj

. (14)

The final calibrated 2PCFs are obtained by dividing ξ+ and ξ− by
1 + K. The amplitude of 1 + K is around 0.91 on all scales. The
errors on the correlation function from the fit uncertainty are negli-
gible compared to our statistical errors. Furthermore, we calculate
the covariance matrix Cm for the correlation function from this
uncertainty, and show in Section 6.2 that the cosmological results
remain unchanged by adding this term to the analysis.

Fig. 6 shows the combined and corrected 2PCFs, which are the
weighted averages over the four Wide patches with the number of
pairs as weights. Note that the data points are strongly correlated, in
particular ξ+ on scales larger than about 10 arcmin. Cosmological
results using this data will be presented in Section 5. The correlation
signal split up into the contributions from the four Wide patches is
plotted in Fig. 7. There is no apparent outlier field. The scatter
is larger than suggested by the Poisson noise on large scales, in
agreement with the expected cosmic variance.

3.5 E and B modes

The aperture-mass dispersion is shown in the upper panel of Fig. 8.
The B mode is consistent with zero on all scales. We quantify this by
performing a null χ2 test, taking into account the B-mode Poisson
covariance C× as measured on the Clone,

χ2
B =

∑

ij

〈M×〉 (θi)
[
C−1

×
]
ij

〈M×〉 (θj ). (15)

Since here the covariance is entirely estimated from the Clone
line of sight, the inverse has to be de-biased using the Anderson–
Hartlap factor. We consider the B mode over the angular range
[5.5; 140] arcmin. As discussed before, the lower scale is where
the B mode due to leakage is down to a few per cent. The upper
limit is given by the largest scale accessible to the Clone, which is
much smaller than the largest CFHTLenS scale: it is 280 arcmin,
resulting in an upper limit of 〈M2

ap〉 of half that scale. The resulting
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functions to the power spectrum Pκ: Using the definition of ξ±, replacing γ
in terms of γ̂, and making use of relation between γ̂ and κ̂, one finds (e.g.,
Kaiser 1992)

ξ+(θ) =
∫ ∞

0

d% %

2π
J0(%θ)Pκ(%) ; ξ−(θ) =

∫ ∞

0

d% %

2π
J4(%θ)Pκ(%) , (105)

where Jn(x) is the n-th order Bessel function of first kind. ξ± can be measured
as follows: on a data field, select all pairs of faint galaxies with separation
within ∆θ of θ and then take the average 〈εti εtj〉 over all these pairs; since
εi = ε(s)i + γ(θi), the expectation value of 〈εti εtj〉 is 〈γtγt〉 (θ), provided
source ellipticities are uncorrelated. Similarly, the correlation for the cross-
components is obtained. It is obvious how to generalize this estimator in the
presence of a weight factor for the individual galaxies, as it results from the
image analysis described in Sect. 3.5.

The shear dispersion. Consider a circular aperture of radius θ; the mean
shear in this aperture is γ̄. Averaging over many such apertures, one defines
the shear dispersion

〈
|γ̄|2
〉
(θ). It is related to the power spectrum through

〈
|γ̄|2
〉

(θ) =
1
2π

∫
d% % Pκ(%)WTH(%θ) , where WTH(η) =

4J2
1(η)
η2

(106)

is the top-hat filter function (see, e.g., Kaiser 1992). A practical unbiased
estimator of the mean shear in the aperture is ˆ̄γ = N−1

∑N
i=1 εi, where

N is the number of galaxies in the aperture. However, the square of this
expression is not an unbiased estimator of

〈
|γ̄|2
〉
, since the diagonal terms of

the resulting double sum yield additional terms, since E (εiε∗i ) = |γ(θi)|2+σ2
ε .

An unbiased estimate for the shear dispersion is obtained by omitting the
diagonal terms,

̂〈
|γ̄|2
〉

=
1

N(N − 1)

N∑

i$=j

εi ε∗j . (107)

This expression is then averaged over many aperture placed on the data field.
Again, the generalization to allow for weighting of galaxy images is obvious.
Note in particular that this estimator is not positive semi-definite.

The aperture mass. Consider a circular aperture of radius θ; for a point
inside the aperture, define the tangential and cross-components of the shear
relative to the center of the aperture (as before); then define

Map(θ) =
∫

d2ϑ Q(|ϑ|) γt(ϑ) , (108)
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Figure 7. The measured shear correlation functions ξ+ (top panel) and ξ−
(bottom), for the four Wide patches. The error bars correspond to Poisson
noise.

χ2/degree of freedom (d.o.f.) of 14.9/15 = 0.99, corresponding to
a non-null B-mode probability of 46 per cent. Even if we only take
the highest six (positive) data points, we find the χ2 per d.o.f. to
be χ2/d.o.f. = 4.12/6 = 0.69, which is less than 1σ significance.
The non-zero B-mode signal at around 50–120 arcmin from F08 is
not detected here.

The top-hat shear rms B mode is consistent with zero on all
measured scales, as shown in the middle panel of Fig. 8. Note,
however, that of all second-order functions discussed in this work,
〈|γ |2〉 is the one with the highest correlation between data points.
The predicted leakage from the B to the E mode is smaller than the
measured E mode, but becomes comparable to the latter for θ >

100 arcmin, where the leakage reaches up to 50 per cent of the E
mode.

The optimized ring statistic for η = ϑmin/ϑmax = 1/50 is plotted
in the lower panel of Fig. 8. Each data point shows the E and B
modes on the angular range between ϑmin and ϑmax, the latter of
which is labelled on the x-axis. The B mode is found to be consistent
with zero; a χ2 null test yields a 35 per cent probability of a non-zero
B mode.

We first test our calculation of COSEBIs on the CFHTLenS
Clone with noise, where we measure a B mode of at most a few
×10−12 for n ≤ 5 and ϑmax ≤ 250 arcmin. Even though this is a
few orders of magnitudes larger than the B mode due to numerical
errors from the estimation from theory, it is insignificant compared
to the E-mode signal. When including the largest available scales
for the Clone however, ϑmax ∼ 280 arcmin, the B mode increases
to be of the order of the E mode. This is true independent of the
binning or whether noise is added. We presume that this is due
to insufficient accuracy with which the shear correlation function
is estimated from the simulation on these very large scales, from
only a small number of galaxy pairs. Further, for n > 5 a similarly
large B mode is found for some cases of (ϑmin, ϑmax). Again, the
accuracy of the simulations is not sufficient to allow for precise

Figure 8. Smoothed second-order functions: aperture-mass dispersion
〈M2

ap〉 (left panel), shear top-hat rms 〈|γ |2〉 (middle) and optimized ring
statistic RE (right), split into the E mode (black filled squares) and B mode
(red open squares). The error bars are the Clone field-to-field rms. The
dashed line is the theoretical prediction for a WMAP7 cosmology (with zero
E-/B-mode leakage); the dotted curve shows the Clone lines-of-sight mean
E-mode signal. For 〈M2

ap〉 and 〈|γ |2〉 the WMAP7-prediction of the leaked
B mode is shown as red dashed curve; the shaded region in the middle
panel corresponds to the 95 per cent WMAP7 confidence interval of σ 8 (flat
(CDM). For the shear top-hat rms, negative points are plotted with dashed
error bars.

 at U
niversity C

ollege London on Septem
ber 10, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

Current status of cosmic shear

Kilbinger et al, 2013 (CFHTLens)



Current status of cosmic shear

Kilbinger et al, 2013 (CFHTLens)

2214 M. Kilbinger et al.

Figure 11. Marginalized posterior density contours (68.3 per cent, 95.5
per cent, 99.7 per cent) for CFHTLenS (blue contours), WMAP7 (green),
CFHTLenS+WMAP7 (magenta) and CFHTLenS+WMAP7+BOSS+R09
(black). The model is flat wCDM.

following tests are all performed under a flat !CDM model. The
results are listed in Table 5.

6.1 Derived second-order functions

As expected, the constraints from the derived second-order estima-
tors are less tight than from the 2PCFs, since they always involve in-
formation loss. Moreover, we use a smaller range of angular scales,
cutting off both on the lower and higher end, as discussed before.
All estimators give consistent results.

Aperture-mass dispersion and top-hat shear rms give very similar
constraints compared to the 2PCFs. The position and slope of the
banana are nearly identical, although the width is larger by a factor
of 2 (see Table 2). For 〈|γ |2〉, we analyse two approaches of dealing
with the finite survey–size E-/B-mode leakage:

(i) Ignoring the leakage. We fit theoretical models of the top-hat
shear rms (equations 7, A3) directly to the measured E-mode data
points 〈|γ |2〉(θ i). Since power is lost due to the leakage, we expect
σ8 %α

m to be biased low.

Figure 12. Marginalized posterior density contours (68.3 per cent, 95.5
per cent, 99.7 per cent) for CFHTLenS (blue contours), WMAP7 (green),
CFHTLenS+WMAP7 (magenta) and CFHTLenS+WMAP7+BOSS+R09
(black). The model is curved wCDM.

Table 5. Constraints from CFHTLenS orthogonal to the %m–σ 8
degeneracy direction. The main results from the 2PCF (first row)
are compared to other estimators.

Data α σ 8 (%m/0.27)α

2PCF 0.59 ± 0.02 0.79 ± 0.03

〈M2
ap〉 0.70 ± 0.02 0.79 ± 0.06

〈|γ |2〉 (ignoring offset) 0.60 ± 0.03 0.78+0.04
−0.05

〈|γ |2〉 (constant offset) 0.58 ± 0.03 0.80+0.03
−0.04

RE 0.56 ± 0.02 0.80+0.03
−0.04

COSEBIs (ϑmax = 100 arcmin) 0.60 ± 0.02 0.79+0.04
−0.06

COSEBIs (ϑmax = 250 arcmin) 0.64 ± 0.03 0.77+0.04
−0.05

2PCF, constant covariance 0.60 ± 0.03 0.78+0.03
−0.04

2PCF (ϑ ≥ 17 arcmin) 0.65 ± 0.02 0.78 ± 0.04

2PCF (ϑ ≥ 53 arcmin) 0.65 ± 0.03 0.79+0.07
−0.06
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Figure 13. Marginalized posterior density contours (68.3 per cent, 95.5 per
cent, 99.7 per cent) for WMAP7 (green), WMAP7+CFHTLenS (magenta),
WMAP7+BOSS+R09 (orange) and WMAP7+CFHTLenS+BOSS+R09
(black). The model is flat !CDM (upper panel) and curved !CDM (lower
panel), respectively.

The constraints for the larger models with free curvature are
consistent with "K = 0. It is therefore not surprising that those
more general models are not favoured over models with fixed flat
geometry. The larger parameter space from the additional degree
of freedom implies a lower predictive capability of those extended
models. A good model should not only predict (a priori) the correct
parameter range where the result is to be found (a posteriori), but
also make a specific and accurate prediction; in other words, it
should have a narrow prior range compared to the posterior. A lack
of predictive capability is penalized by the Bayesian evidence.

In contrast to the two non-flat models (curved !CDM and curved
wCDM), the flat wCDM universe is indistinguishable from a flat
model with cosmological constant. This can be understood by
looking at the respective additional parameter constraints beyond
!CDM, that is, "de for the curved and w0 for wCDM. Compared to

the corresponding prior, the allowed posterior range for "de is a lot
smaller than the one for w0 since the latter parameter is less tightly
constrained. Therefore, the curved models are less predictive, cor-
responding to a lower evidence. Both the very tight constraints on
"K, with error of about 0.005, and the moderate Bayesian evidence
in favour of a flat model strengthen the emerging picture that we
live indeed in a Universe with zero curvature.
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CFHTLens survey size is about 150 sq.deg.



Multiband survey
4m Blanco telescope at CTIO 

Figure 2: The DES footprint with SN fields, with first-year fields shown. The black cross hatched regions are the
full-depth, 10 tiling, year-1 fields, and the yellow single-hatched region is the year-1 two-tiling area. In the diagram,
N is up and E is to the right; time and RA increase to the right.
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DES footprint

VISTA

SPT

5000 deg2 grizY to 24th mag = 25 times CFHTLens
15 deg2 for type Ia supernovae
5 years
300 millions photometric redshifts

Other surveys
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Early data: ~250 deg2 at full depth. Early 
science results to expect within the year

1st year data: Oct13 - Fev 14. ~2000 sq deg2. 
Data processing ongoing

Survey actual coverage

2nd year data taking has started
Stay tuned for DES cosmic shear results!

The Dark Energy Survey

will provide visible data to Euclid.
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What is different from galaxy weak lensing?

Effect investigated in 1987, first detected in 2007, and has now 
become a standard cosmological probe
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Planck Collaboration: Gravitational lensing by large-scale structures with Planck

1. Introduction

When Blanchard and Schneider first considered the e↵ect of
gravitational lensing on the cosmic microwave background
(CMB) anisotropies in 1987, they wrote with guarded optimism
that although “such an observation is far from present possibil-
ities [...] such an e↵ect will not be impossible to find and to
identify in the future.” (Blanchard & Schneider 1987). In the
proceeding years, and with the emergence of the concordance
⇤CDM cosmology, a standard theoretical picture has emerged,
in which the large-scale, linear structures of the Universe which
intercede between ourselves and the CMB last-scattering sur-
face induce small but coherent (Cole & Efstathiou 1989) de-
flections of the observed CMB temperature and polarisation
anisotropies, with a typical magnitude of 20. These deflec-
tions blur the acoustic peaks (Seljak 1996), generate small-scale
power (Linder 1990; Metcalf & Silk 1997), non-Gaussianity
(Bernardeau 1997), and convert a portion of the dominant E-
mode polarisation to B-mode (Zaldarriaga & Seljak 1998).
Gravitational lensing of the CMB is both a nuisance, in that it
obscures the primordial fluctuations (Knox & Song 2002), as
well as a potentially useful source of information; the charac-
teristic signatures of lensing provide a measure of the distri-
bution of mass in the Universe at intermediate redshifts (typi-
cally 0.1 < z < 5). In the⇤CDM framework, there exist accurate
methods to calculate the e↵ects of lensing on the CMB power
spectra (Challinor & Lewis 2005), as well as optimal estimators
for the distinct statistical signatures of lensing (Hu & Okamoto
2002; Hirata & Seljak 2003a).

In recent years there have been a number of increasingly sen-
sitive experimental measurements of CMB lensing. Lensing has
been measured in the data of the WMAP satellite both in cross-
correlation with large-scale-structure probed by galaxy surveys
(Hirata et al. 2004; Smith et al. 2007; Hirata et al. 2008; Feng
et al. 2012a), as well as internally at lower signal-to-noise (Smidt
et al. 2011; Feng et al. 2012b). The current generation of low-
noise, high-resolution ground-based experiments has done even
better; the Atacama Cosmology Telescope (ACT) has provided
an internal detection of lensing at 4.6� (Das et al. 2011, 2013),
and the South Pole Telescope detects lensing at 6� in the tem-
perature power spectrum, and 6.3� from a direct reconstruction
of the lensing potential (Keisler et al. 2011; van Engelen et al.
2012). Significant measurements of the correlation between the
reconstructed lensing potential and other tracers of large-scale
structure have also been observed (Bleem et al. 2012; Sherwin
et al. 2012).

Planck enters this field with unique full-sky, multi-frequency
coverage. Nominal map noise levels for the first data release (ap-
proximately 105, 45, and 60 µK arcmin for the three CMB chan-
nels at 100, 143, and 217 GHz respectively) are approximately
five times lower than those of WMAP (or twenty five times lower
in power), and the Planck beams (approximately 100, 70 and 50
at 100, 143 and 217 GHz), are small enough to probe the 2.04
deflections typical of lensing. Full sky coverage is particularly
beneficial for the statistical analysis of lensing e↵ects, as much
of the “noise” in temperature lens reconstruction comes from
CMB fluctuations themselves, which can only be beaten down
by averaging over many modes.

Lensing performs a remapping of the CMB fluctuations,
such that the observed temperature anisotropy in direction n̂
is given in terms of the unlensed, “primordial” temperature

anisotropy as (e.g. Lewis & Challinor 2006)

T (n̂) = T unl(n̂+ r�(n̂)),

= T unl(n̂) +
X

i

ri�(n̂)riT (n̂) + O(�2), (1)

where �(n̂) is the CMB lensing potential, defined by

�(n̂) = �2
Z �⇤

0
d�

fK(�⇤ � �)
fK(�⇤) fK(�)

 (�n̂; ⌘0 � �). (2)

Here � is conformal distance (with �⇤ ⇡ 14000 Mpc) denoting
the distance to the CMB last-scattering surface) and  (�n̂, ⌘)
is the gravitational potential at conformal distance � along the
direction n̂ at conformal time ⌘ (the conformal time today is de-
noted as ⌘0). The angular-diameter distance fK(�) depends on
the curvature of the Universe, and is given by

fK(�) =

8>>>><
>>>>:

K�1/2 sin(K1/2�) for K > 0 (closed),
� for K = 0 (flat),
|K|�1/2 sinh(|K|1/2�) for K < 0 (open).

(3)

The lensing potential is a measure of the integrated mass distri-
bution back to the last-scattering surface. It contains information
on both the gravitational potentials  To first order, its e↵ect on
the CMB is to introduce a correlation between the lensed tem-
perature and the gradient of the unlensed temperature, a property
which can be exploited to make a (noisy) reconstruction of the
lensing potential itself.

In Fig. 1 we plot the noise power spectrum N��L for recon-
struction of the lensing potential using the three Planck frequen-
cies which are most sensitive to the CMB anisotropies on the
arcminute angular scales at which lensing e↵ects become ap-
parent. The angular size of the Planck beams (50 FWHM and
greater) does not allow a high signal-to-noise (S/N) reconstruc-
tion of the lensing potential for any individual mode (our high-
est S/N ratio on an individual mode is approximately 2/3 for the
143 and 217 GHz channels, or 3/4 for a minimum-variance com-
bination of both channels), however with full-sky coverage the
large number of modes which are probed provides considerable
statistical power. To provide a feeling for the statistical weight of
di↵erent regions of the lensing measurement, in Fig. 2 we plot
(forecasted) contributions to the total detection significance for
the potential power spectrum C��L as a function of lensing mul-
tipole L. In addition to the power spectrum of the lensing po-
tential, there is tremendous statistical power in cross-correlation
of the Planck lensing potential with other tracers of the matter
distribution. In Fig. 2 we also plot forecasted S/N contributions
for several representative tracers.

This paper describes the production, characterization, and
first science results for two Planck-derived lensing products:

(I) A map of the CMB lensing potential �(n̂) over a large
fraction of the sky (approximately 70%). This repre-
sents an integrated measure of mass in the entire visible
Universe, with a peak sensitivity to redshifts of z ⇠ 2.
At the resolution of Planck, this map provides an esti-
mate of the lensing potential down to angular scales of
50 at L = 2048, corresponding to structures on the order
of 3 Mpc in size at z = 2.

(II) An estimate of the lensing potential power spec-
trum C��L and an associated likelihood, which is
used in the cosmological parameter analysis of
Planck Collaboration XVI (2013). Our likelihood is
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Typical deflection δβ sourced by potential Ψ

δβ ~ 10-4Ψ ~ 2 10-5

Photons encounter ~ 50 potential wells 

r.m.s deflection
501/2  * 10-4 ~2 arcmin
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1. Introduction

When Blanchard and Schneider first considered the e↵ect of
gravitational lensing on the cosmic microwave background
(CMB) anisotropies in 1987, they wrote with guarded optimism
that although “such an observation is far from present possibil-
ities [...] such an e↵ect will not be impossible to find and to
identify in the future.” (Blanchard & Schneider 1987). In the
proceeding years, and with the emergence of the concordance
⇤CDM cosmology, a standard theoretical picture has emerged,
in which the large-scale, linear structures of the Universe which
intercede between ourselves and the CMB last-scattering sur-
face induce small but coherent (Cole & Efstathiou 1989) de-
flections of the observed CMB temperature and polarisation
anisotropies, with a typical magnitude of 20. These deflec-
tions blur the acoustic peaks (Seljak 1996), generate small-scale
power (Linder 1990; Metcalf & Silk 1997), non-Gaussianity
(Bernardeau 1997), and convert a portion of the dominant E-
mode polarisation to B-mode (Zaldarriaga & Seljak 1998).
Gravitational lensing of the CMB is both a nuisance, in that it
obscures the primordial fluctuations (Knox & Song 2002), as
well as a potentially useful source of information; the charac-
teristic signatures of lensing provide a measure of the distri-
bution of mass in the Universe at intermediate redshifts (typi-
cally 0.1 < z < 5). In the⇤CDM framework, there exist accurate
methods to calculate the e↵ects of lensing on the CMB power
spectra (Challinor & Lewis 2005), as well as optimal estimators
for the distinct statistical signatures of lensing (Hu & Okamoto
2002; Hirata & Seljak 2003a).

In recent years there have been a number of increasingly sen-
sitive experimental measurements of CMB lensing. Lensing has
been measured in the data of the WMAP satellite both in cross-
correlation with large-scale-structure probed by galaxy surveys
(Hirata et al. 2004; Smith et al. 2007; Hirata et al. 2008; Feng
et al. 2012a), as well as internally at lower signal-to-noise (Smidt
et al. 2011; Feng et al. 2012b). The current generation of low-
noise, high-resolution ground-based experiments has done even
better; the Atacama Cosmology Telescope (ACT) has provided
an internal detection of lensing at 4.6� (Das et al. 2011, 2013),
and the South Pole Telescope detects lensing at 6� in the tem-
perature power spectrum, and 6.3� from a direct reconstruction
of the lensing potential (Keisler et al. 2011; van Engelen et al.
2012). Significant measurements of the correlation between the
reconstructed lensing potential and other tracers of large-scale
structure have also been observed (Bleem et al. 2012; Sherwin
et al. 2012).

Planck enters this field with unique full-sky, multi-frequency
coverage. Nominal map noise levels for the first data release (ap-
proximately 105, 45, and 60 µK arcmin for the three CMB chan-
nels at 100, 143, and 217 GHz respectively) are approximately
five times lower than those of WMAP (or twenty five times lower
in power), and the Planck beams (approximately 100, 70 and 50
at 100, 143 and 217 GHz), are small enough to probe the 2.04
deflections typical of lensing. Full sky coverage is particularly
beneficial for the statistical analysis of lensing e↵ects, as much
of the “noise” in temperature lens reconstruction comes from
CMB fluctuations themselves, which can only be beaten down
by averaging over many modes.

Lensing performs a remapping of the CMB fluctuations,
such that the observed temperature anisotropy in direction n̂
is given in terms of the unlensed, “primordial” temperature

anisotropy as (e.g. Lewis & Challinor 2006)

T (n̂) = T unl(n̂+ r�(n̂)),

= T unl(n̂) +
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where �(n̂) is the CMB lensing potential, defined by

�(n̂) = �2
Z �⇤

0
d�

fK(�⇤ � �)
fK(�⇤) fK(�)

 (�n̂; ⌘0 � �). (2)

Here � is conformal distance (with �⇤ ⇡ 14000 Mpc) denoting
the distance to the CMB last-scattering surface) and  (�n̂, ⌘)
is the gravitational potential at conformal distance � along the
direction n̂ at conformal time ⌘ (the conformal time today is de-
noted as ⌘0). The angular-diameter distance fK(�) depends on
the curvature of the Universe, and is given by

fK(�) =

8>>>><
>>>>:

K�1/2 sin(K1/2�) for K > 0 (closed),
� for K = 0 (flat),
|K|�1/2 sinh(|K|1/2�) for K < 0 (open).

(3)

The lensing potential is a measure of the integrated mass distri-
bution back to the last-scattering surface. It contains information
on both the gravitational potentials  To first order, its e↵ect on
the CMB is to introduce a correlation between the lensed tem-
perature and the gradient of the unlensed temperature, a property
which can be exploited to make a (noisy) reconstruction of the
lensing potential itself.

In Fig. 1 we plot the noise power spectrum N��L for recon-
struction of the lensing potential using the three Planck frequen-
cies which are most sensitive to the CMB anisotropies on the
arcminute angular scales at which lensing e↵ects become ap-
parent. The angular size of the Planck beams (50 FWHM and
greater) does not allow a high signal-to-noise (S/N) reconstruc-
tion of the lensing potential for any individual mode (our high-
est S/N ratio on an individual mode is approximately 2/3 for the
143 and 217 GHz channels, or 3/4 for a minimum-variance com-
bination of both channels), however with full-sky coverage the
large number of modes which are probed provides considerable
statistical power. To provide a feeling for the statistical weight of
di↵erent regions of the lensing measurement, in Fig. 2 we plot
(forecasted) contributions to the total detection significance for
the potential power spectrum C��L as a function of lensing mul-
tipole L. In addition to the power spectrum of the lensing po-
tential, there is tremendous statistical power in cross-correlation
of the Planck lensing potential with other tracers of the matter
distribution. In Fig. 2 we also plot forecasted S/N contributions
for several representative tracers.

This paper describes the production, characterization, and
first science results for two Planck-derived lensing products:

(I) A map of the CMB lensing potential �(n̂) over a large
fraction of the sky (approximately 70%). This repre-
sents an integrated measure of mass in the entire visible
Universe, with a peak sensitivity to redshifts of z ⇠ 2.
At the resolution of Planck, this map provides an esti-
mate of the lensing potential down to angular scales of
50 at L = 2048, corresponding to structures on the order
of 3 Mpc in size at z = 2.

(II) An estimate of the lensing potential power spec-
trum C��L and an associated likelihood, which is
used in the cosmological parameter analysis of
Planck Collaboration XVI (2013). Our likelihood is
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where c.c. denotes the complex conjugate and we have sup-
pressed the l indices.
These formidable looking expressions simplify consider-

ably. The second term may be rewritten through integration
by parts and the identity !2Y l

m!"l(l#1)Y l
m "4#,

I ll1l2
mm1m2!

1
2" l1$ l1#1 %#l2$ l2#1 %

"l$ l#1 %#! dn̂Y l
m*Y l1

m1Y l2
m2 . $50%

The remaining integral may be expressed in terms of the
Wigner-3 j symbol through the general relation

! dn̂$ s1Y l1
m1*%s2Y l2

m2$ s3Y l2
m3%

!$"1 %m1#s1!$2l1#1 %$2l2#1 %$2l3#1 %

4&

$" l1 l2 l3
s1 "s2 "s3

# " l1 l2 l3
"m1 m2 m3

# , $51%

where note that 0Y l
m!Y l

m . It is therefore convenient to de-
fine

Fl1l2l3!
1
2 " l2$ l2#1 %#l3$ l3#1 %"l1$ l1#1 %#

$!$2l1#1 %$2l2#1 %$2l3#1 %

4& " l1 l2 l3
0 0 0 # .

$52%

Finally the Wigner-3 j symbol obeys

'
m1m2

" l1 l2 l3
m1 m2 m3

# " l1 l2 l3
m1 m2 m3

# !
1

2l3#1
. $53%

Putting these relations together, we find that

S1!
1

2l#1 $Fll1l2%
2. $54%

An algebraic expression for the relevant Wigner-3 j symbol
is given in Appendix B.
The second term in Eq. $48% can be simplified by re-

expressing the gradients of the spherical harmonics with
spin-1 spherical harmonics. As shown in Appendix A, the
spin-1 harmonics are the eigenmodes of vector fields on the
sky and naturally appear in expressions for deflection angles.
Note that there is a general relation for raising and lowering
the spin of a spherical harmonic "11#

m"•“sY l
m!!$ l"s %$ l#s#1 %

2 s#1Y l
m ,

m#•“sY l
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2 s"1Y l
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so that

!Y l
m!!l$ l#1 %

2 "1Y l
mm#""1Y l

mm"# . $56%

As an aside, we note that Eq. $54% can alternately be derived
from this relation and the integral $51% with s!%1.
Further, we note that spin spherical harmonics also obey a

sum rule "17#

'
m

s1Y l
m*$ n̂%s2Y l

m$ n̂%!!2l#1
4& s2Y l
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For the spin-1 harmonics

"1Y l
1$0%!1Y l

"1$0%!"!2l#1
4&

, $58%

and the others involving s1 ,s2!%1 vanish. These results
imply that

'
m

! iY l
m! jY l

m*!
1
2 l$ l#1 %

2l#1
4&

"$m#% i$m"% j

#$m"% i$m#% j# . $59%

To evaluate the second derivative term in Eq. $47%, we again
apply Eq. $55% to show that

"$m#% i$m"% j#$m"% i$m#% j#!
i! j

sY l
m

!"" l$ l#1 %"s2#sY l
m . $60%

Putting these expressions together we obtain

S2!"
1
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4&

. $61%

Finally combining expressions Eqs. $48%, $54%, and $61%, we
have the following simple result:

C̃ l
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where
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l1
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2l1#1
4&

Cl1
)) . $63%

This expression is computationally no more involved than
the flat-sky expression Eq. $38% and has the benefit of being
exact. Since the lensing effect even at high l in the CMB
originates from the low order multipoles of ) , corrections
due to the curvature of the sky are not confined to low l. We
show in Fig. 1 that the correction causes a 10% difference in
the effect. The change in C̃ l

(( itself is even smaller $of order
1%%. Nonetheless it is larger than the cosmic variance of
these high multipoles and thus should be included in calcu-
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lations for full accuracy. Corrections can be even larger in
models with a red tilt n!1 in the initial spectrum.

B. Polarization

The derivation of the all-sky generalization for polariza-
tion is superficially more involved but follows the same steps
as in the temperature case and results in expressions that are
no more difficult to evaluate. The lensed polarization multi-
poles are given by

"Xlm#"Xlm$ !
l1m1

!
l2m2

" l1m1 "Xl2m2

%!"2I ll1l2
mm1m2$

1
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with the geometrical factors expressed now as integrals over
the spin-spherical harmonics
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Noting that
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where L#l$l1$l2 and recalling that "Xlm#Elm"iBlm ,
the power spectra then become
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The expression for C̃ l
BB follows by interchanging EE and

BB . The cross power spectrum is
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Just as in the case for the temperature field, these expressions
simplify considerably. The spin-2 harmonics are eigenfunc-
tions of the angular Laplacian of a tensor

%2
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m#&&l# l$1 $$4'"2Y l
m , #71$

which follows from contracting indices in Eq. #60$. It then
follows that
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Comparison with Eq. #51$ implies that it is convenient then
to define the quantity
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The third term in Eq. #68$ can be simplified by following
the same steps for the analogous temperature term except for
the replacement of s#0 with s#"2 in Eq. #55$. The result
is
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Putting these relations together, we obtain the result for the
power spectra
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Lensed power spectra using 
the harmonic approach

Inacurrate a small scale (it is better to 
use the lensed correlation functions) 
but gives simpler expressions

Hu, 2000

Lewis & Challinor, 2005
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1) Lensing can also be detected in TT
~10 sigma with Planck2013
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2) Multipoles become correlated. 
Lensing induced non-Gaussian covariance
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Covariance induced by CMB lensing

4

FIG. 1. Monte Carlo covariance of the lensed CMB bandpowers computed from 32768 lensed CMB simulations in bands of
�` = 30. From left to right and top to bottom: TT , TE, EE, and BB. For visualization purposes we plot the correlation
coe�cient R defined in Eq. (10). The diagonal (of order unity) has been subtracted to enhance contrast.

many terms that are not associated with the cosmic vari-
ance of unlensed and lens potential power spectra. These
are terms that connect the various unlensed, lensed and
lens potential multipoles in the 4 point function. As in
the case of BB,BB we can again use the perturbative
approximation as a guide. Here, there is a cancellation
between the power spectrum covariance terms and the
other terms associated with the unlensed fields for slowly
varying unlensed power spectra. These other terms re-
flect the fact that at high CMB multipole moment, the
unlensed fields are all lensed by the same large scale lens
realization. For a fixed lens, neighboring bands are anti-
correlated by the exchange of power between them. This
e↵ect does not occur for the covariances with BB since
there is no unlensed B field from which power can be
taken.

Given this close cancellation between terms associ-

ated with the unlensed fields, we model only the cosmic
variance of the lens power spectra in these cases. For
XY,WZ 2 TT, TE,EE

CovXY,WZ
`1`2

=
1
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+ 1
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"
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`1

@C��
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`

#
. (14)

In these cases the covariance takes a checkerboard pat-
tern. For TT, TT or EE,EE enhanced lensing power
makes modes near acoustic peaks smaller and larger near
troughs. Thus peaks are correlated with peaks, troughs
with troughs, and peaks are anticorrelated with troughs.
Combining Eqs. (11), (13), (14), we have now devel-

oped an analytic model for the lensed CMB bandpower
covariance in all cases. Comparison with the Monte Carlo

3

Interestingly, the EE,BB and EE,EE correlations in
Fig. 1 are substantially larger than expected from the
lowest-order analytic calculations in [20, 22], and all but
TT, TT show clear evidence for correlated structure on
the acoustic scale that is again not expected. Although
Ref. [20] also conducted simulation tests, their bands
were much wider than the acoustic scale such that these
structures were hidden.

B. Analytic Approximation

In order to develop a new analytic approximation to
the covariance matrix, it is useful to first examine the
BB,BB correlation for which the existing models work
well. The dominant terms in the analytic BB,BB cor-
relation expression can be compactly written as (cf. [27]
Eq. 17)
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where unlensed CMB power spectra are denoted with
tildes and C��

` is the lensing potential power spectrum.
Assuming that these fields are Gaussian, we can use the
general prescription for Gaussian random fields G

CovGaGb,GcGd

``0 =
�`,`0

2`+ 1
[CGaGc

` CGbGd
` + CGaGd

` CGbGc
` ]

(12)
for the unlensed CMB and � fields.

To calculate power spectrum derivatives such as the
ones appearing in Eq. (11), we take finite di↵erences
between lensed CMB power spectra computed using
CAMB, rather than using a perturbative expansion in
deflection angles. Since CAMB’s algorithm for comput-
ing lensed CMB power spectra includes terms of high or-
der in deflection angles [28], this approach to computing
derivatives also includes high order terms, and in partic-
ular does not break down at high `. Some implementa-
tional details of the derivative calculation are presented
in Appendix A. The model of Eq. (11) for the correlation
matrix is shown in Fig. 2.

Let us try to interpret the terms in Eq. (11). The first
term is the usual unconnected piece of the covariance
that is the only term for a Gaussian random field. We
will loosely refer to this term as the “Gaussian piece”.
The second and third terms involve the fact that the B
field is constructed out of an unlensed Ẽ field and the
lens potential field �. In the second term, two BB band
powers are connected by the covariance of the unlensed
Ẽ fields they share. In the third term, they are connected
by the shared � fields. Contributions to the correlation

matrix for the second and third terms are shown sepa-
rately in Fig. 3.
The second term can therefore be interpreted as the

covariance in BB band powers generated by cosmic vari-
ance of the unlensed ẼẼ power spectrum. The covari-
ance it generates is positive definite in that enhanced
power in ẼẼ leads to enhanced BB across the spectrum
thus correlating modes (see Fig. 3, right panel).
The third term is the cosmic variance of the lens power.

Here the correlation reflects the acoustic structure of the
unlensed ẼẼ power spectrum. More power in the lenses
allows more power from the acoustic peaks to transfer
into B-modes than the acoustic troughs (see Fig. 3, left
panel).
Finally, we note that Eq. (11) omits a fully connected

term where the Ẽ and � fields are cross connected in-
volving 4 unique multipoles rather than three. These
contributions tend to sum incoherently and are subdom-
inant in the covariance [22]. We omit this term in our
analytic model.
We can use these results to model the other co-

variance terms. First consider BB,XY where XY 2

TT,EE, TE. In this case, there are no Gaussian or un-
connected terms and

CovBB,XY
`1`2

=
X

`
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˜E ˜E, ˜X ˜Y
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`

!

+
X

`

 
@CBB

`1
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`

Cov��,��``

@CXY
`2

@C��
`

!
. (13)

In the perturbative limit for the deflection angles, this
expression exactly models all terms in the covariance.
However, again our expression has extended validity since
the derivatives are evaluated nonlinearly with CAMB.
The case of XY = EE is illustrative as there is a sub-

stantial correlation. The cosmic variance of the unlensed
ẼẼ power spectrum produces contributions along the di-
agonal but biased to a lower BB multipole `

1

< `
2

. This
is due to the fact that most of the power in the low mul-
tipoles of BB actually comes from where the unlensed
ẼẼ spectrum peaks (`

1

⇠ 1000). In previous analytic
approaches, the term that was kept was for `

2

= `, which
is linear in C��

` .
Previous approaches have dropped the term associated

with the cosmic variance of the lens power spectrum (the
second term in Eq. (13)) under the justification that it
is second order in C��

` . In fact it is the dominant con-
tribution to the covariance at `

1

, `
2

& 103. This term
causes a band structure in the EE dependence of the co-
variance. Increasing the power in the lenses causes more
power from acoustic peaks in ẼẼ to be transformed into
BB power while also filling in power in EE at the acous-
tic troughs. Thus peaks in EE are anticorrelated with
BB and troughs are correlated.
Finally, there are the cases for which XY,WZ 2

TT, TE,EE. These cases are in principle more compli-
cated in that even at the perturbative level, there are

ABL, Smith & Hu (PRD, 2012)
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with XY 2 {l, g, s}, for CMB lensing, Galaxy density and Cosmic shear.
The kernel read
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where the average hi is taken over CMB realizations with a fixed
lensing potential. Here the bracketed term is a Wigner 3 j sym-
bol, �LM =

R
d2 n̂Y⇤LM(n̂)�(n̂) is the harmonic transform of the

lensing potential, and the weight function W�`1`2L is given by

W�`1`2L = �
r

(2`1 + 1)(2`2 + 1)(2L + 1)
4⇡

p
L(L + 1)`1(`1 + 1)

⇥CTT
`1

 
1 + (�1)`1+`2+L

2

!  
`1 `2 L
1 0 �1

!
+ (`1 $ `2). (6)

Here CTT
` is the theoretical power spectrum of the lensed CMB.

Note that we use the lensed power spectrum here, rather than
the unlensed spectrum that is sometimes used in the literature,
as this is accurate to higher order in � (Lewis et al. 2011), an
improvement which is necessary at Planck sensitivity (Hanson
et al. 2011).

Now we construct a quadratic estimator to search for the co-
variance which is introduced by lensing. We will use several dif-
ferent estimators for the lensing potential, as well as to probe
possible point source contamination, and so it will be useful to
keep this discussion as general as possible. A completely generic
quadratic estimator for the lensing potential can be written as

�̂x
LM =

X

L0M0

h
Rx�

i�1

LM,L0M0

h
x̄L0M0 � x̄MF

L0M0
i
, (7)

where Rx� is a normalization matrix, and x̄LM is a quadratic
“building block” which takes in a pair of filtered sky maps T̄ (1)

`m
and T̄ (2)

`m , and sums over their empirical covariance matrix with a
weight function W x

`1`2L:

x̄LM =
1
2

X

`1m1,`2m2

(�1)M
 
`1 `2 L
m1 m2 �M

!
W x
`1`2LT̄ (1)

`1m1
T̄ (2)
`2m2
. (8)

The “mean-field” term x̄MF
LM accounts for all known sources of

statistical anisotropy in the map, which could otherwise bias the
lensing estimate. It is given by

x̄MF
LM =

1
2

X

`1m1,`2m2

(�1)M
 
`1 `2 L
m1 m2 �M

!
W x
`1`2LhT̄ (1)

`1m1
T̄ (2)
`2m2
i, (9)

where the ensemble average here is taken over realizations of the
CMB and noise.

We may now optimize the generic quadratic estimator above.
If the primordial CMB fluctuations and instrumental noise are
Gaussian and the lensing potential is fixed, then the likelihood
for the observed CMB fluctuations is still a Gaussian, which may
be maximized with respect to the lensing potential modes �LM
(Hirata & Seljak 2003a). The optimal quadratic estimator is the
first step of an iterative maximization of this likelihood, and it
has been shown that additional iterations of the estimator are not
necessary for temperature lens reconstruction (Hirata & Seljak
2003a; Okamoto & Hu 2003). The optimal quadratic estimator
has the following choices for the weight function and filtering.

(I) The weight function W x should be a matched filter for the
covariance induced by lensing (i.e., one should use �̄, with
weight function given by Eq. 6). We shall use this weight
function for all of our fiducial results, although for consis-
tency tests we will also use “bias-hardened” estimators,
which have weight functions constructed to be orthogo-
nal to certain systematic e↵ects (Namikawa et al. 2012a).
This is discussed further in Sect. 7.4.

(II) The filtered temperature multipoles T̄`m should be given
by T̄`m = (C�1T )`m, where T is a beam-deconvolved sky
map and C is its total signal+noise covariance matrix. We
describe our approximate implementation of this filtering
in Appendix B. When combining multiple frequencies for
our minimum-variance estimator, all of the available data
is combined into a single map which is then filtered and
used for both input multipoles of the quadratic estimator.
It can be desirable to use di↵erent pairs of maps however,
and we use this for several consistency tests. For exam-
ple, we feed maps with independent noise realizations into
the quadratic estimator to avoid possible noise biases in
Sect. 7.3.

In the quadratic maximum-likelihood estimator, the mean-field
correction emerges from the determinant term in the likelihood
function, and it can be seen that the normalization matrix R is
the Fisher matrix for the �LM; this means that the normalization
is the same as the covariance matrix of the lens reconstruction,
and so the unnormalized lensing estimate �̄ = x̄ � x̄MF is equiv-
alent to an inverse-variance-weighted lens reconstruction, which
is precisely the quantity needed for most statistical analysis. This
is why we have denoted it with an overbar, in analogy to T̄ .

We choose to treat the map noise as if it were homogeneous
when constructing the filtered T̄`m, and do not account for vari-
ation with hit count across the sky. This is a slightly suboptimal
filtering choice; in Appendix. B we estimate that it leads to a
5% loss of total signal-to-noise when constraining the power
spectrum of the lensing potential. The advantage of this ap-
proach, however, is that far from the mask boundaries our fil-
tering asymptotes to a simple form, given by

T̄`m ⇡
h
CTT
` +CNN

`

i�1
T`m ⌘ F`T`m, (10)

where CTT
` is the temperature power spectrum and CNN

` is the
power spectrum of the homogeneous noise level that we use in
our filtering. For the purposes of compact notation, in the fol-
lowing equations we combine both of these elements in the “fil-
ter function” F`. The asymptotic form of our filtering, Eq. (10),
will prove useful, as it means that the normalization of our esti-
mator, as well as its variance and response to various systematic
e↵ects, may be accurately modelled analytically. It allows us to
propagate uncertainties in the beam transfer function and CMB
power spectrum, for example, directly to our lens reconstruction.
This filtering choice also means that the normalization does not
vary as a function of position on the sky, which simplifies the
analysis of cross-correlations between the lensing potential map
and external tracers. Under the approximation of Eq. (10), the
estimator normalization is given by

Rx�
LM,L0M0 = �LL0�MM0Rx�

L , (11)

where the response function Rx�
L for filtered maps T̄ (1) and T̄ (2)

is
Rx�,(1)(2)

L =
1

(2L + 1)

X

`1`2

1
2

W x
`1`2LW�`1`2LF(1)

`1
F(2)
`2
. (12)

This can be read as “the response of estimator x to lensing on
scale L”. The filter functions F` are those used for T̄ (1) and T̄ (2)

respectively. In cases where the filter functions are obvious, we
will drop the indices above.

Putting all of the above together, for a chosen quadratic esti-
mator x̄ we obtain normalized, mean-field-debiased estimates of
the lensing potential � as

�̂x
LM =

1
Rx�

L

⇣
x̄LM � x̄MF

LM

⌘
. (13)
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with XY 2 {l, g, s}, for CMB lensing, Galaxy density and Cosmic shear.
The kernel read

wl(�) / ⌦
m

H2
0

�⇤ � �

�⇤

�

a
(5)

wg(�) / b
dN

d�
(6)

ws(�) / H2
0⌦m

�

a

Z
�⇤

�

d�0dN

d�0
�0 � �

�0 (7)

Ĉ
`

=
1

2`+ 1

`X

m=�`

|T
`m

|2

hT
`1m1T

⇤
`2m2

i = C
`1�`1`2�m1m2+

X

LM

X

`1m1,`2m2

(�1)M
✓

`1 `2 L
m1 m2 �M

◆
W �

`1`2L
�
LM

C��

`

! A
L

C��

`

A
s

e�2⌧

hT
lm

T ⇤
l

0
m

0iCMB ⇠ CTT

`

+
X

LM

f(l, l0,m,m0, L,M)�
LM

�̄
`m

=
⇥
(C�1T )r(SC�1T )

⇤
`m

Planck SPT3G
CMB lens. - galaxy 26 28
CMB lens. - shear 38 66

⇥[n̂] = ⇥̃[n̂+r�(n̂)] ⇡ ⇥̃[n̂] +r�[n̂] r⇥̃[n̂] + · · ·

Ngg =
1

Ngal
N ss =

�2
✏

2Ngal
. (1)

Ngal = 35 arcmin�2, �
✏

= 0.35.

dN

dz
/ z↵e

�
⇣

z
z0

⌘�

, ↵ = 2,� = 1.5, z0 = 0.9/
p
2 (2)

�̄

R��

`

�̄

CXY

`

=

Z
�⇤

0
d�

wX(�)wY (�)

f2
K

(�)
P (`/�,�) (3)

R��

`

N��

`

CXY

`

⇠
Z

�⇤

0
d�wX(�)wY (�)P (`/�,�) (4)

CMB covariance at 
fixed lensing potential

lensed power spectrum off-diagonal term sources by 
lensing



CMB Lensing & ISW
K. Benabed
Institut d’Astrophysique de Paris - UPMC
On behalf of the Planck Collaboration 
XVII. Gravitational lensing by large scale structures
XIX. The integrated Sachs-Wolfe effect

Quadratic estimator on the full sky 

Planck Collaboration: Gravitational lensing by large-scale structures with Planck

where the average hi is taken over CMB realizations with a fixed
lensing potential. Here the bracketed term is a Wigner 3 j sym-
bol, �LM =

R
d2 n̂Y⇤LM(n̂)�(n̂) is the harmonic transform of the

lensing potential, and the weight function W�`1`2L is given by

W�`1`2L = �
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(2`1 + 1)(2`2 + 1)(2L + 1)
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Here CTT
` is the theoretical power spectrum of the lensed CMB.

Note that we use the lensed power spectrum here, rather than
the unlensed spectrum that is sometimes used in the literature,
as this is accurate to higher order in � (Lewis et al. 2011), an
improvement which is necessary at Planck sensitivity (Hanson
et al. 2011).

Now we construct a quadratic estimator to search for the co-
variance which is introduced by lensing. We will use several dif-
ferent estimators for the lensing potential, as well as to probe
possible point source contamination, and so it will be useful to
keep this discussion as general as possible. A completely generic
quadratic estimator for the lensing potential can be written as

�̂x
LM =

X

L0M0

h
Rx�

i�1

LM,L0M0

h
x̄L0M0 � x̄MF

L0M0
i
, (7)

where Rx� is a normalization matrix, and x̄LM is a quadratic
“building block” which takes in a pair of filtered sky maps T̄ (1)

`m
and T̄ (2)

`m , and sums over their empirical covariance matrix with a
weight function W x

`1`2L:

x̄LM =
1
2

X
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W x
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The “mean-field” term x̄MF
LM accounts for all known sources of

statistical anisotropy in the map, which could otherwise bias the
lensing estimate. It is given by

x̄MF
LM =

1
2

X

`1m1,`2m2
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`1 `2 L
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where the ensemble average here is taken over realizations of the
CMB and noise.

We may now optimize the generic quadratic estimator above.
If the primordial CMB fluctuations and instrumental noise are
Gaussian and the lensing potential is fixed, then the likelihood
for the observed CMB fluctuations is still a Gaussian, which may
be maximized with respect to the lensing potential modes �LM
(Hirata & Seljak 2003a). The optimal quadratic estimator is the
first step of an iterative maximization of this likelihood, and it
has been shown that additional iterations of the estimator are not
necessary for temperature lens reconstruction (Hirata & Seljak
2003a; Okamoto & Hu 2003). The optimal quadratic estimator
has the following choices for the weight function and filtering.

(I) The weight function W x should be a matched filter for the
covariance induced by lensing (i.e., one should use �̄, with
weight function given by Eq. 6). We shall use this weight
function for all of our fiducial results, although for consis-
tency tests we will also use “bias-hardened” estimators,
which have weight functions constructed to be orthogo-
nal to certain systematic e↵ects (Namikawa et al. 2012a).
This is discussed further in Sect. 7.4.

(II) The filtered temperature multipoles T̄`m should be given
by T̄`m = (C�1T )`m, where T is a beam-deconvolved sky
map and C is its total signal+noise covariance matrix. We
describe our approximate implementation of this filtering
in Appendix B. When combining multiple frequencies for
our minimum-variance estimator, all of the available data
is combined into a single map which is then filtered and
used for both input multipoles of the quadratic estimator.
It can be desirable to use di↵erent pairs of maps however,
and we use this for several consistency tests. For exam-
ple, we feed maps with independent noise realizations into
the quadratic estimator to avoid possible noise biases in
Sect. 7.3.

In the quadratic maximum-likelihood estimator, the mean-field
correction emerges from the determinant term in the likelihood
function, and it can be seen that the normalization matrix R is
the Fisher matrix for the �LM; this means that the normalization
is the same as the covariance matrix of the lens reconstruction,
and so the unnormalized lensing estimate �̄ = x̄ � x̄MF is equiv-
alent to an inverse-variance-weighted lens reconstruction, which
is precisely the quantity needed for most statistical analysis. This
is why we have denoted it with an overbar, in analogy to T̄ .

We choose to treat the map noise as if it were homogeneous
when constructing the filtered T̄`m, and do not account for vari-
ation with hit count across the sky. This is a slightly suboptimal
filtering choice; in Appendix. B we estimate that it leads to a
5% loss of total signal-to-noise when constraining the power
spectrum of the lensing potential. The advantage of this ap-
proach, however, is that far from the mask boundaries our fil-
tering asymptotes to a simple form, given by

T̄`m ⇡
h
CTT
` +CNN

`

i�1
T`m ⌘ F`T`m, (10)

where CTT
` is the temperature power spectrum and CNN

` is the
power spectrum of the homogeneous noise level that we use in
our filtering. For the purposes of compact notation, in the fol-
lowing equations we combine both of these elements in the “fil-
ter function” F`. The asymptotic form of our filtering, Eq. (10),
will prove useful, as it means that the normalization of our esti-
mator, as well as its variance and response to various systematic
e↵ects, may be accurately modelled analytically. It allows us to
propagate uncertainties in the beam transfer function and CMB
power spectrum, for example, directly to our lens reconstruction.
This filtering choice also means that the normalization does not
vary as a function of position on the sky, which simplifies the
analysis of cross-correlations between the lensing potential map
and external tracers. Under the approximation of Eq. (10), the
estimator normalization is given by

Rx�
LM,L0M0 = �LL0�MM0Rx�

L , (11)

where the response function Rx�
L for filtered maps T̄ (1) and T̄ (2)

is
Rx�,(1)(2)

L =
1

(2L + 1)

X
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1
2

W x
`1`2LW�`1`2LF(1)

`1
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. (12)

This can be read as “the response of estimator x to lensing on
scale L”. The filter functions F` are those used for T̄ (1) and T̄ (2)

respectively. In cases where the filter functions are obvious, we
will drop the indices above.

Putting all of the above together, for a chosen quadratic esti-
mator x̄ we obtain normalized, mean-field-debiased estimates of
the lensing potential � as

�̂x
LM =

1
Rx�

L

⇣
x̄LM � x̄MF

LM

⌘
. (13)
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Lensing reconstruction

Okamoto & Hu, 2003 
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where the average hi is taken over CMB realizations with a fixed
lensing potential. Here the bracketed term is a Wigner 3 j sym-
bol, �LM =

R
d2 n̂Y⇤LM(n̂)�(n̂) is the harmonic transform of the

lensing potential, and the weight function W�`1`2L is given by
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Here CTT
` is the theoretical power spectrum of the lensed CMB.

Note that we use the lensed power spectrum here, rather than
the unlensed spectrum that is sometimes used in the literature,
as this is accurate to higher order in � (Lewis et al. 2011), an
improvement which is necessary at Planck sensitivity (Hanson
et al. 2011).

Now we construct a quadratic estimator to search for the co-
variance which is introduced by lensing. We will use several dif-
ferent estimators for the lensing potential, as well as to probe
possible point source contamination, and so it will be useful to
keep this discussion as general as possible. A completely generic
quadratic estimator for the lensing potential can be written as

�̂x
LM =

X

L0M0

h
Rx�

i�1

LM,L0M0

h
x̄L0M0 � x̄MF

L0M0
i
, (7)

where Rx� is a normalization matrix, and x̄LM is a quadratic
“building block” which takes in a pair of filtered sky maps T̄ (1)

`m
and T̄ (2)

`m , and sums over their empirical covariance matrix with a
weight function W x

`1`2L:

x̄LM =
1
2
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The “mean-field” term x̄MF
LM accounts for all known sources of

statistical anisotropy in the map, which could otherwise bias the
lensing estimate. It is given by

x̄MF
LM =

1
2

X

`1m1,`2m2
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where the ensemble average here is taken over realizations of the
CMB and noise.

We may now optimize the generic quadratic estimator above.
If the primordial CMB fluctuations and instrumental noise are
Gaussian and the lensing potential is fixed, then the likelihood
for the observed CMB fluctuations is still a Gaussian, which may
be maximized with respect to the lensing potential modes �LM
(Hirata & Seljak 2003a). The optimal quadratic estimator is the
first step of an iterative maximization of this likelihood, and it
has been shown that additional iterations of the estimator are not
necessary for temperature lens reconstruction (Hirata & Seljak
2003a; Okamoto & Hu 2003). The optimal quadratic estimator
has the following choices for the weight function and filtering.

(I) The weight function W x should be a matched filter for the
covariance induced by lensing (i.e., one should use �̄, with
weight function given by Eq. 6). We shall use this weight
function for all of our fiducial results, although for consis-
tency tests we will also use “bias-hardened” estimators,
which have weight functions constructed to be orthogo-
nal to certain systematic e↵ects (Namikawa et al. 2012a).
This is discussed further in Sect. 7.4.

(II) The filtered temperature multipoles T̄`m should be given
by T̄`m = (C�1T )`m, where T is a beam-deconvolved sky
map and C is its total signal+noise covariance matrix. We
describe our approximate implementation of this filtering
in Appendix B. When combining multiple frequencies for
our minimum-variance estimator, all of the available data
is combined into a single map which is then filtered and
used for both input multipoles of the quadratic estimator.
It can be desirable to use di↵erent pairs of maps however,
and we use this for several consistency tests. For exam-
ple, we feed maps with independent noise realizations into
the quadratic estimator to avoid possible noise biases in
Sect. 7.3.

In the quadratic maximum-likelihood estimator, the mean-field
correction emerges from the determinant term in the likelihood
function, and it can be seen that the normalization matrix R is
the Fisher matrix for the �LM; this means that the normalization
is the same as the covariance matrix of the lens reconstruction,
and so the unnormalized lensing estimate �̄ = x̄ � x̄MF is equiv-
alent to an inverse-variance-weighted lens reconstruction, which
is precisely the quantity needed for most statistical analysis. This
is why we have denoted it with an overbar, in analogy to T̄ .

We choose to treat the map noise as if it were homogeneous
when constructing the filtered T̄`m, and do not account for vari-
ation with hit count across the sky. This is a slightly suboptimal
filtering choice; in Appendix. B we estimate that it leads to a
5% loss of total signal-to-noise when constraining the power
spectrum of the lensing potential. The advantage of this ap-
proach, however, is that far from the mask boundaries our fil-
tering asymptotes to a simple form, given by

T̄`m ⇡
h
CTT
` +CNN

`

i�1
T`m ⌘ F`T`m, (10)

where CTT
` is the temperature power spectrum and CNN

` is the
power spectrum of the homogeneous noise level that we use in
our filtering. For the purposes of compact notation, in the fol-
lowing equations we combine both of these elements in the “fil-
ter function” F`. The asymptotic form of our filtering, Eq. (10),
will prove useful, as it means that the normalization of our esti-
mator, as well as its variance and response to various systematic
e↵ects, may be accurately modelled analytically. It allows us to
propagate uncertainties in the beam transfer function and CMB
power spectrum, for example, directly to our lens reconstruction.
This filtering choice also means that the normalization does not
vary as a function of position on the sky, which simplifies the
analysis of cross-correlations between the lensing potential map
and external tracers. Under the approximation of Eq. (10), the
estimator normalization is given by

Rx�
LM,L0M0 = �LL0�MM0Rx�

L , (11)

where the response function Rx�
L for filtered maps T̄ (1) and T̄ (2)

is
Rx�,(1)(2)

L =
1

(2L + 1)

X

`1`2

1
2

W x
`1`2LW�`1`2LF(1)

`1
F(2)
`2
. (12)

This can be read as “the response of estimator x to lensing on
scale L”. The filter functions F` are those used for T̄ (1) and T̄ (2)

respectively. In cases where the filter functions are obvious, we
will drop the indices above.

Putting all of the above together, for a chosen quadratic esti-
mator x̄ we obtain normalized, mean-field-debiased estimates of
the lensing potential � as

�̂x
LM =

1
Rx�

L

⇣
x̄LM � x̄MF

LM

⌘
. (13)
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Typically: T1 is inverse-variance filtered, and T2 is Wiener filtered

Estimator is unbiased (in the absence of real-life issues), but noisy

Okamoto & Hu, 2003 
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Fig. 1. Sky-averaged lens reconstruction noise levels for the 100,
143, and 217 GHz Planck channels (red, green, and blue solid,
respectively), as well as for experiments that are cosmic-variance
limited to a maximum multipole `max = 1000, 1500, and 1750
(upper to lower solid grey lines). A fiducial ⇤CDM lensing po-
tential using best-fit parameters to the temperature power spec-
trum from Planck Collaboration XVI (2013) is shown in dashed
black. The noise level for a minimum-variance (“MV”) combi-
nation of 143+217 GHz is shown in black (the gain from adding
100 GHz is negligible).

Fig. 2. Overview of forecasted contributions to the detection sig-
nificance as a function of lensing multipole L for the C��L power
spectrum (solid black), as well as for several other mass tracers,
at the noise levels of our MV lens reconstruction. Our measure-
ment of the power spectrum C��L is presented in Sect. 6, The
ISW-� correlation believed to be induced by dark energy is stud-
ied in Sect. 6.2. The NVSS-� correlation is studied (along with
other Galaxy correlations) in Sect. 6.3. The CIB-� prediction
(dashed cyan) uses the linear SSED model of Hall et al. (2010),
assuming no noise or foreground contamination. A full analy-
sis and interpretation of the CIB-� correlation is performed in
Planck Collaboration XVIII (2013).

based on the lensing multipole range 40  L  400.
This multipole range (highlighted as a dark grey band
in Fig. 2), was chosen as the range in which Planck
has the greatest sensitivity to lensing power, encap-
sulating over 90% of the anticipated signal-to-noise,
while conservatively avoiding the low-L multipoles
where mean-field corrections due to survey anisotropy
(discussed in Appendix C) are large, and the high-L
multipoles where there are large corrections to the power
spectra from Gaussian (disconnected) noise bias. Distilled
to a single amplitude, our likelihood corresponds to a
4% measurement of the amplitude of the fiducial ⇤CDM
lensing power spectrum, or a 2% measurement of the
amplitude of the matter fluctuations (neglecting parameter
degeneracies).

Our e↵orts to validate these products are aided by the fre-
quency coverage of the three Planck channels that we employ,
which span a wide range of foreground, beam, and noise prop-
erties. For the mask levels that we use, the root-mean-squared
(RMS) foreground contamination predicted by the Planck sky
model (Delabrouille et al. 2012) has an amplitude of 14, 22,
and 70 µK at 100, 143, and 217 GHz, which can be compared
to a CMB RMS for the Planck best-fitting ⇤CDM power spec-
trum of approximately 110 µK. The dominant foreground com-
ponent at all three CMB frequencies is dust emission, both from
our Galaxy as well as the cosmic infrared background (CIB),
although at 100 GHz free-free emission is thought to consti-
tute approximately 15% of the foreground RMS. Contamination
from the thermal Sunyaev-Zeldovich (tSZ) e↵ect is a potential
worry at 100 and 143 GHz, but negligible at 217 GHz (Sunyaev
& Zeldovich 1980). On the instrumental side, these frequency
channels also span a wide range of beam asymmetry, with typi-
cal ellipticities of 19%, 4%, and 18% at 100, 143, and 217 GHz.
The magnitude of correlated noise on small scales (due to de-
convolution of the bolometer time response) also varies signifi-
cantly. The ratio of the noise power (before beam deconvolution)
at ` = 1500 to that at ` = 500 is a factor of 1.5, 1.1, and 1.0 at
100, 143, and 217 GHz. The agreement of lens reconstructions
based on combinations of these three channels allows a powerful
suite of consistency tests for both foreground and instrumental
biases. We will further validate the robustness of our result to
foreground contamination using the component separated maps
from the Planck consortium (Planck Collaboration XII 2013).

At face value, the 4% measurement of C��L in our fiducial
likelihood corresponds to a 25� detection of gravitational lens-
ing e↵ects. In fact, a significant fraction (approximately 25% of
our error bar) is due to sample variance of the lenses themselves,
and so the actual “detection” of lensing e↵ects (under the null
hypothesis of no lensing) is significantly higher. We have also
been conservative in terms of mask and multipole range in the
construction of our fiducial lensing likelihood. As we will show
in Sect. 7.1, we obtain consistent results on sky fractions larger
than our fiducial 70% sky mask.

The Planck lensing potential is part of a significant shift for
CMB lensing science from the detection regime to that of preci-
sion cosmological probe. The NVSS quasar catalogue, for exam-
ple, has been a focus of previous lensing cross-correlation stud-
ies with WMAP (Hirata et al. 2004; Smith et al. 2007; Hirata
et al. 2008), where evidence for cross-correlation was found at
approximately 3.5�. As we will see in Sect. 6.3, the significance
for this correlation with Planck is now 20�. Notably, this is less
than the significance with which lensing may be detected inter-
nally with Planck. The lensing potential measured by Planck
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Our motivation for taking a fixed noise level is that with this ap-
proach, in regions su�ciently far from the mask boundary, our
filter asymptotes to the diagonal form of Eq. (B.1). This means
that the normalization of our lensing estimates can be well-
approximated analytically, which is very useful for the propa-
gation of systematic e↵ects, and also that the normalization of
our lensing estimates does not vary across the sky with noise
level, which simplifies cross-correlation analysis. Our C�1 fil-
ter is therefore optimally accounting for masking e↵ects, but not
for noise correlations and inhomogeneity. We estimate the sub-
optimality of neglecting these noise properties by calculating the
quantity

(S/N)use

(S/N)opt
=

⇣
R��,useL

⌘2

⇣
R��,optL

⌘

0
BBBBBBBB@
X

`1`2

1
2

����W�`1`2L

����
2
⇣
Fuse

`1
Fuse

`2

⌘2

Fopt

`1
Fopt

`2

1
CCCCCCCCA

�1

(B.8)

where Fopt

` is the optimal filter and Fuse

` is the suboptimal filter
which we have actually used. This equation gives the S/N loss
as a function of lens multipole L, however in practice we find
that the L dependence is small enough that it su�ces to quote a
single average loss. To estimate the degradation due to ignoring
noise correlations we set

Fopt

` =
1

CTT
` + B�2,⌫

` NTT
L

, (B.9)

where NTT
L is the power spectrum of the map noise. We find

that the degradation due to neglect of noise correlations is small;
less than 2% for all L  2048 at 100 GHz, and less than 0.1%
at 143 and 217 GHz. To calculate the degradation due to ignor-
ing noise inhomogeneity, we determine the map noise level in
the 3072 regions corresponding to Nside = 16 HEALPix pix-
els, take Fopt

` using Eq. (B.2) with the local noise level, and
estimate a resulting S/N degradation using Eq. (B.8). The ne-
glect of noise inhomogeneity is the dominant suboptimality of
our filtering, although it is still small. We find an average S/N
loss (averaged over the entire sky) of approximately 4% at 100,
143, and 217 GHz, consistent with the simulation-based results
of Hanson et al. (2009). We take this loss as justified, given the
simpler normalization properties of our lensing estimates when
neglecting variations in the map noise level.

Appendix C: Mean-Fields

As discussed in Sect. 2, the quadratic lensing estimators which
we use are designed to detect statistical anisotropy induced by
lensing. There are a number of non-lensing sources of statistical
anisotropy which can mimic the lensing signal to some extent.
In our analysis, the e↵ects we consider are

(1) The application of a sky mask, which introduces sharp gra-
dients that may be misinterpreted as lensing.

(2) Noise inhomogeneity, which causes the overall power to
fluctuate across the sky and can resemble the convergence
component of lensing.

(3) Beam asymmetry, which smears the fluctuations more along
one direction than another and can mimic the shear compo-
nent of lensing.

(4) Pixelization, in which detector samples are accumulated into
pixels, introduces a spurious deflection field on the pixel
scale because the centroid of the hit distribution in each pixel
does not necessarily lie at the pixel center.

In our analysis, we account for most of these e↵ects with a cor-
rective mean-field term, given by Eq. (9), which is determined
using Monte Carlo simulations. In this appendix, we will break
this mean-field down into its constituent parts and discuss each
in more detail. As an overview of the results in this section,
in Fig. C.1 we plot estimate for the three largest mean-fields,
due to masking, noise inhomogeneity, and beam asymmetry at
143 GHz (100 and 217 GHz are qualitatively similar). These
mean-fields all have most of their contributions on very large
scales, dictated by the coherency of the scan strategy in the case
of beam asymmetry and noise inhomogeneity, and of the large-
scale nature of the Galactic foregrounds in the case of the sky
mask.

143 GHz

Fig. C.1. Analytical estimates for the power spectra of the largest
low-L mean-fields 143 GHz. The various components are dis-
cussed in more detail in Sect. C.1 (mask), Sect. C.2 (noise), and
Sect. C.3 (beams). The mean-fields all couple most strongly to
even modes of the lens reconstruction, due to the approximate
north/south symmetry of the scan strategy and Galactic mask.

Our discussion will focus on constructing simple models for
each source of mean-field. Following Hanson et al. (2010), we
will identify each of the individual contributions to mean-field
with a tracer zLM that sources a contribution to the CMB covari-
ance matrix given by

�hT`1m2 T ⇤`2m2
i =

X

LM

zLM(�1)M
 
`1 `2 L
m1 m2 M

!
Wz
`1`2L, (C.1)

where Wz
`1`2L is a weight function describing how zLM couples

multipoles. Such a contaminant leads to a bias for the standard
lensing estimator �̂LM given by

�̂MF
LM =

R�zLM

R��L
zLM , (C.2)

where the response function R�zL is defined in Eq. (12). The ana-
lytical forms for the mean-fields which we present here are used
in Sect. 7.4 to construct “bias hardened” estimators which have
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Table 4. Statistics of spatial distribution of e↵ective beam parameters:
FWHM, ellipticity and beam solid angle

FWHMa ⌦
Band [arcmin] Ellipticity [arcmin2]

30 . . . . . . 32.239 ± 0.013 1.320 ± 0.031 1189.51 ± 0.84
44 . . . . . . 27.01 ± 0.55 1.034 ± 0.033 833 ± 32
70 . . . . . . 13.252 ± 0.033 1.223 ± 0.026 200.7 ± 1.0
100 . . . . . 9.651 ± 0.014 1.186 ± 0.023 105.778 ± 0.311
143 . . . . . 7.248 ± 0.015 1.036 ± 0.009 59.954 ± 0.246
217 . . . . . 4.990 ± 0.025 1.177 ± 0.030 28.447 ± 0.271
353 . . . . . 4.818 ± 0.024 1.147 ± 0.028 26.714 ± 0.250
545 . . . . . 4.682 ± 0.044 1.161 ± 0.036 26.535 ± 0.339
857 . . . . . 4.325 ± 0.055 1.393 ± 0.076 24.244 ± 0.193
a Mean of best-fit Gaussians to the e↵ective beams.

maps are of course constructed from many detectors that sample
each pixel at di↵erent angles. Therefore the scanning beams do
not represent well the point spread function at map level. Instead,
“e↵ective beams” are computed for each pixel and frequency us-
ing the FEBeCoP algorithm (Mitra et al. 2011).
FEBeCoP calculates the e↵ective beam at a position in the

sky by computing the real space average of the scanning beam
over all observed crossing angles at that sky position. Table 4
summarizes the distribution across the sky of a set of parame-
ters representing the beams, and Fig. 8 shows, in the 100 GHz
case, their variation across the sky. We note that the e↵ective
beams include pixelization e↵ects (essentially the HEALpix pix-
elization window function). The e↵ective beam window function
for LFI is calculated by FEBeCoP using an ensemble of signal-
only simulations convolved with the e↵ective beams. For HFI,
the quickbeam harmonic space e↵ective beam code (Planck
Collaboration VII 2013) is used to calculate the e↵ective beam
window function given the scan history and the scanning beam.

To estimate the uncertainty of the e↵ective beams, the en-
semble of allowed LFI GRASP models (Sect. 5.4) was propa-
gated through FEBeCoP and used to determine window function
errors. For HFI, quickbeam is used to propagate an ensemble
of simulated Mars observations to harmonic space, constructing
e↵ective beam window function errors. The total uncertainties in
the e↵ective beam window function (in B2

` units) at ` = 600 are
2 % at 30 GHz and 1.5 % at 44 GHz. At ` = 100 they are 0.7 %,
0.5 %, 0.2 %, and 0.2 % for 70, 100, 143, and 217 GHz respec-
tively (Planck Collaboration IV 2013; Planck Collaboration VII
2013).

6.2. Mapmaking

6.2.1. LFI

The calibrated TOI of each LFI radiometer are used as input
to the Madam mapmaking code (Keihänen et al. 2010) together
with the corresponding pointing data, in the form of the Euler
angles (✓, �, ). Madam implements a polarized destriping ap-
proach to mapmaking; the noise is modelled as white noise
plus a set of o↵sets, or baselines. The algorithm estimates in
a maximum-likelihood fashion the amplitudes of the baselines,
subtracts them from the actual TOI, and then simply bins the
result into a map. The output consists of pixelized maps of the
three Stokes parameters (T , Q, U). The LFI temperature maps
being released at this time are shown as the first three maps in
Fig. 9.

Fig. 8. This figure shows the distribution across the sky of the solid
angle (top) and ellipticity of the e↵ective beams at 100 GHz. The distri-
bution is typical for all channels.

One of the key parameters in the Madam algorithm is the
baseline length that represents the time scale at which the base-
line approximation of low-frequency noise is applied. We choose
baseline lengths corresponding to an integer number of samples
(33, 47, and 79 at 30, 44, and 70 GHz respectively) such that
the total integration time over the baseline corresponds approx-
imately to one second. This selection is based on a compromise
between computational load and map quality, and we find that
shortening the baselines below one second has practically no ef-
fect on the residual noise.

In order to create maps in the maximum-likelihood ap-
proach, the noise covariance matrix of the problem has to be
specified. In general, we use a white noise covariance matrix.
The pipeline allows the use of di↵erent user-defined weighting
schemes. The maps being released are made using the horn-
uniform weighting scheme with

C�1
w =

2
�2

M + �
2
S
, (1)

where �M and �S are the white noise sensitivities of the Main
and Side radiometers of a given horn, and these radiometers are
weighted equally.
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Fig. 14. The SMICA CMB map (with 3 % of the sky replaced by a constrained Gaussian realization).

Fig. 15. Spatial distribution of the noise RMS on a color scale of 25 µK
for the SMICA CMB map. It has been estimated from the noise map
obtained by running SMICA through the half-ring maps and taking the
half-di↵erence. The average noise RMS is 17 µK. SMICA does not
produce CMB values in the blanked pixels. They are replaced by a con-
strained Gaussian realization.

for bandpowers at ` < 50, using the cleanest 87 % of the sky. We
supplement this ‘low-`’ temperature likelihood with the pixel-
based polarization likelihood at large-scales (` < 23) from the
WMAP 9-year data release (Bennett et al. 2012). These need to
be corrected for the dust contamination, for which we use the
WMAP procedure. However, we have checked that switching
to a correction based on the 353 GHz Planck polarization data,
the parameters extracted from the likelihood are changed by less
than 1�.

At smaller scales, 50 < ` < 2500, we compute the power
spectra of the multi-frequency Planck temperature maps, and
their associated covariance matrices, using the 100, 143, and

Fig. 16. Angular spectra for the SMICA CMB products, evaluated over
the confidence mask, and after removing the beam window function:
spectrum of the CMB map (dark blue), spectrum of the noise in that
map from the half-rings (magenta), their di↵erence (grey) and a binned
version of it (red).

217 GHz channels, and cross-spectra between these channels11.
Given the limited frequency range used in this part of the analy-
sis, the Galaxy is more conservatively masked to avoid contam-
ination by Galactic dust, retaining 58 % of the sky at 100 GHz,
and 37 % at 143 and 217 GHz.

11 interband calibration uncertainties have been estimated by compar-
ing directly the cross spectra and found to be within 2.4 and 3.4⇥10�3

respectively for 100 and 217 GHz with respect to 143 GHz
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Table 2. Area of sky retained by combining di↵use foreground
and point source masks, once apodised.

Mask Sky fraction Sky area
[%] [deg2]

CL31 . . . . . . . . . 30.71 12 668
CL39 . . . . . . . . . 39.32 16 223
CL49 . . . . . . . . . 48.77 20 121

Figure 2. The set of masks (CL31, CL39, CL49) used for the
likelihood analyses.

absence of point source holes, this precision can be achieved
with sharp, non-apodised Galactic masks (Efstathiou 2004).
However, the inclusion of point source holes introduces non-
negligible low-` power leakage, which in turn can generate
errors of a few percent in the covariance matrices. We re-
duce this leakage by apodising the di↵use Galactic masks (see
Appendix B for details). The point source mask is based on the
union of the point sources detected between 100 and 353 GHz,
and is also apodized. The point source flux cut is not critical,
since the amplitudes of the Poisson contributions of unresolved
sources are allowed to vary over a wide range in the likelihood
analysis. Thus, we do not impose tight priors from source counts
and other CMB experiments on the Poisson amplitudes. A set of
the combined Galactic and point source masks, referred to as

‘CLx’, where ‘x’ is the percentage of sky retained, are shown in
Fig. 2.

3.2. Galactic emission

The contamination from di↵use Galactic emission at low to in-
termediate multipoles can be reduced to low levels compared to
CMB anisotropies by a suitable choice of masking. However,
even with conservative masking, the remaining Galactic emis-
sion at high multipoles is non-negligible compared to other un-
resolved components, such as the Cosmic Infrared Background
(CIB) anisotropies at 143 and 217 GHz. A clear way of demon-
strating this is by di↵erencing the power spectra computed with
di↵erent masks, thereby highlighting the di↵erences between
the isotropic and non-isotropic unresolved components. Figure 3
shows (up to `  1400) the 217 GHz power spectrum di↵erence
for the mask1 and mask0 masks3, minus the corresponding dif-
ference for the 143 GHz frequency channel. Any isotropic con-
tribution to the power spectrum (CMB, unresolved extragalactic
sources, etc.) will cancel in such a double di↵erence, leaving a
non-isotropic signal of Galactic origin, free of the CMB induced
cosmic variance scatter. Above ` > 1400, Fig. 3 shows the mask
di↵erenced 217 GHz power spectrum, as the instrumental noise
becomes significant at ` & 1400 for the 143 GHz channel.

In the same figure, these di↵erence spectra are compared to
the unbinned mask-di↵erenced 857 GHz power spectrum, scaled
to 217 GHz adopting a multiplicative factor4 of (9.93 ⇥ 10�5)2;
the dotted line shows a smooth fit to the unbinned spectrum.
The agreement between this prediction and the actual dust emis-
sion at 217 GHz is excellent, and this demonstrates conclusively
the existence of a small-scale dust emission component with an
amplitude of ⇠ 5 � 15 µK2 at 217 GHz if mask1 is used.

For cosmological parameter analysis this small-scale dust
component must be taken into account, and several approaches
may be considered:

1. Fit to a template shape, e.g., as shown by the dotted line in
Fig. 3.

2. Reduce the amplitude by further masking of the sky.
3. Attempt a component separation by using higher frequen-

cies.

The main disadvantage of the third approach is a potential
signal-to-noise penalty, depending on which frequencies are
used, as well as confusion with other unresolved foregrounds.
This is particularly problematic with regards to the CIB, which
has a spectrum very similar to that of Galactic dust. In the fol-
lowing we therefore adopt the two former solutions.

It is important to understand the nature of the small scale dust
emission, and, as far as possible, to disentangle this emission
from the CIB contribution at the HFI cosmological frequencies.
We use the 857 GHz power spectrum for this purpose, noting
that the dust emission at 857 GHz is so intense that this partic-
ular map provides an e↵ectively noise-free dust emission map.
In Fig. 4 we again show the 857 GHz mask power spectrum dif-
ference, but this time plotted on a log-log scale. The solid line
shows the corresponding best-fit model defined by

D` = A (100/`)↵

[1 + (`/`c)2]�/2
, (9)

3 These are the combination of the non-apodised Galactic masks G35
and G22 with the apodised point source mask PSA82.

4 The scaling coe�cient for the 143 GHz spectrum is (3.14 ⇥ 10�5)2,
derived from the 7-parameter fitting function of Eq. A.46.
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where the average hi is taken over CMB realizations with a fixed
lensing potential. Here the bracketed term is a Wigner 3 j sym-
bol, �LM =

R
d2 n̂Y⇤LM(n̂)�(n̂) is the harmonic transform of the

lensing potential, and the weight function W�`1`2L is given by

W�`1`2L = �
r

(2`1 + 1)(2`2 + 1)(2L + 1)
4⇡

p
L(L + 1)`1(`1 + 1)

⇥CTT
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1 0 �1

!
+ (`1 $ `2). (6)

Here CTT
` is the theoretical power spectrum of the lensed CMB.

Note that we use the lensed power spectrum here, rather than
the unlensed spectrum that is sometimes used in the literature,
as this is accurate to higher order in � (Lewis et al. 2011), an
improvement which is necessary at Planck sensitivity (Hanson
et al. 2011).

Now we construct a quadratic estimator to search for the co-
variance which is introduced by lensing. We will use several dif-
ferent estimators for the lensing potential, as well as to probe
possible point source contamination, and so it will be useful to
keep this discussion as general as possible. A completely generic
quadratic estimator for the lensing potential can be written as

�̂x
LM =

X

L0M0

h
Rx�

i�1

LM,L0M0

h
x̄L0M0 � x̄MF

L0M0
i
, (7)

where Rx� is a normalization matrix, and x̄LM is a quadratic
“building block” which takes in a pair of filtered sky maps T̄ (1)

`m
and T̄ (2)

`m , and sums over their empirical covariance matrix with a
weight function W x

`1`2L:

x̄LM =
1
2

X

`1m1,`2m2

(�1)M
 
`1 `2 L
m1 m2 �M

!
W x
`1`2LT̄ (1)

`1m1
T̄ (2)
`2m2
. (8)

The “mean-field” term x̄MF
LM accounts for all known sources of

statistical anisotropy in the map, which could otherwise bias the
lensing estimate. It is given by

x̄MF
LM =

1
2

X

`1m1,`2m2

(�1)M
 
`1 `2 L
m1 m2 �M

!
W x
`1`2LhT̄ (1)

`1m1
T̄ (2)
`2m2
i, (9)

where the ensemble average here is taken over realizations of the
CMB and noise.

We may now optimize the generic quadratic estimator above.
If the primordial CMB fluctuations and instrumental noise are
Gaussian and the lensing potential is fixed, then the likelihood
for the observed CMB fluctuations is still a Gaussian, which may
be maximized with respect to the lensing potential modes �LM
(Hirata & Seljak 2003a). The optimal quadratic estimator is the
first step of an iterative maximization of this likelihood, and it
has been shown that additional iterations of the estimator are not
necessary for temperature lens reconstruction (Hirata & Seljak
2003a; Okamoto & Hu 2003). The optimal quadratic estimator
has the following choices for the weight function and filtering.

(I) The weight function W x should be a matched filter for the
covariance induced by lensing (i.e., one should use �̄, with
weight function given by Eq. 6). We shall use this weight
function for all of our fiducial results, although for consis-
tency tests we will also use “bias-hardened” estimators,
which have weight functions constructed to be orthogo-
nal to certain systematic e↵ects (Namikawa et al. 2012a).
This is discussed further in Sect. 7.4.

(II) The filtered temperature multipoles T̄`m should be given
by T̄`m = (C�1T )`m, where T is a beam-deconvolved sky
map and C is its total signal+noise covariance matrix. We
describe our approximate implementation of this filtering
in Appendix B. When combining multiple frequencies for
our minimum-variance estimator, all of the available data
is combined into a single map which is then filtered and
used for both input multipoles of the quadratic estimator.
It can be desirable to use di↵erent pairs of maps however,
and we use this for several consistency tests. For exam-
ple, we feed maps with independent noise realizations into
the quadratic estimator to avoid possible noise biases in
Sect. 7.3.

In the quadratic maximum-likelihood estimator, the mean-field
correction emerges from the determinant term in the likelihood
function, and it can be seen that the normalization matrix R is
the Fisher matrix for the �LM; this means that the normalization
is the same as the covariance matrix of the lens reconstruction,
and so the unnormalized lensing estimate �̄ = x̄ � x̄MF is equiv-
alent to an inverse-variance-weighted lens reconstruction, which
is precisely the quantity needed for most statistical analysis. This
is why we have denoted it with an overbar, in analogy to T̄ .

We choose to treat the map noise as if it were homogeneous
when constructing the filtered T̄`m, and do not account for vari-
ation with hit count across the sky. This is a slightly suboptimal
filtering choice; in Appendix. B we estimate that it leads to a
5% loss of total signal-to-noise when constraining the power
spectrum of the lensing potential. The advantage of this ap-
proach, however, is that far from the mask boundaries our fil-
tering asymptotes to a simple form, given by

T̄`m ⇡
h
CTT
` +CNN

`

i�1
T`m ⌘ F`T`m, (10)

where CTT
` is the temperature power spectrum and CNN

` is the
power spectrum of the homogeneous noise level that we use in
our filtering. For the purposes of compact notation, in the fol-
lowing equations we combine both of these elements in the “fil-
ter function” F`. The asymptotic form of our filtering, Eq. (10),
will prove useful, as it means that the normalization of our esti-
mator, as well as its variance and response to various systematic
e↵ects, may be accurately modelled analytically. It allows us to
propagate uncertainties in the beam transfer function and CMB
power spectrum, for example, directly to our lens reconstruction.
This filtering choice also means that the normalization does not
vary as a function of position on the sky, which simplifies the
analysis of cross-correlations between the lensing potential map
and external tracers. Under the approximation of Eq. (10), the
estimator normalization is given by

Rx�
LM,L0M0 = �LL0�MM0Rx�

L , (11)

where the response function Rx�
L for filtered maps T̄ (1) and T̄ (2)

is
Rx�,(1)(2)

L =
1

(2L + 1)

X

`1`2

1
2

W x
`1`2LW�`1`2LF(1)

`1
F(2)
`2
. (12)

This can be read as “the response of estimator x to lensing on
scale L”. The filter functions F` are those used for T̄ (1) and T̄ (2)

respectively. In cases where the filter functions are obvious, we
will drop the indices above.

Putting all of the above together, for a chosen quadratic esti-
mator x̄ we obtain normalized, mean-field-debiased estimates of
the lensing potential � as

�̂x
LM =

1
Rx�

L

⇣
x̄LM � x̄MF

LM

⌘
. (13)

5

- Take two temperature maps and inverse-variance filter them

- Multiply one by the temperature power spectrum and differentiate it

- Multiply it with the first filtered map

- Take the difference and normalize to get unbiased estimator

x̄MF
LM =

1
2

X

`1m1,`2m2

(�1)M
 
`1 `2 L
m1 m2 �M

!
W x
`1`2LhT̄ (1)

`1m1
T̄ (2)
`2m2
i,

- Do the same on a set of realistic simulations
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Ngal = 35 arcmin�2, �
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= 0.35.

dN

dz
/ z↵e

�
⇣

z
z0

⌘�

, ↵ = 2,� = 1.5, z0 = 0.9/
p
2 (2)

�̄

R��

`

�̄

CXY

`

=

Z
�⇤

0
d�

wX(�)wY (�)

f2
K

(�)
P (`/�,�) (3)

R��

`

N��

`

CXY

`

⇠
Z

�⇤

0
d�wX(�)wY (�)P (`/�,�) (4)

with XY 2 {l, g, s}, for CMB lensing, Galaxy density and Cosmic shear.
The kernel read

wl(�) / ⌦
m

H2
0

�⇤ � �

�⇤

�

a
(5)
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As a visual illustration, and a preview of our data results in
Sect. 6, in Fig. 4, we show a simulated lens reconstruction as
well as the input � map, which gives a visual impression of the
signal-to-noise in our lens reconstruction.

Fig. 3. Validation of our estimator normalization for simulations
of the MV reconstruction at the map and power spectrum levels.
The map normalization (plotted as �̂�in) is tested by taking the
cross-spectrum of the input � with the reconstruction averaged
over Monte Carlo simulations, divided by an fsky factor to ac-
count for missing power in the mask. The power spectrum nor-
malization (plotted as �̂�̂) is obtained by averaging the first line
of Eq. (15) over simulations, and then comparing it to the ex-
pected value, which is C��L + �C��L

���
N1

because our simulations
do not contain point source non-Gaussianity.

Sim

�WF(n̂)

Input

Fig. 4. Simulation of the Wiener-filtered lensing potential esti-
mate �WF

LM ⌘ C��L (�̄LM � �̄MF
LM ) for the MV reconstruction (left),

and the input � realization (right; filtered by C��L R��L to be di-
rectly comparable to the Wiener estimate). Both maps show the
southern Galactic sky in orthographic projection. The lensing
reconstruction on the data is noise dominated on all scales, how-
ever correlations between the two maps can still be seen visually.

5. Error budget

In this section, we describe the measurement and systematic er-
ror budget for our estimation of the lensing potential power spec-
trum. This is broken down into three sections; in Sect. 5.1 we
describe our measurement (or “statistical”) error bars, which are
due to the fact that we have only a single noisy sky with a finite
number of modes to observe. In Sect. 5.2 we consider uncer-
tainty in the instrumental beam transfer function, which we will
see propagates to a normalization uncertainty for our lensing es-
timates. Finally, in Sect. 5.3 we discuss the e↵ect of cosmolog-
ical uncertainty; possible errors in the fiducial model for CTT

`
result in a normalization uncertainty for our lensing estimates,
and uncertainties in the fiducial C��L power spectrum lead to un-
certainties in the N(1)

L correction. As a guide to the relative size
and scale dependence of these terms, in Fig. 5 we summarize the
error budget for our fiducial minimum-variance lens reconstruc-
tion, based on 143 and 217 GHz. Individual frequency bands, as
well as 100 GHz are qualitatively similar.

5.1. Measurement

Although our measurement uncertainties are ultimately assigned
by Monte Carlo, we can use the analytical expression of Eq. (21)
to gain intuition for how they are sourced by various compo-
nents. Our simple model of the sky after masking and dust clean-
ing is that it consists of three uncorrelated signals: CMB, instru-
mental noise, and unresolved foreground power. The noise vari-
ance of the lens reconstruction in Eq. (21) involves two power
spectra, and so we can think of the noise contribution as the
sum of six possible terms involving pairs of the CMB, noise, and
foreground power spectra. In Fig. 6 we combine these contribu-
tions into three representative contributions to the reconstruction
noise: “pure CMB” in which both spectra are due to CMB fluc-
tuations; the “noise” contribution in which either both spectra
are those for noise power, or one is noise and one is CMB; and,
finally, the “foreground” contribution in which either one or both
of the spectra are due to unresolved foreground power. We can
see that for most reconstruction multipoles, the pure CMB con-
tribution constitutes the largest part of the reconstruction noise,
followed by noise. The unresolved foreground power is a fairly
small contribution to our measurement error. Note that the dom-
inant terms for both the “noise” and “foreground” contributions
are the ones in which one of the spectra is a CMB fluctuation.
For this reason, we will focus less on the use of cross-spectra to
avoid noise biases than is done for the usual CMB power spec-
tra (Planck Collaboration XV 2013), although we will perform
consistency tests using cross-spectra of data to avoid noise bi-
ases. Note that our realization-dependent method for removing
the disconnected noise bias (Eq. 17) means that the majority of
this contribution is estimated directly from the data itself, re-
ducing our sensitivity to uncertainty in the noise and foreground
power.

5.2. Beam transfer function

Errors in the e↵ective beam transfer function appear as an error
in the normalization of our lensing estimates. For simplicity here
we will describe the case for a single standard quadratic lensing
estimator that uses the same map for both of its inputs, although
when dealing with combinations of channels for our actual re-
sults we account for di↵erences in the beam transfer function

10

Reconstruction on a realistic Planck simulation

CMB Lensing & ISW
K. Benabed
Institut d’Astrophysique de Paris - UPMC
On behalf of the Planck Collaboration 
XVII. Gravitational lensing by large scale structures
XIX. The integrated Sachs-Wolfe effect

CMB lensing reconstruction



CMB Lensing & ISW
K. Benabed
Institut d’Astrophysique de Paris - UPMC
On behalf of the Planck Collaboration 
XVII. Gravitational lensing by large scale structures
XIX. The integrated Sachs-Wolfe effect

Power spectrum estimator

Planck Collaboration: Gravitational lensing by large-scale structures with Planck

Note that our normalization function Rx�
L is only approximate,

but we will verify its accuracy in Sect. 4. For the standard lens-
ing estimator of Okamoto & Hu (2003) (which uses the weight
function of Eq. 6), we use x = �. This estimator is denoted sim-
ply as �̂LM .

2.2. Lensing power spectrum estimation

We form estimates for the power spectrum of the lensing po-
tential by taking spectra of the lensing estimates from Sect. 2.1,
using a simple pseudo-C` estimator. In order to reduce mode
coupling, as well as to downweight regions near the analysis
boundary where the mean-field due to masking can be large, we
take the power spectrum from an apodized version of our lensing
estimate, given by

e�x
LM = P�1

L

Z
dn̂Y⇤LM(n̂) eM(n̂)

2
666664
X

L0M0
YL0M0 (n̂)PL0 �̂

x
L0M0

3
777775 , (14)

where eM(n̂) is an apodized version of the analysis mask M(n̂)
used in our filtering and PL ⌘ L(L + 1) is an approximate pre-
whitening operation. The construction of eM(n̂) is described in
Sect. 3. Our fiducial apodization occurs over a band of approxi-
mately 5�, and e↵ectively reduces the sky fraction by 9%.

The power spectrum of e� probes the 4-point function of
the observed CMB, which contains both disconnected and con-
nected parts. We model it as being due to a combination
of Gaussian CMB fluctuations, lensing e↵ects and unresolved
point-source shot noise, and estimate the power spectrum of the
lensing potential with

Ĉ��L,x =
f �1
sky,2

2L + 1

X

M

|e�x
LM |2 � �C��L

���
N0

� �C��L
���
N1

� �C��L
���
PS

� �C��L
���
MC

, (15)

where fsky,2 =
R

dn̂eM2(n̂)/4⇡ is the average value of the square
of the apodizing mask. The first line of Eq. (15) isolates the con-
nected part of the CMB 4-point function, or trispectrum, which
would be zero for Gaussian fluctuations. The second line con-
tains corrections which isolate the part of the trispectrum which
is directly proportional to the non-Gaussianity induced by C��L .
In the following paragraphs, we explain these terms in more de-
tail.

The first correction term �C��L
���
N0

subtracts the (large) dis-
connected contribution to the power spectrum ofe�. To determine
this term, we use the data-dependent subtraction which emerges
for maximum-likelihood estimators of the CMB trispectrum
(Regan et al. 2010; see also Appendix D). For lensing, this pro-
cedure has the additional advantage of reducing the correlation
between di↵erent multipoles L , L0 of the lens reconstruction
(Hanson et al. 2011), as well as reducing sensitivity to uncer-
tainties in our model of the CMB and noise covariance matrices
(Namikawa et al. 2012a). Writing the power spectrum of e�LM
explicitly as a function of the four inverse-variance filtered tem-
perature maps

Ce�e�L,x[T̄ (1), T̄ (2), T̄ (3), T̄ (4)] ⌘
f �1
sky,2

2L + 1

X

M

|e�x
LM |2, (16)

the disconnected contribution reads

�C��L,x
���
N0
=

*
�Ce�e�L,x

h
T̄ (1)
mc

, T̄ (2)
mc

0 , T̄ (3)
mc

0 , T̄ (4)
mc

i
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mc
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mc

, T̄ (4)
i
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h
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mc
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i

+Ce�e�L,x
h
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mc

, T̄ (3), T̄ (4)
mc

i
+Ce�e�L,x

h
T̄ (1), T̄ (2)

mc

, T̄ (3)
mc

, T̄ (4)
i

�Ce�e�L,x
h
T̄ (1)
mc

, T̄ (2)
mc

0 , T̄ (3)
mc

, T̄ (4)
mc

0
i +

mc,mc0
, (17)

where T̄
mc

indicates a Monte-Carlo simulation of the corre-
sponding map. The ensemble average is taken over two sets of
independent realizations mc and mc

0. Note that because of the
way we have used pairs of Monte-Carlo simulations and data
with independent CMB and noise realizations, the mean-field
correction is zero for all of the terms above.

The term �C��L |N1

corrects for the “N(1)” bias due to sec-
ondary contractions of the lensing trispectrum (Hu 2001; Kesden
et al. 2003). It is only a large e↵ect at L > 100, and so we calcu-
late it using a flat-sky expression as

�C��|L|,x
����
N1

=
1

Rx�,(1)(2)
|L| Rx�,(3)(4)

|L|

Z
d2 l1

(2⇡)2

Z
d2 l3

(2⇡)2

F(1)
|l1 |F

(2)
|l2 |F

(3)
|l3 |F

(4)
|l4 |W

x(l1, l2)W x(l3, l4)

⇥

C��,fid.
|l1�l3 |W

�(�l1, l3)W�(�l2, l4)

+C��,fid.
|l1�l4 |W

�(�l1, l4)W�(�l2, l3)
�
, (18)

where l1 + l2 = l3 + l4 = L and C��,fid.
L is a fiducial model for

the lensing potential power spectrum. The W(l, l0) are flat-sky
analogues of the full-sky weight functions. The flat-sky lensing
weight function, for example, is

W�(l1, l2) = CTT
|l1 | l1 · L +CTT

|l2 | l2 · L. (19)

The N(1) term is proportional to the lensing potential power
spectrum, and so in principle it should be used to improve our
constraints on C��L rather than subtracted as an additive bias.
However the statistical power of this term is relatively small
at Planck noise levels. From a Fisher matrix calculation, the
trispectrum contractions which source the N(1) term are only de-
tectable in the Planck data at 4� significance, compared to the
approximately 25� for the primary contractions. We choose sim-
ply to subtract the N(1) term from our power spectrum estimates.
There is a small cosmological uncertainty in the N(1) correction
due to uncertainty in the C��L power spectrum, which we discuss
in Sect. 5.3.

The �C��L
���
PS

term is a correction for the bias induced by the
non-Gaussianity of unresolved point sources, discussed in more
detail in Sect. 2.4.

Finally, the �C��L
���
MC

term is a small correction that we ob-
tain by estimating Ĉ��L following the procedure above on a num-
ber of lensed CMB realizations, and then subtracting the input
power spectrum. This term can be non-zero due to pseudo-C`
leakage e↵ects from masking, which we have not accounted for
other than apodization, errors in our calculation of the N(1) term,
or errors in the normalization at the power spectrum level. We
will find that �C��L

���
MC

is su�ciently small that in practice it
does not matter whether we account for it as a renormalization
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Note that our normalization function Rx�
L is only approximate,

but we will verify its accuracy in Sect. 4. For the standard lens-
ing estimator of Okamoto & Hu (2003) (which uses the weight
function of Eq. 6), we use x = �. This estimator is denoted sim-
ply as �̂LM .

2.2. Lensing power spectrum estimation

We form estimates for the power spectrum of the lensing po-
tential by taking spectra of the lensing estimates from Sect. 2.1,
using a simple pseudo-C` estimator. In order to reduce mode
coupling, as well as to downweight regions near the analysis
boundary where the mean-field due to masking can be large, we
take the power spectrum from an apodized version of our lensing
estimate, given by

e�x
LM = P�1

L

Z
dn̂Y⇤LM(n̂) eM(n̂)

2
666664
X

L0M0
YL0M0 (n̂)PL0 �̂

x
L0M0

3
777775 , (14)

where eM(n̂) is an apodized version of the analysis mask M(n̂)
used in our filtering and PL ⌘ L(L + 1) is an approximate pre-
whitening operation. The construction of eM(n̂) is described in
Sect. 3. Our fiducial apodization occurs over a band of approxi-
mately 5�, and e↵ectively reduces the sky fraction by 9%.

The power spectrum of e� probes the 4-point function of
the observed CMB, which contains both disconnected and con-
nected parts. We model it as being due to a combination
of Gaussian CMB fluctuations, lensing e↵ects and unresolved
point-source shot noise, and estimate the power spectrum of the
lensing potential with

Ĉ��L,x =
f �1
sky,2

2L + 1

X

M

|e�x
LM |2 � �C��L

���
N0

� �C��L
���
N1

� �C��L
���
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� �C��L
���
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, (15)

where fsky,2 =
R

dn̂eM2(n̂)/4⇡ is the average value of the square
of the apodizing mask. The first line of Eq. (15) isolates the con-
nected part of the CMB 4-point function, or trispectrum, which
would be zero for Gaussian fluctuations. The second line con-
tains corrections which isolate the part of the trispectrum which
is directly proportional to the non-Gaussianity induced by C��L .
In the following paragraphs, we explain these terms in more de-
tail.

The first correction term �C��L
���
N0

subtracts the (large) dis-
connected contribution to the power spectrum ofe�. To determine
this term, we use the data-dependent subtraction which emerges
for maximum-likelihood estimators of the CMB trispectrum
(Regan et al. 2010; see also Appendix D). For lensing, this pro-
cedure has the additional advantage of reducing the correlation
between di↵erent multipoles L , L0 of the lens reconstruction
(Hanson et al. 2011), as well as reducing sensitivity to uncer-
tainties in our model of the CMB and noise covariance matrices
(Namikawa et al. 2012a). Writing the power spectrum of e�LM
explicitly as a function of the four inverse-variance filtered tem-
perature maps

Ce�e�L,x[T̄ (1), T̄ (2), T̄ (3), T̄ (4)] ⌘
f �1
sky,2

2L + 1

X

M

|e�x
LM |2, (16)

the disconnected contribution reads
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where T̄
mc

indicates a Monte-Carlo simulation of the corre-
sponding map. The ensemble average is taken over two sets of
independent realizations mc and mc

0. Note that because of the
way we have used pairs of Monte-Carlo simulations and data
with independent CMB and noise realizations, the mean-field
correction is zero for all of the terms above.

The term �C��L |N1

corrects for the “N(1)” bias due to sec-
ondary contractions of the lensing trispectrum (Hu 2001; Kesden
et al. 2003). It is only a large e↵ect at L > 100, and so we calcu-
late it using a flat-sky expression as
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where l1 + l2 = l3 + l4 = L and C��,fid.
L is a fiducial model for

the lensing potential power spectrum. The W(l, l0) are flat-sky
analogues of the full-sky weight functions. The flat-sky lensing
weight function, for example, is

W�(l1, l2) = CTT
|l1 | l1 · L +CTT

|l2 | l2 · L. (19)

The N(1) term is proportional to the lensing potential power
spectrum, and so in principle it should be used to improve our
constraints on C��L rather than subtracted as an additive bias.
However the statistical power of this term is relatively small
at Planck noise levels. From a Fisher matrix calculation, the
trispectrum contractions which source the N(1) term are only de-
tectable in the Planck data at 4� significance, compared to the
approximately 25� for the primary contractions. We choose sim-
ply to subtract the N(1) term from our power spectrum estimates.
There is a small cosmological uncertainty in the N(1) correction
due to uncertainty in the C��L power spectrum, which we discuss
in Sect. 5.3.

The �C��L
���
PS

term is a correction for the bias induced by the
non-Gaussianity of unresolved point sources, discussed in more
detail in Sect. 2.4.

Finally, the �C��L
���
MC

term is a small correction that we ob-
tain by estimating Ĉ��L following the procedure above on a num-
ber of lensed CMB realizations, and then subtracting the input
power spectrum. This term can be non-zero due to pseudo-C`
leakage e↵ects from masking, which we have not accounted for
other than apodization, errors in our calculation of the N(1) term,
or errors in the normalization at the power spectrum level. We
will find that �C��L

���
MC

is su�ciently small that in practice it
does not matter whether we account for it as a renormalization
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Note that our normalization function Rx�
L is only approximate,

but we will verify its accuracy in Sect. 4. For the standard lens-
ing estimator of Okamoto & Hu (2003) (which uses the weight
function of Eq. 6), we use x = �. This estimator is denoted sim-
ply as �̂LM .

2.2. Lensing power spectrum estimation

We form estimates for the power spectrum of the lensing po-
tential by taking spectra of the lensing estimates from Sect. 2.1,
using a simple pseudo-C` estimator. In order to reduce mode
coupling, as well as to downweight regions near the analysis
boundary where the mean-field due to masking can be large, we
take the power spectrum from an apodized version of our lensing
estimate, given by

e�x
LM = P�1

L

Z
dn̂Y⇤LM(n̂) eM(n̂)

2
666664
X

L0M0
YL0M0 (n̂)PL0 �̂

x
L0M0

3
777775 , (14)

where eM(n̂) is an apodized version of the analysis mask M(n̂)
used in our filtering and PL ⌘ L(L + 1) is an approximate pre-
whitening operation. The construction of eM(n̂) is described in
Sect. 3. Our fiducial apodization occurs over a band of approxi-
mately 5�, and e↵ectively reduces the sky fraction by 9%.

The power spectrum of e� probes the 4-point function of
the observed CMB, which contains both disconnected and con-
nected parts. We model it as being due to a combination
of Gaussian CMB fluctuations, lensing e↵ects and unresolved
point-source shot noise, and estimate the power spectrum of the
lensing potential with

Ĉ��L,x =
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where fsky,2 =
R

dn̂eM2(n̂)/4⇡ is the average value of the square
of the apodizing mask. The first line of Eq. (15) isolates the con-
nected part of the CMB 4-point function, or trispectrum, which
would be zero for Gaussian fluctuations. The second line con-
tains corrections which isolate the part of the trispectrum which
is directly proportional to the non-Gaussianity induced by C��L .
In the following paragraphs, we explain these terms in more de-
tail.

The first correction term �C��L
���
N0

subtracts the (large) dis-
connected contribution to the power spectrum ofe�. To determine
this term, we use the data-dependent subtraction which emerges
for maximum-likelihood estimators of the CMB trispectrum
(Regan et al. 2010; see also Appendix D). For lensing, this pro-
cedure has the additional advantage of reducing the correlation
between di↵erent multipoles L , L0 of the lens reconstruction
(Hanson et al. 2011), as well as reducing sensitivity to uncer-
tainties in our model of the CMB and noise covariance matrices
(Namikawa et al. 2012a). Writing the power spectrum of e�LM
explicitly as a function of the four inverse-variance filtered tem-
perature maps

Ce�e�L,x[T̄ (1), T̄ (2), T̄ (3), T̄ (4)] ⌘
f �1
sky,2
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the disconnected contribution reads
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where T̄
mc

indicates a Monte-Carlo simulation of the corre-
sponding map. The ensemble average is taken over two sets of
independent realizations mc and mc

0. Note that because of the
way we have used pairs of Monte-Carlo simulations and data
with independent CMB and noise realizations, the mean-field
correction is zero for all of the terms above.

The term �C��L |N1

corrects for the “N(1)” bias due to sec-
ondary contractions of the lensing trispectrum (Hu 2001; Kesden
et al. 2003). It is only a large e↵ect at L > 100, and so we calcu-
late it using a flat-sky expression as
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where l1 + l2 = l3 + l4 = L and C��,fid.
L is a fiducial model for

the lensing potential power spectrum. The W(l, l0) are flat-sky
analogues of the full-sky weight functions. The flat-sky lensing
weight function, for example, is

W�(l1, l2) = CTT
|l1 | l1 · L +CTT

|l2 | l2 · L. (19)

The N(1) term is proportional to the lensing potential power
spectrum, and so in principle it should be used to improve our
constraints on C��L rather than subtracted as an additive bias.
However the statistical power of this term is relatively small
at Planck noise levels. From a Fisher matrix calculation, the
trispectrum contractions which source the N(1) term are only de-
tectable in the Planck data at 4� significance, compared to the
approximately 25� for the primary contractions. We choose sim-
ply to subtract the N(1) term from our power spectrum estimates.
There is a small cosmological uncertainty in the N(1) correction
due to uncertainty in the C��L power spectrum, which we discuss
in Sect. 5.3.

The �C��L
���
PS

term is a correction for the bias induced by the
non-Gaussianity of unresolved point sources, discussed in more
detail in Sect. 2.4.

Finally, the �C��L
���
MC

term is a small correction that we ob-
tain by estimating Ĉ��L following the procedure above on a num-
ber of lensed CMB realizations, and then subtracting the input
power spectrum. This term can be non-zero due to pseudo-C`
leakage e↵ects from masking, which we have not accounted for
other than apodization, errors in our calculation of the N(1) term,
or errors in the normalization at the power spectrum level. We
will find that �C��L

���
MC

is su�ciently small that in practice it
does not matter whether we account for it as a renormalization
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Note that our normalization function Rx�
L is only approximate,

but we will verify its accuracy in Sect. 4. For the standard lens-
ing estimator of Okamoto & Hu (2003) (which uses the weight
function of Eq. 6), we use x = �. This estimator is denoted sim-
ply as �̂LM .

2.2. Lensing power spectrum estimation

We form estimates for the power spectrum of the lensing po-
tential by taking spectra of the lensing estimates from Sect. 2.1,
using a simple pseudo-C` estimator. In order to reduce mode
coupling, as well as to downweight regions near the analysis
boundary where the mean-field due to masking can be large, we
take the power spectrum from an apodized version of our lensing
estimate, given by

e�x
LM = P�1
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Z
dn̂Y⇤LM(n̂) eM(n̂)

2
666664
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YL0M0 (n̂)PL0 �̂
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777775 , (14)

where eM(n̂) is an apodized version of the analysis mask M(n̂)
used in our filtering and PL ⌘ L(L + 1) is an approximate pre-
whitening operation. The construction of eM(n̂) is described in
Sect. 3. Our fiducial apodization occurs over a band of approxi-
mately 5�, and e↵ectively reduces the sky fraction by 9%.

The power spectrum of e� probes the 4-point function of
the observed CMB, which contains both disconnected and con-
nected parts. We model it as being due to a combination
of Gaussian CMB fluctuations, lensing e↵ects and unresolved
point-source shot noise, and estimate the power spectrum of the
lensing potential with

Ĉ��L,x =
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sky,2
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where fsky,2 =
R

dn̂eM2(n̂)/4⇡ is the average value of the square
of the apodizing mask. The first line of Eq. (15) isolates the con-
nected part of the CMB 4-point function, or trispectrum, which
would be zero for Gaussian fluctuations. The second line con-
tains corrections which isolate the part of the trispectrum which
is directly proportional to the non-Gaussianity induced by C��L .
In the following paragraphs, we explain these terms in more de-
tail.

The first correction term �C��L
���
N0

subtracts the (large) dis-
connected contribution to the power spectrum ofe�. To determine
this term, we use the data-dependent subtraction which emerges
for maximum-likelihood estimators of the CMB trispectrum
(Regan et al. 2010; see also Appendix D). For lensing, this pro-
cedure has the additional advantage of reducing the correlation
between di↵erent multipoles L , L0 of the lens reconstruction
(Hanson et al. 2011), as well as reducing sensitivity to uncer-
tainties in our model of the CMB and noise covariance matrices
(Namikawa et al. 2012a). Writing the power spectrum of e�LM
explicitly as a function of the four inverse-variance filtered tem-
perature maps

Ce�e�L,x[T̄ (1), T̄ (2), T̄ (3), T̄ (4)] ⌘
f �1
sky,2
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the disconnected contribution reads
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where T̄
mc

indicates a Monte-Carlo simulation of the corre-
sponding map. The ensemble average is taken over two sets of
independent realizations mc and mc

0. Note that because of the
way we have used pairs of Monte-Carlo simulations and data
with independent CMB and noise realizations, the mean-field
correction is zero for all of the terms above.

The term �C��L |N1

corrects for the “N(1)” bias due to sec-
ondary contractions of the lensing trispectrum (Hu 2001; Kesden
et al. 2003). It is only a large e↵ect at L > 100, and so we calcu-
late it using a flat-sky expression as
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where l1 + l2 = l3 + l4 = L and C��,fid.
L is a fiducial model for

the lensing potential power spectrum. The W(l, l0) are flat-sky
analogues of the full-sky weight functions. The flat-sky lensing
weight function, for example, is

W�(l1, l2) = CTT
|l1 | l1 · L +CTT

|l2 | l2 · L. (19)

The N(1) term is proportional to the lensing potential power
spectrum, and so in principle it should be used to improve our
constraints on C��L rather than subtracted as an additive bias.
However the statistical power of this term is relatively small
at Planck noise levels. From a Fisher matrix calculation, the
trispectrum contractions which source the N(1) term are only de-
tectable in the Planck data at 4� significance, compared to the
approximately 25� for the primary contractions. We choose sim-
ply to subtract the N(1) term from our power spectrum estimates.
There is a small cosmological uncertainty in the N(1) correction
due to uncertainty in the C��L power spectrum, which we discuss
in Sect. 5.3.

The �C��L
���
PS

term is a correction for the bias induced by the
non-Gaussianity of unresolved point sources, discussed in more
detail in Sect. 2.4.

Finally, the �C��L
���
MC

term is a small correction that we ob-
tain by estimating Ĉ��L following the procedure above on a num-
ber of lensed CMB realizations, and then subtracting the input
power spectrum. This term can be non-zero due to pseudo-C`
leakage e↵ects from masking, which we have not accounted for
other than apodization, errors in our calculation of the N(1) term,
or errors in the normalization at the power spectrum level. We
will find that �C��L

���
MC

is su�ciently small that in practice it
does not matter whether we account for it as a renormalization
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Note that our normalization function Rx�
L is only approximate,

but we will verify its accuracy in Sect. 4. For the standard lens-
ing estimator of Okamoto & Hu (2003) (which uses the weight
function of Eq. 6), we use x = �. This estimator is denoted sim-
ply as �̂LM .

2.2. Lensing power spectrum estimation

We form estimates for the power spectrum of the lensing po-
tential by taking spectra of the lensing estimates from Sect. 2.1,
using a simple pseudo-C` estimator. In order to reduce mode
coupling, as well as to downweight regions near the analysis
boundary where the mean-field due to masking can be large, we
take the power spectrum from an apodized version of our lensing
estimate, given by

e�x
LM = P�1
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2
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where eM(n̂) is an apodized version of the analysis mask M(n̂)
used in our filtering and PL ⌘ L(L + 1) is an approximate pre-
whitening operation. The construction of eM(n̂) is described in
Sect. 3. Our fiducial apodization occurs over a band of approxi-
mately 5�, and e↵ectively reduces the sky fraction by 9%.

The power spectrum of e� probes the 4-point function of
the observed CMB, which contains both disconnected and con-
nected parts. We model it as being due to a combination
of Gaussian CMB fluctuations, lensing e↵ects and unresolved
point-source shot noise, and estimate the power spectrum of the
lensing potential with
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where fsky,2 =
R

dn̂eM2(n̂)/4⇡ is the average value of the square
of the apodizing mask. The first line of Eq. (15) isolates the con-
nected part of the CMB 4-point function, or trispectrum, which
would be zero for Gaussian fluctuations. The second line con-
tains corrections which isolate the part of the trispectrum which
is directly proportional to the non-Gaussianity induced by C��L .
In the following paragraphs, we explain these terms in more de-
tail.

The first correction term �C��L
���
N0

subtracts the (large) dis-
connected contribution to the power spectrum ofe�. To determine
this term, we use the data-dependent subtraction which emerges
for maximum-likelihood estimators of the CMB trispectrum
(Regan et al. 2010; see also Appendix D). For lensing, this pro-
cedure has the additional advantage of reducing the correlation
between di↵erent multipoles L , L0 of the lens reconstruction
(Hanson et al. 2011), as well as reducing sensitivity to uncer-
tainties in our model of the CMB and noise covariance matrices
(Namikawa et al. 2012a). Writing the power spectrum of e�LM
explicitly as a function of the four inverse-variance filtered tem-
perature maps
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the disconnected contribution reads
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where T̄
mc

indicates a Monte-Carlo simulation of the corre-
sponding map. The ensemble average is taken over two sets of
independent realizations mc and mc

0. Note that because of the
way we have used pairs of Monte-Carlo simulations and data
with independent CMB and noise realizations, the mean-field
correction is zero for all of the terms above.

The term �C��L |N1

corrects for the “N(1)” bias due to sec-
ondary contractions of the lensing trispectrum (Hu 2001; Kesden
et al. 2003). It is only a large e↵ect at L > 100, and so we calcu-
late it using a flat-sky expression as
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where l1 + l2 = l3 + l4 = L and C��,fid.
L is a fiducial model for

the lensing potential power spectrum. The W(l, l0) are flat-sky
analogues of the full-sky weight functions. The flat-sky lensing
weight function, for example, is

W�(l1, l2) = CTT
|l1 | l1 · L +CTT

|l2 | l2 · L. (19)

The N(1) term is proportional to the lensing potential power
spectrum, and so in principle it should be used to improve our
constraints on C��L rather than subtracted as an additive bias.
However the statistical power of this term is relatively small
at Planck noise levels. From a Fisher matrix calculation, the
trispectrum contractions which source the N(1) term are only de-
tectable in the Planck data at 4� significance, compared to the
approximately 25� for the primary contractions. We choose sim-
ply to subtract the N(1) term from our power spectrum estimates.
There is a small cosmological uncertainty in the N(1) correction
due to uncertainty in the C��L power spectrum, which we discuss
in Sect. 5.3.

The �C��L
���
PS

term is a correction for the bias induced by the
non-Gaussianity of unresolved point sources, discussed in more
detail in Sect. 2.4.

Finally, the �C��L
���
MC

term is a small correction that we ob-
tain by estimating Ĉ��L following the procedure above on a num-
ber of lensed CMB realizations, and then subtracting the input
power spectrum. This term can be non-zero due to pseudo-C`
leakage e↵ects from masking, which we have not accounted for
other than apodization, errors in our calculation of the N(1) term,
or errors in the normalization at the power spectrum level. We
will find that �C��L

���
MC

is su�ciently small that in practice it
does not matter whether we account for it as a renormalization
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Fig. 10. Lensing potential power spectrum estimates based on the individual 100, 143, and 217 GHz sky maps, as well our fiducial
minimum-variance (MV) reconstruction which forms the basis for the Planck lensing likelihood. The black line is for the best-fit
⇤CDM model of Planck Collaboration XVI (2013).

perform additional cross-checks using these bins to ascertain
whether they would have any significant implications for cos-
mology.

In addition to the Planck power spectrum measurements, in
Fig. 11 we have overplotted the ACT and SPT measurements
of the lensing potential power spectrum (Das et al. 2013; van
Engelen et al. 2012). It is clear that all are very consistent.
The Planck measurement has the largest signal-to-noise of these
measurements; as we have already discussed the 40 < L < 400
lensing likelihood provides a 4% constraint on the amplitude of
the lensing potential power spectrum, while the constraint from
current ACT and SPT measurements are 32% and 16% respec-
tively. These measurements are nevertheless quite complemen-
tary. As a function of angular scale, the full-sky Planck power
spectrum estimate has the smallest uncertainty per multipole of
all three experiments at L < 500, at which point the additional
small-scale modes up to `max = 3000 used in the SPT lensing
analysis lead to smaller error bars. The good agreement in these
estimates of C��L is reassuring; in addition to the fact that the ex-
periments and analyses are completely independent, these mea-
surements are sourced from fairly independent angular scales
in the temperature map, with ` <⇠ 1600 in the case of Planck,
` < 2300 in the case of ACT, and ` < 3000 in the case of SPT.
Cross-correlation of the Planck lensing map with these indepen-
dent measures of the lensing potential will provide an additional
cross-check on their consistency, however at the power spectrum
level they are already in good agreement.

6.1. Parameters

Weak gravitational lensing of the CMB provides sensitivity
to cosmological parameters a↵ecting the late-time growth of
structure which are otherwise degenerate in the primary CMB

anisotropies imprinted around recombination. Examples include
the dark energy density in models with spatial curvature and the
mass of neutrinos that are light enough (m⌫ < 0.5 eV) still to
have been relativistic at recombination.

To connect our measurement of the lensing power spectrum
to parameters, we construct a lensing likelihood nominally based
on the multipole range 40  L  400, cut into eight equal-width
bins with �L = 45 to maintain parameter leverage from shape
information in addition to our overall amplitude constraint. In
Table 1 we present bandpowers for these eight bins using the in-
dividual 100, 143, and 217 GHz reconstructions as well as the
MV reconstruction which is the basis for our nominal likeli-
hood. The bandpower estimates and their uncertainties are bro-
ken down into constituent parts as discussed in Sect. 2. Based on
these bandpowers, we form a likelihood following Eq. (23). The
measurement errors on each bin are measured by Monte-Carlo
using 1000 simulations, and the bins are su�ciently wide that
we can neglect any small covariance between them (this is dis-
cussed further in Appendix D). We analytically marginalize over
uncertainties that are correlated between bins, including them in
the measurement covariance matrix. This includes beam transfer
function uncertainties (as described in Sect 5.2), uncertainties in
the point source correction (Sect. 7.2) and uncertainty in the N(1)

correction.
As the lensing likelihood is always used in conjunction with

the Planck TT power spectrum likelihood, we coherently ac-
count for uncertainty in CTT

` by renormalizing our lensing po-
tential measurement for each sample, as described in Sect. 5.3.

The lensing likelihood is combined with the main Planck
TT likelihood (Planck Collaboration XV 2013) – constructed
from the temperature (pseudo) cross-spectra between detec-
tor sets at intermediate and high multipoles, and an exact ap-
proach for Gaussian temperature anisotropies at low multipoles
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improve on this first full-sky map of the CMB lensing poten-
tial. As is illustrated in the simulated reconstruction of Fig. 4,
there will be clear visual correlations between this map and fu-
ture measurements.

In Fig. 10 we plot the power spectra of our individual 100,
143, and 217 GHz reconstructions as well as the minimum-
variance reconstruction. The agreement of all four spectra is
striking. Overall, our power spectrum measurement is reason-
ably consistent with the ⇤CDM prediction, given our measure-
ment error bars. Dividing the L 2 [1, 2048] multipole range into
bins of �L = 64 and binning uniformly in [L(L + 1)]2C��L , we
obtain a reduced �2 for the di↵erence between our power spec-
trum estimate and the model of 40.7 with 32 degrees of freedom.
The associated probability to exceed is 14%. On a detailed level,
there are some discrepancies between the shape and amplitude
of our power spectrum and the fiducial model however. Our like-
lihood is based on the multipole range 40  L  400, which
captures 90% of the available signal-to-noise for an amplitude
constraint on C��L . This range was chosen as the region of our
spectrum least likely to be contaminated by systematic e↵ects
(primarily uncertainties in the mean-field corrections at low-L,
and uncertainties in the Gaussian and point-source bias correc-
tions at high-L). Estimating an average amplitude for the fiducial
lensing power spectrum for a single bin over this multipole range
using Eq. (25) we find an amplitude of Â40!400 = 0.94 ± 0.04
relative to the fiducial model (which has A = 1). The power in
this region is consistent with the fiducial model, although 1.5�
low (the corresponding probability-to-exceed for the �2 of this
di↵erence is 15%). The low- and high-L extent of our likelihood
were deliberately chosen to have enough expected lensing signal
to enable a 10� detection of lensing on either side, bookending
our likelihood with two additional consistency tests. On the low-
L side, we have a good agreement with the expected power. As
will be discussed in Sect. 7.4, our measurement at L < 10 fails
some consistency tests at a level comparable to the expected sig-
nal. The L < 10 modes, which we suspect are somewhat con-
taminated by errors in the mean-field subtraction, are neverthe-
less consistent with the fiducial expectation, as can be seen in
Fig. 10; we measure Â1!10 = 0.44±0.54. Extending to the lower
limit of our likelihood, with a single bin from 10  L  40 we
measure Â10!40 = 1.02 ± 0.12. On the high-L side of our fidu-
cial likelihood, there is tension however. Extending from the fi-
nal likelihood multipole at L = 400 to the maximum multipole
of our reconstruction, we find Â400!2048 = 0.68 ± 0.13, which
is in tension with A = 1 at a level of just over 2.4�. The rel-
atively low power in our reconstruction is driven by a dip rel-
ative to the ⇤CDM model spectrum between 500 < L < 750,
as can be seen in Fig. 10. We show this feature more clearly
in the residual plot of Fig. 11. This deficit of power is in turn
driven by the 143 GHz data. For an estimate of the power spec-
trum using only 143 GHz, we measure Â143

400!2048 = 0.37 ± 0.18.
The 217 GHz reconstruction is more consistent with the model,
having Â217

400!2048 = 0.82 ± 0.17. These two measurements are
in tension; we have Â217�143

400!2048 = 0.45 ± 0.18, which is a 2.5�
discrepancy. The error bar on this di↵erence accounts for the ex-
pected correlation between the two channels due to the fact that
they see the same CMB sky. A larger set of consistency tests
will be presented in Sect. 7. We note for now that the bins from
40 < L < 400 used in our likelihood pass all consistency tests,
and show better agreement between 143 and 217 GHz. Although
L < 40 and L > 400 are not included in our nominal likelihood,
when discussing the use of the lensing likelihood for cosmo-
logical parameter constraints in the following section we will

�WF(n̂)

Galactic North

�WF(n̂)

Galactic South

Fig. 8. Wiener-filtered lensing potential estimate
�WF

LM ⌘ C��L (�̄LM � �̄MF
LM ) for our MV reconstruction, in Galactic

coordinates using orthographic projection. The reconstruction
is bandpass filtered to L 2 [10, 2048]. The Planck lens recon-
struction has S/N  1 for individual modes on all scales, so
this map is noise dominated. Comparison between simulations
of reconstructed and input � in Fig. 4 show the expected level
of visible correlation between our reconstruction and the true
lensing potential.

Galactic South - 143 GHz Galactic South - 217 GHz

Fig. 9. Wiener-filtered lensing potential estimates, as in Fig. 8,
for the individual 143 and 217 GHz maps.
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L

Fig. 11. Replotting of Fig. 10, removing 100 GHz for easier
comparison of 143 and 217 GHz. Also plotted are the SPT band-
powers from van Engelen et al. (2012), and the ACT bandpow-
ers from Das et al. (2013). All three experiments are very consis-
tent. The lower panel shows the di↵erence between the measured
bandpowers and the fiducial best-fit ⇤CDM model.

– in Planck Collaboration XVI (2013) to derive parameter con-
straints for the six-parameter ⇤CDM model and well-motivated
extensions. Lensing also a↵ects the power spectrum, or 2-point
function, of the CMB anisotropies, and this e↵ect is accounted
for routinely in all Planck results. On the angular scales rele-
vant for Planck, the main e↵ect is a smoothing of the acoustic
peaks and this is detected at around 10� in the Planck tempera-
ture power spectrum (Planck Collaboration XVI 2013). The in-
formation about C��L that is contained in the lensed temperature
power spectrum for multipoles ` <⇠ 3000 is limited to the ampli-
tude of a single eigenmode (Smith et al. 2006). In extensions of
⇤CDM with a single additional late-time parameter, lensing of
the power spectrum itself can therefore break the geometric de-
generacy (Stompor & Efstathiou 1999; Sherwin et al. 2011; van
Engelen et al. 2012; Planck Collaboration XVI 2013). As dis-
cussed in Appendix D and Schmittfull et al. (2013), cosmic vari-
ance of the lenses produces weak correlations between the CMB
2-point function and our estimates of C��L , but they are small
enough that ignoring the correlations in combining the two like-
lihoods should produce only sub-percent underestimates of the
errors in physical cosmological parameters.

In the following, we illustrate the additional constraining
power of our C��L measurements in ⇤CDM models and one-
parameter extensions, highlighting those results from Planck
Collaboration XVI (2013) where the lensing likelihood is influ-
ential.

6.1.1. Six-parameter ⇤CDM model

In the six-parameter ⇤CDM model, the matter densities, Hubble
constant and spectral index of the primordial curvature perturba-
tions are tightly constrained by the Planck temperature power
spectrum alone. However, in the absence of lensing the am-
plitude As of the primordial power spectrum and the reioniza-
tion optical depth ⌧ are degenerate, with only the combination
Ase�2⌧, which directly controls the amplitude of the anisotropy
power spectrum on intermediate and small scales being well de-
termined. This degeneracy is broken by large-angle polarization
since the power from scattering at reionization depends on the
combination As⌧2. In this first release of Planck data, we use
the WMAP nine-year polarization maps (Bennett et al. 2012) in
combination with Planck temperature data. With this data com-
bination, C��L is rather tightly constrained in the ⇤CDM model
(see Fig. 12) and the direct measurements reported here provide
a non-trivial consistency test of the model.

The eight C��L bandpowers used in the lensing likelihood are
compared to the expected spectrum in Fig. 12 (upper-left panel).
For the latter, we have used parameter values determined from
the main Planck likelihood in combination with WMAP polar-
ization (hereafter denoted WP) and small-scale power spectrum
measurements (hereafter highL) from ACT (Das et al. 2013) and
SPT (Reichardt et al. 2012)†. In this plot, we have renormalized
the measurements and their error bars (rather than the theory) us-
ing the best-fit model with a variant of the procedure described
in Sect. 5.3. Since the lensed temperature power spectrum in the
best-fit model is very close to that in the fiducial model used
to normalise the power spectrum estimates throughout this pa-
per, the power spectrum renormalisation factor (1 + �TT

L )2 of
Eq. (44) is less than 0.5% in magnitude. The predicted C��L in
the best-fit model di↵ers from the fiducial model by less than
2.5% for L < 1000. The best-fit model is a good fit to the mea-
surements, with �2 = 10.9 and the corresponding probability
to exceed equal to 21%. Significantly, we see that the ⇤CDM
model, calibrated with the CMB fluctuations imprinted around
z = 1100, correctly predicts the evolution of structure and geom-
etry at much lower redshifts. The 68% uncertainty in the ⇤CDM
prediction of C��L is shown by the dashed lines in the upper-left
panel of Fig. 12. We can assess consistency with the direct mea-
surements, properly accounting for this uncertainty, by introduc-
ing an additional parameter A��L that scales the theory C��L in the
lensing likelihood. (Note that we choose not to alter the lensing
e↵ect in CTT

` .) As reported in Planck Collaboration XVI (2013),
we find

A��L = 0.99 ± 0.05 (68%; Planck+lensing+WP+highL),

in excellent agreement with A��L = 1.
An alternative route to breaking the As-⌧ degeneracy is pos-

sible for the first time with Planck. Since C��L is directly propor-
tional to As, the lensing power spectrum measurements and the
smoothing e↵ect of lensing in CTT

` (which at leading order varies
as A2

s e�2⌧) can separately constrain As and ⌧ without large-angle
polarization data. The variation of C��L with ⌧ in ⇤CDM models

† As discussed in detail in Planck Collaboration XVI (2013), the pri-
mary role of the ACT and SPT data in these parameter fits is to constrain
more accurately the contribution of extragalactic foregrounds which
must be carefully modelled to interpret the Planck power spectra on
small scales. For ⇤CDM, the foreground parameters are su�ciently de-
coupled from the cosmological parameters that the inclusion of the ACT
and SPT data has very little e↵ect on the cosmological constraints.
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Frequency Combinations:

Mask Variation:

Component Separated Maps:

Bias-hardened Estimators:

Fig. 18. Summary of internal consistency tests between our fiducial minimum-variance (MV) reconstruction and a set of alternatives
designed to test sensitivity to potential issues. The top panel shows C��L estimates, with measurement error bars. The bottom panels
show the residual with respect to the MV reconstruction in units of the MV measurement uncertainty. The gray band marks the 1�
deviation uncertainty of the MV reconstruction. The error bar on each data point in the lower panels gives the standard deviation
of the scatter between each result and the MV, determined from Monte Carlo simulations which account for the correlated CMB,
noise and foreground power between estimators. Comparison of the uncertainty on the scatter points and the gray band gives an
indication of how constraining each test is. The various tests are described in more detail in subsections of Sect. 7.
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Fig. 21. Comparison of alternative lensing pipelines. The base-
line results use the methodology of Sect. 2. Boxes are for the
MV reconstruction, circles show the 143 GHz results, triangles,
the 217 GHz ones. The two bottom panels show di↵erences rel-
ative to the MV result for 143 and 217 GHz.

motivation in the development of each has been the reduction
of the sharp gradients induced when masking, which can induce
a mean-field several orders of magnitude larger than the lens-
ing signal at low multipoles (as discussed in Appendix C). Each
method takes a di↵erent approach to mitigating this mask e↵ect,
as discussed below:

(1) The method iso consists of applying the standard quadratic
lensing estimator to the sky map after multiplying by an
apodized Galactic mask, and filling point source holes us-
ing local constrained Gaussian realizations of the CMB sig-
nal+noise. The mask mean-field is proportional to the power
spectrum of the mask, and so as apodization smooths the
mask boundary (suppressing its power spectrum on small
scales), it correspondingly reduces the mean-field signifi-
cantly. The combination of apodization and source filling
makes this estimator very fast to apply to simulations but
does require an involved set of correction terms and fsky fac-
tors. Our implementation and calculation of this method is
described in detail in Benoit-Lévy et al. (2013).

(2) The metis method consists of inpainting the Galactic mask
as well as the point source holes, using the sparse-inpainting
algorithm described in (Abrial et al. (2007, 2008)). The re-
sulting map resembles a full-sky CMB map, and therefore
has no mask mean-field contribution. The inhomogeneous

noise and beam-induced mean-fields do still have to be cor-
rected however. Our implementation is based on that de-
scribed in Perotto et al. (2010), with several improvements.
In Perotto et al. (2010) lens reconstruction was performed on
the inpainted map and then analyzed on the full-sky, how-
ever further inspection has revealed that there are some spu-
rious features in the lens reconstruction, localized to the in-
painted region inside the Galactic mask. This is likely due to
the inhomogeneous noise in Planck that was ignored in pre-
vious work and cannot be well reproduced by the inpainter.
We therefore remask the full-sky lens reconstruction with
an apodized Galactic mask (as in Eq. 14) to remove these
regions from our analysis. We follow the same procedure
when evaluating the analytical expression for the �C��L

���
N0

bias, prewhitening and then applying an apodized Galactic
mask to the inpainted temperature multipoles to estimate
their power spectrum. Small residual biases are corrected us-
ing the same �C��L

���
MC

procedure used in the main method.
(3) The patches method avoids the Galactic mask completely

by cutting the sky into a collection of 410 small overlap-
ping 10� ⇥ 10� patches centered on the locations of Nside=8
HEALPix pixels, which are then analyzed under the flat-sky
approximation. Our implementation of this method is de-
scribed in Plaszczynski et al. (2012). As with the isomethod,
point source holes are filled using constrained Gaussian re-
alizations. The patches are extracted from a pre-whitened
CMB map, and apodized with a Kaiser-Bessel window func-
tion. The Fourier modes in each patch are fitted in real space
using a fast Fourier-Toeplitz algorithm. No mean-field cor-
rection is applied. Residual biases due to noise inhomogene-
ity are removed using a �C��L

���
MC

correction which is found
to be small. The patches method has been particularly useful
in the early stages of our analysis, to identify outliers caused
by unmasked point sources.

As can be seen in Fig. 21, all three of these methods are in good
agreement with the results of our baseline method, providing re-
assurance that our results are insensitive to the precise details of
our data filtering and reconstruction methodology.

8. Conclusions

The Planck maps have unprecedented sensitivity to gravitational
lensing e↵ects. We see significant and consistent measurements
of lensing for each of the high-resolution CMB channels at 100,
143 and 217 GHz. Even the noisiest channel which we have con-
sidered, 100 GHz, provides a 10� detection of lensing, which is
greater than all previous detections. Our fiducial lens reconstruc-
tion, based on a minimum-variance combination of the 143 and
217 GHz channels does even better, with a detection of lensing
(relative to the null hypothesis of no lensing) at a significance
of greater than 25�. Notably, the noise on our reconstruction is
low enough that it is no longer the limiting source of noise for
many correlations with large-scale structure catalogs (several ex-
amples of which we have given in Sect. 6.3). This marks a shift
for CMB lensing, from the detection regime into that of standard
cosmological probe. Our lensing potential map is publicly avail-
able, and we look forward to the uses which may be found for
it.

The percent-level Planck lensing potential measurement
pushes into the realm of precision cosmology, and requires care-
ful validation tests which we have performed in Sect. 7. Our
fiducial likelihood, based on the 40  L  400 range which is
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consistent with both flat models and models with!" ¼ 0. If we
allow for a large SZ signal, then the WMAP data alone favor a
model with !K ¼ "0:04; however, this model is not consistent
with other astronomical data.

The combination of WMAP data and other astronomical data
places strong constraints on the geometry of the universe (see
Table 12):

1. The angular scale of the baryon acoustic oscillation (BAO)
peak in the SDSS LRG sample (Eisenstein et al. 2005) measures
the distance to z ¼ 0:35. The combination of the BAO and CMB
observations strongly constrain the geometry of the universe.
The position of the peak in the galaxy spectrum in the SDSS and
2dFGRS surveys provide local measurements of the angular di-
ameter distance.

2. Figure 21 shows that the Hubble constant varies along this
line, so that the HST Key Project constraint on the Hubble con-
stant leads to a strong bound on the curvature.

3. SNe observations measure the luminosity distance to z # 1.
The combination of SNe data and CMB data also favors a nearly
flat universe.

The strong limits quoted in Table 12 rely on our assumption
that the dark energy has the equation of state, w ¼ "1. In x 7.1,
we discussed relaxing this assumption and assuming that w is a
constant. Figure 15 shows that by using the combination of CMB,
large-scale structure, and supernova data, we can simultaneously
constrain both !k and w. This figure confirms that our minimal
model, !k ¼ 0, and w ¼ "1 is consistent with the current data.

8. ARE CMB FLUCTUATIONS GAUSSIAN?

The detection of primordial non-Gaussian fluctuations in the
CMBwould have a profound impact on our understanding of the
physics of the early universe. While the simplest inflationary
models predict only mild non-Gaussianities that should be un-
detectable in theWMAP data, there are a wide range of plausible
mechanisms for generating significant and detectable non-Gaussian
fluctuations (see Bartolo et al. 2004a for a recent review). There
are a number of plausible extensions of the standard inflationary
model (Lyth et al. 2003; Dvali et al. 2004; Bartolo et al. 2004b)
or alternative early universe models (Arkani-Hamed et al. 2004;
Alishahiha et al. 2004) that predict skewed primordial fluctuations
at a level detectable byWMAP.

There are other cosmological mechanisms for generating non-
Gaussianity. The smallness of the CMB quadrupole seen by both
WMAP and COBE has stimulated interest in the possibility that
the universe may be finite (Luminet et al. 2003; Aurich et al.
2005). If the universe were finite and had a size comparable to
horizon size today, then the CMB fluctuations would be non-
Gaussian (Cornish et al. 1996; Levin et al. 1997; Bond et al. 2000;
Inoue et al. 2000).While analysis of the first-year data did not find
any evidence for a finite universe (Phillips &Kogut 2006; Cornish

et al. 2004), these searches were nonexhaustive so the data rule
out most but not all small universes.
Using an analysis of Minkowski functionals, Komatsu et al.

(2003) did not find evidence for statistically isotropic but non-
Gaussian fluctuations in the first-year sky maps. The Colley &
Gott (2003) reanalysis of the maps confirmed the conclusion that
there was no evidence of non-Gaussianity. Eriksen et al. (2004b)
measured the Minkowski functionals and the length of the skel-
eton for the first-year maps on 11 different smoothing scales.
While they found no evidence for deviations from non-Gaussianity
using theMinkowski area,Minkowski length, and the length of the
skeleton, they did find an intriguingly high!2 for the genus statistic.
For a broad class of theories, we can parameterize the effects

of nonlinear physics by a simple coupling term that couples a
Gaussian random field,  , to the Bardeen curvature potential,#:

#(x) ¼  (x)þ fNL 
2(x): ð16Þ

Simple inflationary models based on a single slowly rolling sca-
lar field with the canonical kinetic Lagrangian predict j fNLj<1
(Maldacena 2003; Bartolo et al. 2004a); however, curvaton infla-
tion (Lyth et al. 2003), ghost inflation (Arkani-Hamed et al. 2004),
and Dirac-Born-Infeld (DBI) inflation models (Alishahiha et al.
2004) can generate much larger non-Gaussianity, j fNLj# 100.
Using the WMAP first-year data, Komatsu et al. (2003) con-
strained "54< fNL< 134 at the 95% confidence level. Several
different groups (Gaztañaga &Wagg 2003; Mukherjee &Wang
2003; Cabella et al. 2004; Phillips & Kogut 2006; Creminelli
et al. 2006) have applied alternative techniques to measure fNL
from the maps and have similar limits on fNL. Babich et al. (2004)
note that these limits are sensitive to the physics that generated the
non-Gaussianity as different mechanisms predict different forms
for the bispectrum.
Since the release of theWMAP data, several groups have claimed

detections of significant non-Gaussianities (Tegmark et al. 2003;

Fig. 21.—Range of nonflat cosmological models consistent with theWMAP
data only. The models in the figure are all power-law CDMmodels with dark en-
ergy and dark matter, but without the constraint that !m þ !" ¼ 1 (model M10
in Table 3). The different colors correspond to values of the Hubble constant as
indicated in the figure.Whilemodelswith!" ¼ 0 are not disfavored by theWMAP
data only ($!2

eA ¼ 0; model M4 in Table 3), the combination ofWMAP data plus
measurements of the Hubble constant strongly constrain the geometry and com-
position of the universe within the framework of these models. The dashed line
shows an approximation to the degeneracy track: !K ¼ "0:3040þ 0:4067!".
Note that for these open universe models, we assume a flat prior on!".

TABLE 12

Joint Data Set Constraints on Geometry and Vacuum Energy

Data Set !K !"

WMAP + h = 0.72 ' 0.08 ....... "0.014 ' 0.017 0.716 ' 0.055

WMAP + SDSS......................... "0:0053þ0:0068
"0:0060 0.707 ' 0.041

WMAP + 2dFGRS .................... "0:0093þ0:0098
"0:0092 0:745þ0:025

"0:024

WMAP + SDSS LRG ............... "0.012 ' 0.010 0.728 ' 0.021

WMAP + SNLS ........................ "0.011 ' 0.012 0.738 ' 0.030

WMAP + SNGold ..................... "0.023 ' 0.014 0.700 ' 0.031

SPERGEL ET AL.398 Vol. 170

Spergel et al., 07

WMAP

«Lensing breaks diameter degeneracy»

CMB Lensing & ISW
K. Benabed
Institut d’Astrophysique de Paris - UPMC
On behalf of the Planck Collaboration 
XVII. Gravitational lensing by large scale structures
XIX. The integrated Sachs-Wolfe effect

Cosmology



consistent with both flat models and models with!" ¼ 0. If we
allow for a large SZ signal, then the WMAP data alone favor a
model with !K ¼ "0:04; however, this model is not consistent
with other astronomical data.

The combination of WMAP data and other astronomical data
places strong constraints on the geometry of the universe (see
Table 12):

1. The angular scale of the baryon acoustic oscillation (BAO)
peak in the SDSS LRG sample (Eisenstein et al. 2005) measures
the distance to z ¼ 0:35. The combination of the BAO and CMB
observations strongly constrain the geometry of the universe.
The position of the peak in the galaxy spectrum in the SDSS and
2dFGRS surveys provide local measurements of the angular di-
ameter distance.

2. Figure 21 shows that the Hubble constant varies along this
line, so that the HST Key Project constraint on the Hubble con-
stant leads to a strong bound on the curvature.

3. SNe observations measure the luminosity distance to z # 1.
The combination of SNe data and CMB data also favors a nearly
flat universe.

The strong limits quoted in Table 12 rely on our assumption
that the dark energy has the equation of state, w ¼ "1. In x 7.1,
we discussed relaxing this assumption and assuming that w is a
constant. Figure 15 shows that by using the combination of CMB,
large-scale structure, and supernova data, we can simultaneously
constrain both !k and w. This figure confirms that our minimal
model, !k ¼ 0, and w ¼ "1 is consistent with the current data.

8. ARE CMB FLUCTUATIONS GAUSSIAN?

The detection of primordial non-Gaussian fluctuations in the
CMBwould have a profound impact on our understanding of the
physics of the early universe. While the simplest inflationary
models predict only mild non-Gaussianities that should be un-
detectable in theWMAP data, there are a wide range of plausible
mechanisms for generating significant and detectable non-Gaussian
fluctuations (see Bartolo et al. 2004a for a recent review). There
are a number of plausible extensions of the standard inflationary
model (Lyth et al. 2003; Dvali et al. 2004; Bartolo et al. 2004b)
or alternative early universe models (Arkani-Hamed et al. 2004;
Alishahiha et al. 2004) that predict skewed primordial fluctuations
at a level detectable byWMAP.

There are other cosmological mechanisms for generating non-
Gaussianity. The smallness of the CMB quadrupole seen by both
WMAP and COBE has stimulated interest in the possibility that
the universe may be finite (Luminet et al. 2003; Aurich et al.
2005). If the universe were finite and had a size comparable to
horizon size today, then the CMB fluctuations would be non-
Gaussian (Cornish et al. 1996; Levin et al. 1997; Bond et al. 2000;
Inoue et al. 2000).While analysis of the first-year data did not find
any evidence for a finite universe (Phillips &Kogut 2006; Cornish

et al. 2004), these searches were nonexhaustive so the data rule
out most but not all small universes.
Using an analysis of Minkowski functionals, Komatsu et al.

(2003) did not find evidence for statistically isotropic but non-
Gaussian fluctuations in the first-year sky maps. The Colley &
Gott (2003) reanalysis of the maps confirmed the conclusion that
there was no evidence of non-Gaussianity. Eriksen et al. (2004b)
measured the Minkowski functionals and the length of the skel-
eton for the first-year maps on 11 different smoothing scales.
While they found no evidence for deviations from non-Gaussianity
using theMinkowski area,Minkowski length, and the length of the
skeleton, they did find an intriguingly high!2 for the genus statistic.
For a broad class of theories, we can parameterize the effects

of nonlinear physics by a simple coupling term that couples a
Gaussian random field,  , to the Bardeen curvature potential,#:

#(x) ¼  (x)þ fNL 
2(x): ð16Þ

Simple inflationary models based on a single slowly rolling sca-
lar field with the canonical kinetic Lagrangian predict j fNLj<1
(Maldacena 2003; Bartolo et al. 2004a); however, curvaton infla-
tion (Lyth et al. 2003), ghost inflation (Arkani-Hamed et al. 2004),
and Dirac-Born-Infeld (DBI) inflation models (Alishahiha et al.
2004) can generate much larger non-Gaussianity, j fNLj# 100.
Using the WMAP first-year data, Komatsu et al. (2003) con-
strained "54< fNL< 134 at the 95% confidence level. Several
different groups (Gaztañaga &Wagg 2003; Mukherjee &Wang
2003; Cabella et al. 2004; Phillips & Kogut 2006; Creminelli
et al. 2006) have applied alternative techniques to measure fNL
from the maps and have similar limits on fNL. Babich et al. (2004)
note that these limits are sensitive to the physics that generated the
non-Gaussianity as different mechanisms predict different forms
for the bispectrum.
Since the release of theWMAP data, several groups have claimed

detections of significant non-Gaussianities (Tegmark et al. 2003;

Fig. 21.—Range of nonflat cosmological models consistent with theWMAP
data only. The models in the figure are all power-law CDMmodels with dark en-
ergy and dark matter, but without the constraint that !m þ !" ¼ 1 (model M10
in Table 3). The different colors correspond to values of the Hubble constant as
indicated in the figure.Whilemodelswith!" ¼ 0 are not disfavored by theWMAP
data only ($!2

eA ¼ 0; model M4 in Table 3), the combination ofWMAP data plus
measurements of the Hubble constant strongly constrain the geometry and com-
position of the universe within the framework of these models. The dashed line
shows an approximation to the degeneracy track: !K ¼ "0:3040þ 0:4067!".
Note that for these open universe models, we assume a flat prior on!".

TABLE 12

Joint Data Set Constraints on Geometry and Vacuum Energy

Data Set !K !"

WMAP + h = 0.72 ' 0.08 ....... "0.014 ' 0.017 0.716 ' 0.055

WMAP + SDSS......................... "0:0053þ0:0068
"0:0060 0.707 ' 0.041

WMAP + 2dFGRS .................... "0:0093þ0:0098
"0:0092 0:745þ0:025

"0:024

WMAP + SDSS LRG ............... "0.012 ' 0.010 0.728 ' 0.021

WMAP + SNLS ........................ "0.011 ' 0.012 0.738 ' 0.030

WMAP + SNGold ..................... "0.023 ' 0.014 0.700 ' 0.031
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consistent with both flat models and models with!" ¼ 0. If we
allow for a large SZ signal, then the WMAP data alone favor a
model with !K ¼ "0:04; however, this model is not consistent
with other astronomical data.

The combination of WMAP data and other astronomical data
places strong constraints on the geometry of the universe (see
Table 12):

1. The angular scale of the baryon acoustic oscillation (BAO)
peak in the SDSS LRG sample (Eisenstein et al. 2005) measures
the distance to z ¼ 0:35. The combination of the BAO and CMB
observations strongly constrain the geometry of the universe.
The position of the peak in the galaxy spectrum in the SDSS and
2dFGRS surveys provide local measurements of the angular di-
ameter distance.

2. Figure 21 shows that the Hubble constant varies along this
line, so that the HST Key Project constraint on the Hubble con-
stant leads to a strong bound on the curvature.

3. SNe observations measure the luminosity distance to z # 1.
The combination of SNe data and CMB data also favors a nearly
flat universe.

The strong limits quoted in Table 12 rely on our assumption
that the dark energy has the equation of state, w ¼ "1. In x 7.1,
we discussed relaxing this assumption and assuming that w is a
constant. Figure 15 shows that by using the combination of CMB,
large-scale structure, and supernova data, we can simultaneously
constrain both !k and w. This figure confirms that our minimal
model, !k ¼ 0, and w ¼ "1 is consistent with the current data.

8. ARE CMB FLUCTUATIONS GAUSSIAN?

The detection of primordial non-Gaussian fluctuations in the
CMBwould have a profound impact on our understanding of the
physics of the early universe. While the simplest inflationary
models predict only mild non-Gaussianities that should be un-
detectable in theWMAP data, there are a wide range of plausible
mechanisms for generating significant and detectable non-Gaussian
fluctuations (see Bartolo et al. 2004a for a recent review). There
are a number of plausible extensions of the standard inflationary
model (Lyth et al. 2003; Dvali et al. 2004; Bartolo et al. 2004b)
or alternative early universe models (Arkani-Hamed et al. 2004;
Alishahiha et al. 2004) that predict skewed primordial fluctuations
at a level detectable byWMAP.

There are other cosmological mechanisms for generating non-
Gaussianity. The smallness of the CMB quadrupole seen by both
WMAP and COBE has stimulated interest in the possibility that
the universe may be finite (Luminet et al. 2003; Aurich et al.
2005). If the universe were finite and had a size comparable to
horizon size today, then the CMB fluctuations would be non-
Gaussian (Cornish et al. 1996; Levin et al. 1997; Bond et al. 2000;
Inoue et al. 2000).While analysis of the first-year data did not find
any evidence for a finite universe (Phillips &Kogut 2006; Cornish

et al. 2004), these searches were nonexhaustive so the data rule
out most but not all small universes.
Using an analysis of Minkowski functionals, Komatsu et al.

(2003) did not find evidence for statistically isotropic but non-
Gaussian fluctuations in the first-year sky maps. The Colley &
Gott (2003) reanalysis of the maps confirmed the conclusion that
there was no evidence of non-Gaussianity. Eriksen et al. (2004b)
measured the Minkowski functionals and the length of the skel-
eton for the first-year maps on 11 different smoothing scales.
While they found no evidence for deviations from non-Gaussianity
using theMinkowski area,Minkowski length, and the length of the
skeleton, they did find an intriguingly high!2 for the genus statistic.
For a broad class of theories, we can parameterize the effects

of nonlinear physics by a simple coupling term that couples a
Gaussian random field,  , to the Bardeen curvature potential,#:

#(x) ¼  (x)þ fNL 
2(x): ð16Þ

Simple inflationary models based on a single slowly rolling sca-
lar field with the canonical kinetic Lagrangian predict j fNLj<1
(Maldacena 2003; Bartolo et al. 2004a); however, curvaton infla-
tion (Lyth et al. 2003), ghost inflation (Arkani-Hamed et al. 2004),
and Dirac-Born-Infeld (DBI) inflation models (Alishahiha et al.
2004) can generate much larger non-Gaussianity, j fNLj# 100.
Using the WMAP first-year data, Komatsu et al. (2003) con-
strained "54< fNL< 134 at the 95% confidence level. Several
different groups (Gaztañaga &Wagg 2003; Mukherjee &Wang
2003; Cabella et al. 2004; Phillips & Kogut 2006; Creminelli
et al. 2006) have applied alternative techniques to measure fNL
from the maps and have similar limits on fNL. Babich et al. (2004)
note that these limits are sensitive to the physics that generated the
non-Gaussianity as different mechanisms predict different forms
for the bispectrum.
Since the release of theWMAP data, several groups have claimed

detections of significant non-Gaussianities (Tegmark et al. 2003;

Fig. 21.—Range of nonflat cosmological models consistent with theWMAP
data only. The models in the figure are all power-law CDMmodels with dark en-
ergy and dark matter, but without the constraint that !m þ !" ¼ 1 (model M10
in Table 3). The different colors correspond to values of the Hubble constant as
indicated in the figure.Whilemodelswith!" ¼ 0 are not disfavored by theWMAP
data only ($!2

eA ¼ 0; model M4 in Table 3), the combination ofWMAP data plus
measurements of the Hubble constant strongly constrain the geometry and com-
position of the universe within the framework of these models. The dashed line
shows an approximation to the degeneracy track: !K ¼ "0:3040þ 0:4067!".
Note that for these open universe models, we assume a flat prior on!".

TABLE 12

Joint Data Set Constraints on Geometry and Vacuum Energy

Data Set !K !"

WMAP + h = 0.72 ' 0.08 ....... "0.014 ' 0.017 0.716 ' 0.055

WMAP + SDSS......................... "0:0053þ0:0068
"0:0060 0.707 ' 0.041

WMAP + 2dFGRS .................... "0:0093þ0:0098
"0:0092 0:745þ0:025

"0:024

WMAP + SDSS LRG ............... "0.012 ' 0.010 0.728 ' 0.021

WMAP + SNLS ........................ "0.011 ' 0.012 0.738 ' 0.030

WMAP + SNGold ..................... "0.023 ' 0.014 0.700 ' 0.031
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consistent with both flat models and models with!" ¼ 0. If we
allow for a large SZ signal, then the WMAP data alone favor a
model with !K ¼ "0:04; however, this model is not consistent
with other astronomical data.

The combination of WMAP data and other astronomical data
places strong constraints on the geometry of the universe (see
Table 12):

1. The angular scale of the baryon acoustic oscillation (BAO)
peak in the SDSS LRG sample (Eisenstein et al. 2005) measures
the distance to z ¼ 0:35. The combination of the BAO and CMB
observations strongly constrain the geometry of the universe.
The position of the peak in the galaxy spectrum in the SDSS and
2dFGRS surveys provide local measurements of the angular di-
ameter distance.

2. Figure 21 shows that the Hubble constant varies along this
line, so that the HST Key Project constraint on the Hubble con-
stant leads to a strong bound on the curvature.

3. SNe observations measure the luminosity distance to z # 1.
The combination of SNe data and CMB data also favors a nearly
flat universe.

The strong limits quoted in Table 12 rely on our assumption
that the dark energy has the equation of state, w ¼ "1. In x 7.1,
we discussed relaxing this assumption and assuming that w is a
constant. Figure 15 shows that by using the combination of CMB,
large-scale structure, and supernova data, we can simultaneously
constrain both !k and w. This figure confirms that our minimal
model, !k ¼ 0, and w ¼ "1 is consistent with the current data.

8. ARE CMB FLUCTUATIONS GAUSSIAN?

The detection of primordial non-Gaussian fluctuations in the
CMBwould have a profound impact on our understanding of the
physics of the early universe. While the simplest inflationary
models predict only mild non-Gaussianities that should be un-
detectable in theWMAP data, there are a wide range of plausible
mechanisms for generating significant and detectable non-Gaussian
fluctuations (see Bartolo et al. 2004a for a recent review). There
are a number of plausible extensions of the standard inflationary
model (Lyth et al. 2003; Dvali et al. 2004; Bartolo et al. 2004b)
or alternative early universe models (Arkani-Hamed et al. 2004;
Alishahiha et al. 2004) that predict skewed primordial fluctuations
at a level detectable byWMAP.

There are other cosmological mechanisms for generating non-
Gaussianity. The smallness of the CMB quadrupole seen by both
WMAP and COBE has stimulated interest in the possibility that
the universe may be finite (Luminet et al. 2003; Aurich et al.
2005). If the universe were finite and had a size comparable to
horizon size today, then the CMB fluctuations would be non-
Gaussian (Cornish et al. 1996; Levin et al. 1997; Bond et al. 2000;
Inoue et al. 2000).While analysis of the first-year data did not find
any evidence for a finite universe (Phillips &Kogut 2006; Cornish

et al. 2004), these searches were nonexhaustive so the data rule
out most but not all small universes.
Using an analysis of Minkowski functionals, Komatsu et al.

(2003) did not find evidence for statistically isotropic but non-
Gaussian fluctuations in the first-year sky maps. The Colley &
Gott (2003) reanalysis of the maps confirmed the conclusion that
there was no evidence of non-Gaussianity. Eriksen et al. (2004b)
measured the Minkowski functionals and the length of the skel-
eton for the first-year maps on 11 different smoothing scales.
While they found no evidence for deviations from non-Gaussianity
using theMinkowski area,Minkowski length, and the length of the
skeleton, they did find an intriguingly high!2 for the genus statistic.
For a broad class of theories, we can parameterize the effects

of nonlinear physics by a simple coupling term that couples a
Gaussian random field,  , to the Bardeen curvature potential,#:

#(x) ¼  (x)þ fNL 
2(x): ð16Þ

Simple inflationary models based on a single slowly rolling sca-
lar field with the canonical kinetic Lagrangian predict j fNLj<1
(Maldacena 2003; Bartolo et al. 2004a); however, curvaton infla-
tion (Lyth et al. 2003), ghost inflation (Arkani-Hamed et al. 2004),
and Dirac-Born-Infeld (DBI) inflation models (Alishahiha et al.
2004) can generate much larger non-Gaussianity, j fNLj# 100.
Using the WMAP first-year data, Komatsu et al. (2003) con-
strained "54< fNL< 134 at the 95% confidence level. Several
different groups (Gaztañaga &Wagg 2003; Mukherjee &Wang
2003; Cabella et al. 2004; Phillips & Kogut 2006; Creminelli
et al. 2006) have applied alternative techniques to measure fNL
from the maps and have similar limits on fNL. Babich et al. (2004)
note that these limits are sensitive to the physics that generated the
non-Gaussianity as different mechanisms predict different forms
for the bispectrum.
Since the release of theWMAP data, several groups have claimed

detections of significant non-Gaussianities (Tegmark et al. 2003;

Fig. 21.—Range of nonflat cosmological models consistent with theWMAP
data only. The models in the figure are all power-law CDMmodels with dark en-
ergy and dark matter, but without the constraint that !m þ !" ¼ 1 (model M10
in Table 3). The different colors correspond to values of the Hubble constant as
indicated in the figure.Whilemodelswith!" ¼ 0 are not disfavored by theWMAP
data only ($!2

eA ¼ 0; model M4 in Table 3), the combination ofWMAP data plus
measurements of the Hubble constant strongly constrain the geometry and com-
position of the universe within the framework of these models. The dashed line
shows an approximation to the degeneracy track: !K ¼ "0:3040þ 0:4067!".
Note that for these open universe models, we assume a flat prior on!".

TABLE 12

Joint Data Set Constraints on Geometry and Vacuum Energy

Data Set !K !"

WMAP + h = 0.72 ' 0.08 ....... "0.014 ' 0.017 0.716 ' 0.055

WMAP + SDSS......................... "0:0053þ0:0068
"0:0060 0.707 ' 0.041

WMAP + 2dFGRS .................... "0:0093þ0:0098
"0:0092 0:745þ0:025

"0:024

WMAP + SDSS LRG ............... "0.012 ' 0.010 0.728 ' 0.021

WMAP + SNLS ........................ "0.011 ' 0.012 0.738 ' 0.030

WMAP + SNGold ..................... "0.023 ' 0.014 0.700 ' 0.031
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consistent with both flat models and models with!" ¼ 0. If we
allow for a large SZ signal, then the WMAP data alone favor a
model with !K ¼ "0:04; however, this model is not consistent
with other astronomical data.

The combination of WMAP data and other astronomical data
places strong constraints on the geometry of the universe (see
Table 12):

1. The angular scale of the baryon acoustic oscillation (BAO)
peak in the SDSS LRG sample (Eisenstein et al. 2005) measures
the distance to z ¼ 0:35. The combination of the BAO and CMB
observations strongly constrain the geometry of the universe.
The position of the peak in the galaxy spectrum in the SDSS and
2dFGRS surveys provide local measurements of the angular di-
ameter distance.

2. Figure 21 shows that the Hubble constant varies along this
line, so that the HST Key Project constraint on the Hubble con-
stant leads to a strong bound on the curvature.

3. SNe observations measure the luminosity distance to z # 1.
The combination of SNe data and CMB data also favors a nearly
flat universe.

The strong limits quoted in Table 12 rely on our assumption
that the dark energy has the equation of state, w ¼ "1. In x 7.1,
we discussed relaxing this assumption and assuming that w is a
constant. Figure 15 shows that by using the combination of CMB,
large-scale structure, and supernova data, we can simultaneously
constrain both !k and w. This figure confirms that our minimal
model, !k ¼ 0, and w ¼ "1 is consistent with the current data.

8. ARE CMB FLUCTUATIONS GAUSSIAN?

The detection of primordial non-Gaussian fluctuations in the
CMBwould have a profound impact on our understanding of the
physics of the early universe. While the simplest inflationary
models predict only mild non-Gaussianities that should be un-
detectable in theWMAP data, there are a wide range of plausible
mechanisms for generating significant and detectable non-Gaussian
fluctuations (see Bartolo et al. 2004a for a recent review). There
are a number of plausible extensions of the standard inflationary
model (Lyth et al. 2003; Dvali et al. 2004; Bartolo et al. 2004b)
or alternative early universe models (Arkani-Hamed et al. 2004;
Alishahiha et al. 2004) that predict skewed primordial fluctuations
at a level detectable byWMAP.

There are other cosmological mechanisms for generating non-
Gaussianity. The smallness of the CMB quadrupole seen by both
WMAP and COBE has stimulated interest in the possibility that
the universe may be finite (Luminet et al. 2003; Aurich et al.
2005). If the universe were finite and had a size comparable to
horizon size today, then the CMB fluctuations would be non-
Gaussian (Cornish et al. 1996; Levin et al. 1997; Bond et al. 2000;
Inoue et al. 2000).While analysis of the first-year data did not find
any evidence for a finite universe (Phillips &Kogut 2006; Cornish

et al. 2004), these searches were nonexhaustive so the data rule
out most but not all small universes.
Using an analysis of Minkowski functionals, Komatsu et al.

(2003) did not find evidence for statistically isotropic but non-
Gaussian fluctuations in the first-year sky maps. The Colley &
Gott (2003) reanalysis of the maps confirmed the conclusion that
there was no evidence of non-Gaussianity. Eriksen et al. (2004b)
measured the Minkowski functionals and the length of the skel-
eton for the first-year maps on 11 different smoothing scales.
While they found no evidence for deviations from non-Gaussianity
using theMinkowski area,Minkowski length, and the length of the
skeleton, they did find an intriguingly high!2 for the genus statistic.
For a broad class of theories, we can parameterize the effects

of nonlinear physics by a simple coupling term that couples a
Gaussian random field,  , to the Bardeen curvature potential,#:

#(x) ¼  (x)þ fNL 
2(x): ð16Þ

Simple inflationary models based on a single slowly rolling sca-
lar field with the canonical kinetic Lagrangian predict j fNLj<1
(Maldacena 2003; Bartolo et al. 2004a); however, curvaton infla-
tion (Lyth et al. 2003), ghost inflation (Arkani-Hamed et al. 2004),
and Dirac-Born-Infeld (DBI) inflation models (Alishahiha et al.
2004) can generate much larger non-Gaussianity, j fNLj# 100.
Using the WMAP first-year data, Komatsu et al. (2003) con-
strained "54< fNL< 134 at the 95% confidence level. Several
different groups (Gaztañaga &Wagg 2003; Mukherjee &Wang
2003; Cabella et al. 2004; Phillips & Kogut 2006; Creminelli
et al. 2006) have applied alternative techniques to measure fNL
from the maps and have similar limits on fNL. Babich et al. (2004)
note that these limits are sensitive to the physics that generated the
non-Gaussianity as different mechanisms predict different forms
for the bispectrum.
Since the release of theWMAP data, several groups have claimed

detections of significant non-Gaussianities (Tegmark et al. 2003;

Fig. 21.—Range of nonflat cosmological models consistent with theWMAP
data only. The models in the figure are all power-law CDMmodels with dark en-
ergy and dark matter, but without the constraint that !m þ !" ¼ 1 (model M10
in Table 3). The different colors correspond to values of the Hubble constant as
indicated in the figure.Whilemodelswith!" ¼ 0 are not disfavored by theWMAP
data only ($!2

eA ¼ 0; model M4 in Table 3), the combination ofWMAP data plus
measurements of the Hubble constant strongly constrain the geometry and com-
position of the universe within the framework of these models. The dashed line
shows an approximation to the degeneracy track: !K ¼ "0:3040þ 0:4067!".
Note that for these open universe models, we assume a flat prior on!".

TABLE 12

Joint Data Set Constraints on Geometry and Vacuum Energy

Data Set !K !"

WMAP + h = 0.72 ' 0.08 ....... "0.014 ' 0.017 0.716 ' 0.055

WMAP + SDSS......................... "0:0053þ0:0068
"0:0060 0.707 ' 0.041

WMAP + 2dFGRS .................... "0:0093þ0:0098
"0:0092 0:745þ0:025

"0:024

WMAP + SDSS LRG ............... "0.012 ' 0.010 0.728 ' 0.021

WMAP + SNLS ........................ "0.011 ' 0.012 0.738 ' 0.030

WMAP + SNGold ..................... "0.023 ' 0.014 0.700 ' 0.031
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consistent with both flat models and models with!" ¼ 0. If we
allow for a large SZ signal, then the WMAP data alone favor a
model with !K ¼ "0:04; however, this model is not consistent
with other astronomical data.

The combination of WMAP data and other astronomical data
places strong constraints on the geometry of the universe (see
Table 12):

1. The angular scale of the baryon acoustic oscillation (BAO)
peak in the SDSS LRG sample (Eisenstein et al. 2005) measures
the distance to z ¼ 0:35. The combination of the BAO and CMB
observations strongly constrain the geometry of the universe.
The position of the peak in the galaxy spectrum in the SDSS and
2dFGRS surveys provide local measurements of the angular di-
ameter distance.

2. Figure 21 shows that the Hubble constant varies along this
line, so that the HST Key Project constraint on the Hubble con-
stant leads to a strong bound on the curvature.

3. SNe observations measure the luminosity distance to z # 1.
The combination of SNe data and CMB data also favors a nearly
flat universe.

The strong limits quoted in Table 12 rely on our assumption
that the dark energy has the equation of state, w ¼ "1. In x 7.1,
we discussed relaxing this assumption and assuming that w is a
constant. Figure 15 shows that by using the combination of CMB,
large-scale structure, and supernova data, we can simultaneously
constrain both !k and w. This figure confirms that our minimal
model, !k ¼ 0, and w ¼ "1 is consistent with the current data.

8. ARE CMB FLUCTUATIONS GAUSSIAN?

The detection of primordial non-Gaussian fluctuations in the
CMBwould have a profound impact on our understanding of the
physics of the early universe. While the simplest inflationary
models predict only mild non-Gaussianities that should be un-
detectable in theWMAP data, there are a wide range of plausible
mechanisms for generating significant and detectable non-Gaussian
fluctuations (see Bartolo et al. 2004a for a recent review). There
are a number of plausible extensions of the standard inflationary
model (Lyth et al. 2003; Dvali et al. 2004; Bartolo et al. 2004b)
or alternative early universe models (Arkani-Hamed et al. 2004;
Alishahiha et al. 2004) that predict skewed primordial fluctuations
at a level detectable byWMAP.

There are other cosmological mechanisms for generating non-
Gaussianity. The smallness of the CMB quadrupole seen by both
WMAP and COBE has stimulated interest in the possibility that
the universe may be finite (Luminet et al. 2003; Aurich et al.
2005). If the universe were finite and had a size comparable to
horizon size today, then the CMB fluctuations would be non-
Gaussian (Cornish et al. 1996; Levin et al. 1997; Bond et al. 2000;
Inoue et al. 2000).While analysis of the first-year data did not find
any evidence for a finite universe (Phillips &Kogut 2006; Cornish

et al. 2004), these searches were nonexhaustive so the data rule
out most but not all small universes.
Using an analysis of Minkowski functionals, Komatsu et al.

(2003) did not find evidence for statistically isotropic but non-
Gaussian fluctuations in the first-year sky maps. The Colley &
Gott (2003) reanalysis of the maps confirmed the conclusion that
there was no evidence of non-Gaussianity. Eriksen et al. (2004b)
measured the Minkowski functionals and the length of the skel-
eton for the first-year maps on 11 different smoothing scales.
While they found no evidence for deviations from non-Gaussianity
using theMinkowski area,Minkowski length, and the length of the
skeleton, they did find an intriguingly high!2 for the genus statistic.
For a broad class of theories, we can parameterize the effects

of nonlinear physics by a simple coupling term that couples a
Gaussian random field,  , to the Bardeen curvature potential,#:

#(x) ¼  (x)þ fNL 
2(x): ð16Þ

Simple inflationary models based on a single slowly rolling sca-
lar field with the canonical kinetic Lagrangian predict j fNLj<1
(Maldacena 2003; Bartolo et al. 2004a); however, curvaton infla-
tion (Lyth et al. 2003), ghost inflation (Arkani-Hamed et al. 2004),
and Dirac-Born-Infeld (DBI) inflation models (Alishahiha et al.
2004) can generate much larger non-Gaussianity, j fNLj# 100.
Using the WMAP first-year data, Komatsu et al. (2003) con-
strained "54< fNL< 134 at the 95% confidence level. Several
different groups (Gaztañaga &Wagg 2003; Mukherjee &Wang
2003; Cabella et al. 2004; Phillips & Kogut 2006; Creminelli
et al. 2006) have applied alternative techniques to measure fNL
from the maps and have similar limits on fNL. Babich et al. (2004)
note that these limits are sensitive to the physics that generated the
non-Gaussianity as different mechanisms predict different forms
for the bispectrum.
Since the release of theWMAP data, several groups have claimed

detections of significant non-Gaussianities (Tegmark et al. 2003;

Fig. 21.—Range of nonflat cosmological models consistent with theWMAP
data only. The models in the figure are all power-law CDMmodels with dark en-
ergy and dark matter, but without the constraint that !m þ !" ¼ 1 (model M10
in Table 3). The different colors correspond to values of the Hubble constant as
indicated in the figure.Whilemodelswith!" ¼ 0 are not disfavored by theWMAP
data only ($!2

eA ¼ 0; model M4 in Table 3), the combination ofWMAP data plus
measurements of the Hubble constant strongly constrain the geometry and com-
position of the universe within the framework of these models. The dashed line
shows an approximation to the degeneracy track: !K ¼ "0:3040þ 0:4067!".
Note that for these open universe models, we assume a flat prior on!".

TABLE 12

Joint Data Set Constraints on Geometry and Vacuum Energy

Data Set !K !"

WMAP + h = 0.72 ' 0.08 ....... "0.014 ' 0.017 0.716 ' 0.055

WMAP + SDSS......................... "0:0053þ0:0068
"0:0060 0.707 ' 0.041

WMAP + 2dFGRS .................... "0:0093þ0:0098
"0:0092 0:745þ0:025

"0:024

WMAP + SDSS LRG ............... "0.012 ' 0.010 0.728 ' 0.021

WMAP + SNLS ........................ "0.011 ' 0.012 0.738 ' 0.030

WMAP + SNGold ..................... "0.023 ' 0.014 0.700 ' 0.031
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Fig. 15. Two views of the geometric degeneracy in curved ⇤CDM models which is partially broken by lensing. Left: the degeneracy
in the⌦m-⌦⇤ plane, with samples from Planck+WP+highL colour coded by the value of H0. The contours delimit the 68% and 95%
confidence regions, showing the further improvement from including the lensing likelihood. Right: the degeneracy in the ⌦K-H0
plane, with samples colour coded by ⌦⇤. Spatially-flat models lie along the grey dashed lines.

constraint. We see that the CMB alone now constrains the ge-
ometry to be flat at the percent level. Previous constraints on
curvature via CMB lensing have been reported by SPT in com-
bination with the WMAP-7 data:⌦K = �0.003+0.014

�0.018 (68%; Story
et al. 2012). This constraint is consistent, though almost a factor
of two weaker, than that from Planck. Tighter constraints on cur-
vature result from combining the Planck data with other astro-
physical data, such as baryon acoustic oscillations, as discussed
in Planck Collaboration XVI (2013).

Lensing e↵ects provide evidence for dark energy from the
CMB alone, independent of other astrophysical data (Sherwin
et al. 2011). In curved⇤CDM models, we find marginalised con-
straints on ⌦⇤ of

⌦⇤ = 0.57+0.073
�0.055 (68%; Planck+WP+highL)

⌦⇤ = 0.67+0.027
�0.023 (68%; Planck+lensing+WP+highL).

Again, lensing reconstruction improves the errors by more than
a factor of two over those from the temperature power spectrum
alone.

6.1.4. Neutrino masses

The unique e↵ect in the unlensed temperature power spectrum
of massive neutrinos that are still relativistic at recombination
is small. With the angular scale of the acoustic peaks fixed
from measurements of the temperature power spectrum, neutrino
masses increase the expansion rate at z > 1 and so suppress clus-
tering on scales larger than the horizon size at the non-relativistic
transition (Kaplinghat et al. 2003). This e↵ect reduces C��L for
L > 10 (see Fig. 12) and gives less smoothing of the acoustic
peaks in CTT

` . As discussed in Planck Collaboration XVI (2013),
the constraint on

P
m⌫ from the Planck temperature power spec-

trum (and WMAP low-` polarization) is driven by the smoothing
e↵ect of lensing:

P
m⌫ < 0.66 eV (95%; Planck+WP+highL).

Curiously, this constraint is weakened by additionally including
the lensing likelihood to

X
m⌫ < 0.85 eV, (95%; Planck+WP+highL),

reflecting mild tensions between the measured lensing and tem-
perature power spectra, with the former preferring larger neu-

trino masses than the latter. Possible origins of this tension are
explored further in Planck Collaboration XVI (2013) and are
thought to involve both the C��L measurements and features in
the measured CTT

` on large scales (` < 40) and small scales
` > 2000 that are not fit well by the ⇤CDM+foreground model.
As regards C��L , Fisher estimates show that the bandpowers in
the range 130 < L < 309 carry most of the statistical weight
in determining the marginal error on

P
m⌫, and Fig. 12 reveals

a preference for high
P

m⌫ from this part of the spectrum. (We
have checked that removing the first bandpower from the lensing
likelihood, which is the least stable to data cuts and the details
of foreground cleaning as discussed in Sect. 7, has little impact
on our neutrino mass constraints.) We also note that a similar
trend for lower lensing power than the ⇤CDM expectation on
intermediate scales is seen in the ACT and SPT measurements
(Fig. 11). Adding the high-L information to the likelihood weak-
ens the constraint further, pushing the 95% limit to 1.07 eV. This
is consistent with our small-scale measurement having a signifi-
cantly lower amplitude. At this stage it is unclear what to make
of this mild tension between neutrino mass constraints from the
4-point function and those from the 2-point, and we caution
over-interpreting the results. We expect to be able to say more
on this issue with the further data, including polarization, that
will be made available in future Planck data releases.

6.2. Correlation with the ISW Effect

As CMB photons travel to us from the last scattering surface,
the gravitational potentials that they traverse may undergo a non-
negligible amount of evolution. This produces a net redshift or
blueshift of the photons concerned, as they fall into and then
escape from the evolving potentials. The overall result is a con-
tribution to the CMB temperature anisotropy known as the late-
time integrated Sachs-Wolfe (ISW) e↵ect, or the Rees-Sciama
(R-S) e↵ect depending on whether the evolution of the poten-
tials concerned is in the linear (ISW) or non-linear (R-S) regime
of structure formation (Sachs & Wolfe 1967; Rees & Sciama
1968). In the epoch of dark energy domination, which occurs af-
ter z ⇠ 0.5 for the concordance ⇤CDM cosmology, large-scale
potentials tend to decay over time as space expands, resulting
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Measurements of the temperature power spectrum can also
be used to constrain the amplitude of tensor modes. Although
such limits can appear to be much tighter than the limits from
B-mode measurements, it should be borne in mind that such lim-
its are indirect because they are derived within the context of a
particular theoretical model. In the rest of this subsection, we
will review temperature based limits on tensor modes and then
present the results from Planck.

Adding a tensor component to the base ⇤CDM model, the
WMAP 9-year results constrain r0.002 < 0.38 at 95% confidence
(Hinshaw et al. 2012). Including small-scale ACT and SPT data
this improves to r0.002 < 0.17, and to r0.002 < 0.12 with the
addition of BAO data. These limits are degraded substantially,
however, in models which allow running of the scalar spectral
index in addition to tensors. For such models, the WMAP data
give r0.002 < 0.50, and this limit is not significantly improved by
adding high resolution CMB and BAO data.

The precise determination of the fourth, fifth and sixth
acoustic peaks by Planck now largely breaks the degener-
acy between the primordial fluctuation parameters. For the
Planck+WP+highL likelihood we find

r0.002 < 0.11 (95%; no running), (64a)
r0.002 < 0.26 (95%; including running). (64b)

As shown in Figs. 21 and 23, the tensor amplitude is weakly cor-
related with the scalar spectral index; an increase in ns that could
match the first three peaks cannot fit the fourth and higher acous-
tic peak in the Planck spectrum. Likewise, the shape constraints
from the fourth and higher acoustic peaks give a reduction in
the correlations between a tensor mode and a running in the
spectral index, leading to significantly tighter limits than from
previous CMB experiments. These numbers in Eqs. (64a) and
(64b) are driven by the temperature spectrum and change very
little if we add non-CMB data such as BAO measurements. The
Planck limits are largely decoupled from assumptions about the
late-time evolution of the Universe and are close to the tightest
possible limits achievable from the temperature power spectrum
alone (Knox & Turner 1994; Knox 1995).

These limits on a tensor mode have profound implications
for inflationary cosmology. The limits translate directly to an up-
per limit on the energy scale of inflation,

V⇤ = (1.94 ⇥ 1016 GeV)4(r0.002/0.12) (65)

(Linde 1983; Lyth 1984), and to the parameters of “large-field”
inflation models. Slow-roll inflation driven by a power law po-
tential V(�) / �↵ o↵ers a simple example of large-field inflation.
The field values in such a model must necessarily exceed the
Planck scale mPl , and lead to a scalar spectral index and tensor
amplitude of

1 � ns ⇡ (↵ + 2)/2N, (66a)
r ⇡ 4↵/N, (66b)

where N is the number of e-foldings between the end of inflation
and the time that our present day Hubble scale crossed the infla-
tionary horizon (see e.g., Lyth & Riotto 1999). The 95% confi-
dence limits from the Planck data are now close to the predic-
tions of ↵ = 2 models for N ⇡ 50–60 e-folds (see Fig. 23).
Large-field models with quartic potentials (e.g., Linde 1982) are
now firmly excluded by CMB data. Planck constraints on power-
law and on broader classes of inflationary models are discussed
in detail in Planck Collaboration XXIV (2013). Improved lim-
its on B-modes will be required to further constrain high field
models of inflation.

6.2.3. Curvature

An explanation of the near flatness of our observed Universe
was one of the primary motivations for inflationary cosmology.
Inflationary models that allow a large number of e-foldings pre-
dict that our Universe should be very accurately spatially flat31.
Nevertheless, by introducing fine tunings it is possible to con-
struct inflation models with observationally interesting open ge-
ometries (e.g., Linde 1995; Bucher et al. 1995; Linde 1999) or
closed geometries (Linde 2003). Even more speculatively, there
has been interest in models with open geometries from consid-
erations of tunnelling events between metastable vacua within
a “string landscape” (Freivogel et al. 2006). Observational lim-
its on spatial curvature therefore o↵er important additional con-
straints on inflationary models and fundamental physics.

CMB temperature power spectrum measurements su↵er
from a well-known “geometrical degeneracy” (Bond et al. 1997;
Zaldarriaga et al. 1997). Models with identical primordial spec-
tra, physical matter densities and angular diameter distance to
the last scattering surface, will have almost identical CMB tem-
perature power spectra. This is a near perfect degeneracy (see
Fig. 25) and is broken only via the integrated Sachs-Wolfe (ISW)
e↵ect on large angular scales and gravitational lensing of the
CMB spectrum (Stompor & Efstathiou 1999). The geometrical
degeneracy can also be broken with the addition of probes of
late time physics, including BAO, Type Ia supernova, and mea-
surement of the Hubble constant (e.g., Spergel et al. 2007).

Recently, the detection of the gravitational lensing of the
CMB by ACT and SPT has been used to break the geomet-
rical degeneracy, by measuring the integrated matter potential
distribution. ACT constrained ⌦⇤ = 0.61 ± 0.29 (68% CL)
in Sherwin et al. (2011), with the updated analysis in Das et al.
(2013) giving ⌦K = �0.031 ± 0.026 (68% CL) (Sievers et al.
2013). The SPT lensing measurements combined with seven
year WMAP temperature spectrum improved this limit to ⌦K =
�0.0014 ± 0.017 (68 % CL) (van Engelen et al. 2012).

With Planck we detect gravitational lensing at
about 26� through the 4-point function (Sect. 5.1 and
Planck Collaboration XVII 2013). This strong detection of
gravitational lensing allows us to constrain the curvature to
percent level precision using observations of the CMB alone:

100⌦K = �4.2+4.3
�4.8 (95%; Planck+WP+highL); (67a)

100⌦K = �1.0+1.8
�1.9 (95%; Planck+lensing

+WP+highL). (67b)

These constraints are improved substantially by the addition
of BAO data. We then find

100⌦K = �0.05+0.65
�0.66 (95%; Planck+WP+highL+BAO), (68a)

100⌦K = �0.10+0.62
�0.65 (95%; Planck+lensing+WP

+highL+BAO). (68b)

These limits are consistent with (and slightly tighter than) the
results reported by Hinshaw et al. (2012) from combining the
nine-year WMAP data with high resolution CMB measurements
and BAO data. We find broadly similar results to Eqs. (68a) and
(68b) if the Riess et al. (2011) H0 measurement, or either of the
SNe compilations discussed in Sect. 5.4, are used in place of the
BAO measurements.

31The e↵ective curvature within our Hubble radius should then be of
the order of the amplitude of the curvature fluctuations generated during
inflation, ⌦K ⇠ O(10�5).
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Fig. 15. Two views of the geometric degeneracy in curved ⇤CDM models which is partially broken by lensing. Left: the degeneracy
in the⌦m-⌦⇤ plane, with samples from Planck+WP+highL colour coded by the value of H0. The contours delimit the 68% and 95%
confidence regions, showing the further improvement from including the lensing likelihood. Right: the degeneracy in the ⌦K-H0
plane, with samples colour coded by ⌦⇤. Spatially-flat models lie along the grey dashed lines.

constraint. We see that the CMB alone now constrains the ge-
ometry to be flat at the percent level. Previous constraints on
curvature via CMB lensing have been reported by SPT in com-
bination with the WMAP-7 data:⌦K = �0.003+0.014

�0.018 (68%; Story
et al. 2012). This constraint is consistent, though almost a factor
of two weaker, than that from Planck. Tighter constraints on cur-
vature result from combining the Planck data with other astro-
physical data, such as baryon acoustic oscillations, as discussed
in Planck Collaboration XVI (2013).

Lensing e↵ects provide evidence for dark energy from the
CMB alone, independent of other astrophysical data (Sherwin
et al. 2011). In curved⇤CDM models, we find marginalised con-
straints on ⌦⇤ of

⌦⇤ = 0.57+0.073
�0.055 (68%; Planck+WP+highL)

⌦⇤ = 0.67+0.027
�0.023 (68%; Planck+lensing+WP+highL).

Again, lensing reconstruction improves the errors by more than
a factor of two over those from the temperature power spectrum
alone.

6.1.4. Neutrino masses

The unique e↵ect in the unlensed temperature power spectrum
of massive neutrinos that are still relativistic at recombination
is small. With the angular scale of the acoustic peaks fixed
from measurements of the temperature power spectrum, neutrino
masses increase the expansion rate at z > 1 and so suppress clus-
tering on scales larger than the horizon size at the non-relativistic
transition (Kaplinghat et al. 2003). This e↵ect reduces C��L for
L > 10 (see Fig. 12) and gives less smoothing of the acoustic
peaks in CTT

` . As discussed in Planck Collaboration XVI (2013),
the constraint on

P
m⌫ from the Planck temperature power spec-

trum (and WMAP low-` polarization) is driven by the smoothing
e↵ect of lensing:

P
m⌫ < 0.66 eV (95%; Planck+WP+highL).

Curiously, this constraint is weakened by additionally including
the lensing likelihood to

X
m⌫ < 0.85 eV, (95%; Planck+WP+highL),

reflecting mild tensions between the measured lensing and tem-
perature power spectra, with the former preferring larger neu-

trino masses than the latter. Possible origins of this tension are
explored further in Planck Collaboration XVI (2013) and are
thought to involve both the C��L measurements and features in
the measured CTT

` on large scales (` < 40) and small scales
` > 2000 that are not fit well by the ⇤CDM+foreground model.
As regards C��L , Fisher estimates show that the bandpowers in
the range 130 < L < 309 carry most of the statistical weight
in determining the marginal error on

P
m⌫, and Fig. 12 reveals

a preference for high
P

m⌫ from this part of the spectrum. (We
have checked that removing the first bandpower from the lensing
likelihood, which is the least stable to data cuts and the details
of foreground cleaning as discussed in Sect. 7, has little impact
on our neutrino mass constraints.) We also note that a similar
trend for lower lensing power than the ⇤CDM expectation on
intermediate scales is seen in the ACT and SPT measurements
(Fig. 11). Adding the high-L information to the likelihood weak-
ens the constraint further, pushing the 95% limit to 1.07 eV. This
is consistent with our small-scale measurement having a signifi-
cantly lower amplitude. At this stage it is unclear what to make
of this mild tension between neutrino mass constraints from the
4-point function and those from the 2-point, and we caution
over-interpreting the results. We expect to be able to say more
on this issue with the further data, including polarization, that
will be made available in future Planck data releases.

6.2. Correlation with the ISW Effect

As CMB photons travel to us from the last scattering surface,
the gravitational potentials that they traverse may undergo a non-
negligible amount of evolution. This produces a net redshift or
blueshift of the photons concerned, as they fall into and then
escape from the evolving potentials. The overall result is a con-
tribution to the CMB temperature anisotropy known as the late-
time integrated Sachs-Wolfe (ISW) e↵ect, or the Rees-Sciama
(R-S) e↵ect depending on whether the evolution of the poten-
tials concerned is in the linear (ISW) or non-linear (R-S) regime
of structure formation (Sachs & Wolfe 1967; Rees & Sciama
1968). In the epoch of dark energy domination, which occurs af-
ter z ⇠ 0.5 for the concordance ⇤CDM cosmology, large-scale
potentials tend to decay over time as space expands, resulting
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Fig. 13. Marginalised constraints on the optical depth in ⇤CDM
models from the Planck temperature power spectrum (Planck;
solid black), and additionally including the lensing likeli-
hood (Planck+lensing; dashed red) or WMAP polarization
(Planck+WP; dashed-dotted blue). We use a prior ⌧ > 0.01 in
all cases.

rameters by a small amount and the median values shift by rather
less than 1� for all parameters. The largest gain is for ⌦ch2 (and
H0) where the errors improve by 20%. Adding further large- and
small-scale data produces no significant reduction in error bars,
as expected. For most parameters, the medians also change very
little except for ⌦ch2 which is dragged low by a further 0.3� on
adding the small-scale lensing information. (The shift in H0 is
due to the anti-correlation between H0 and ⌦ch2 caused by the
acoustic-scale degeneracy in the temperature power spectrum;
see Planck Collaboration XVI 2013.) These findings are consis-
tent with the power spectrum amplitude measurements discussed
in Sect. 6: we can lower the lensing power by reducing the matter
density, and this is favoured by the lower amplitudes measured
from the small-scale lensing power spectrum.

The tension between the small-scale power and the power
over the L = 40–400 range included in our fiducial likelihood,
coupled with our lower confidence in the accuracy of the bias
removal on small scales, is the reason that we do not include
these smaller scales at this stage in the Planck lensing likelihood.

6.1.3. Spatial curvature and dark energy

Inflation models with su�cient number of e-folds of expansion
naturally predict that the Universe should be very close to be-
ing spatially flat. Constraining any departures from flatness is
therefore a critical test of inflationary cosmology. However, the
primary CMB anisotropies alone su↵er from a geometric degen-
eracy, whereby models with identical primordial power spec-
tra, physical matter densities and angular-diameter distance to
last-scattering have almost identical power spectra (Efstathiou
& Bond 1999). The degeneracy is partly broken by lens-
ing (Stompor & Efstathiou 1999), with small additional con-
tributions from the late-ISW e↵ect (on large scales) and by
projection e↵ects in curved models (Howlett et al. 2012). In
⇤CDM models with curvature, the geometric degeneracy is two-
dimensional, involving the curvature and dark energy density,
and this limits the precision with which either can be determined
from the CMB alone.
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Fig. 14. Marginalized posteriors for the six-parameter ⇤CDM
model, shown as box plots, for Planck+WP+highL with various
lensing likelihoods. The red and blue lines are the median and
mean, respectively. The box and bar correspond to 68% and 95%
of the probability density, both centered on the median. The left-
most column is without the lensing likelihood and the median
of these constraints is shown by the grey line. The remaining
columns show the e↵ect of adding in the fiducial lensing like-
lihood (second column), and further adding a low-L bin (third
column), high-L bins (fourth column) or both (final column).

With the high-significance detection of lensing by Planck
in the temperature power spectrum (Planck Collaboration XVI
2013), and via the lens reconstruction reported here, the geomet-
ric degeneracy is partially broken, as shown in Fig. 15. The long
tail of closed models with low dark energy density (and expan-
sion rate at low redshift) allowed by the geometric degeneracy
have too much lensing power to be consistent with Planck’s mea-
sured temperature and lensing power spectra (see also Fig. 12).
We find marginalised constraints on the curvature parameter of

⌦K = �0.042+0.027
�0.018 (68%; Planck+WP+highL)

⌦K = �0.0096+0.010
�0.0082 (68%; Planck+lensing+WP+highL),

so that lensing reconstruction reduces the uncertainty on ⌦K by
more than a factor of two over limits driven by the smoothing
e↵ect on the acoustic peaks of CTT

` . This improvement is consis-
tent with the spread in C��L in curved models constrained by the
temperature power spectrum, relative to the errors on the recon-
struction power spectrum; see Fig. 12. Note that the mean value
of ⌦K also moves towards zero with the inclusion of the C��L
measurements. Adding the high-L and low-L data to the likeli-
hood brings no more than a percent-level improvement on the
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Fig. 12. Upper left: Planck measurements of the lensing power spectrum compared to the ⇤CDM mean prediction and 68% con-
fidence interval (dashed lines) for models fit to Planck+WP+highL (see text). The eight bandpowers are those used in the Planck
lensing likelihood; they are renormalized, along with their errors, to account for the small di↵erences between the lensed CTT

` in
the best-fit model and the fiducial model used throughout this paper. The error bars are the ±1� errors from the diagonal of the
covariance matrix. The colour coding shows how C��L varies with the optical depth ⌧ across samples from the ⇤CDM posterior
distribution. Upper right: as upper-left but using only the temperature power spectrum from Planck. Lower left: as upper-left panel
but in models with spatial curvature. The colour coding is for ⌦K . Lower right: as upper-left but in models with three massive
neutrinos (of equal mass). The colour coding is for the summed neutrino mass

P
m⌫.

constrained only by the Planck temperature power spectrum is
illustrated in the upper-right panel of Fig. 12, and suggests that
the direct C��L measurements may be able to improve constraints
on ⌧ further. This is indeed the case, as shown in Fig. 13 where
we compare the posterior distribution of ⌧ for the Planck temper-
ature likelihood alone with that including the lensing likelihood.
We find
⌧ = 0.097 ± 0.038 (68%; Planck)
⌧ = 0.089 ± 0.032 (68%; Planck+lensing).
At 95% confidence, we can place a lower limit on the optical
depth of 0.04 (Planck+lensing). This very close to the optical
depth for instantaneous reionization at z = 6, providing further
support for reionization being an extended process.

The ⌧ constraints via the lensing route are consistent with,
though weaker, than those from WMAP polarization. However,
since the latter measurement requires very aggressive cleaning
of Galactic emission (see e.g. Fig. 17 of Page et al. 2007), the
lensing constraints are an important cross-check.

6.1.2. Effect of the large and small scales on the
six-parameter ⇤CDM model

Before exploring the further parameters that can be constrained
with the lensing likelihood, we test the e↵ect on the ⇤CDM
model of adding the large-scale (10  L  40) and small-scale
(400  L  2048) lensing data to our likelihood. Adding addi-
tional data will produce random shifts in the posterior distribu-
tions of parameters, but these should be small here since the mul-
tipole range 40  L  400 is designed to capture over 90% of the
signal-to-noise (on an amplitude measurement). If the additional
data is expected to have little statistical power, i.e., the error bars
on parameters do not change greatly, but its addition produces
large shifts in the posteriors, this would be symptomatic either
of internal tensions between the data or an incorrect model.

In Fig. 14, we compare the posterior distributions of the
⇤CDM parameters for Planck+WP+highL alone with those af-
ter combining with various lensing likelihoods. Adding our fidu-
cial lensing likelihood (second column) reduces the errors on pa-
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Mild tension : constraint weaker than expected!

Temperature power spectra: more lensing = smaller mass
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Planck Collaboration: Gravitational lensing by large-scale structures with Planck
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Fig. 12. Upper left: Planck measurements of the lensing power spectrum compared to the ⇤CDM mean prediction and 68% con-
fidence interval (dashed lines) for models fit to Planck+WP+highL (see text). The eight bandpowers are those used in the Planck
lensing likelihood; they are renormalized, along with their errors, to account for the small di↵erences between the lensed CTT

` in
the best-fit model and the fiducial model used throughout this paper. The error bars are the ±1� errors from the diagonal of the
covariance matrix. The colour coding shows how C��L varies with the optical depth ⌧ across samples from the ⇤CDM posterior
distribution. Upper right: as upper-left but using only the temperature power spectrum from Planck. Lower left: as upper-left panel
but in models with spatial curvature. The colour coding is for ⌦K . Lower right: as upper-left but in models with three massive
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P
m⌫.

constrained only by the Planck temperature power spectrum is
illustrated in the upper-right panel of Fig. 12, and suggests that
the direct C��L measurements may be able to improve constraints
on ⌧ further. This is indeed the case, as shown in Fig. 13 where
we compare the posterior distribution of ⌧ for the Planck temper-
ature likelihood alone with that including the lensing likelihood.
We find
⌧ = 0.097 ± 0.038 (68%; Planck)
⌧ = 0.089 ± 0.032 (68%; Planck+lensing).
At 95% confidence, we can place a lower limit on the optical
depth of 0.04 (Planck+lensing). This very close to the optical
depth for instantaneous reionization at z = 6, providing further
support for reionization being an extended process.

The ⌧ constraints via the lensing route are consistent with,
though weaker, than those from WMAP polarization. However,
since the latter measurement requires very aggressive cleaning
of Galactic emission (see e.g. Fig. 17 of Page et al. 2007), the
lensing constraints are an important cross-check.

6.1.2. Effect of the large and small scales on the
six-parameter ⇤CDM model

Before exploring the further parameters that can be constrained
with the lensing likelihood, we test the e↵ect on the ⇤CDM
model of adding the large-scale (10  L  40) and small-scale
(400  L  2048) lensing data to our likelihood. Adding addi-
tional data will produce random shifts in the posterior distribu-
tions of parameters, but these should be small here since the mul-
tipole range 40  L  400 is designed to capture over 90% of the
signal-to-noise (on an amplitude measurement). If the additional
data is expected to have little statistical power, i.e., the error bars
on parameters do not change greatly, but its addition produces
large shifts in the posteriors, this would be symptomatic either
of internal tensions between the data or an incorrect model.

In Fig. 14, we compare the posterior distributions of the
⇤CDM parameters for Planck+WP+highL alone with those af-
ter combining with various lensing likelihoods. Adding our fidu-
cial lensing likelihood (second column) reduces the errors on pa-
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CMB lensing landscape in the coming years
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2013
2014

Present (not fully public)

soon, data is here
2016?

+ ACT, ACTpol, Advanced ACT: similar timescale and properties as SPT surveys
+ Possible post-planck CMB mission ESA-M4, USA CMB-S4

SPT noise levels kindly provided by G. 
Simard & G. Holder (McGill Univ.)



Lensing potential
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Planck
(all-sky more noise)

SPT
(2500 sq deg less noise)

SPT from Holder talk 2013
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Weak lensing is sensitive to all the matter 
present between the source and the observer

If we have access to the source 
redshift, we can reconstruct mass at 
different epoch: tomography

This will be possible with 
DES, Euclid and LSST

Can only reconstruct the projected mass.
But is sensitive to higher redshift than 
photometric surveys
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with z0 = zm/
p
2, zm = 0.8, ↵ = 1.5 and � = 2. For the purpose of this note, we consider

only one single bin, and we consider a galaxy bias equal to 1.

2.1 Noise

The noise associated with the lensing potential reconstruction has been discussed
in Sect. 1.1. Its expression is not trivial, and corresponds to a re-summation of the
disconnected part of the CMB trispectrum. However for the galaxy density and the
cosmic shear, the expressions of the noise terms associated with the galaxy density and
cosmic shear are much simpler. Following JB10, we consider
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We take the values given in JB10, namely Ngal = 10 arcmin

�2 and �✏ = 0.23.

2.2 Figures

Figures 2 and 3 present the auto and cross spectra for DES and Planck, and DES and
SPT. Naturally, the panels presenting the gg, ss and sg correlations are identical in the
two figures. What is clear from these plots is that there is more signal in the correlations
with SPT than with Planck. That is expected since the instrument characteristics of
SPT are better than those of Planck. In the SPT lensing paper (van Engelen et al. 2012),
the first bin starts at ` = 100, so it might be optimistic to consider the two first bins.
We don’t know what will be the `min for the 2500 sq. deg. SPT lensing results. For the
correlation on the full DES coverage, using Planck will enable a correlation down to
`min ⇠ 10.

Observing the projected matter power spectrum on the sky,
through various tracers:
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Combining these probes will improve the constraints on parameters by breaking 
degeneracies or helping control of nuisance parameters/systematics.
This leads to Éric’s talk on cross-correlations

galaxy bias
Source 
distribution
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