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Pulsars
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Pulsars are rapidly rotating highly magnetized 
neutron stars, born in supernova explosions of 

massive stars.	

!

Masses: 1.2 - 2 M⨀, Radii ~ 13 km.	


!
Emission (radio, optical, X-ray, gamma rays…) 

produced in beams around the star. 	

!

Pulsars are cosmic lighthouses! 
!

Extreme objects: 
• Luminosities up to 104 L⨀	

• Surface temperature ~ 106 K	

• Surface gravity ~ 1011 Earth’s	

• Surface magnetic fields: 108 - 1015 G



Pulsars are exotic objects

Masses: 1.2 - 2 M⨀	

!

Radii ~ 10 km	

!

Central densities several times 
higher than atomic nuclei	


!
Rotational frequencies up to 716 Hz

Luminosities up to 104 L⨀	

!

Surface temperature ~ 106 K	

!

Surface gravity ~ 1011 Earth’s	

!

Surface magnetic fields: 108 - 1015 G

Also incredibly precise clocks: 	

P = 5.757451924362137(2) ms for J0437-4715 (Verbiest et al. 2008)	


!
Tools to do fundamental physics!



L. Guillemot, 11/09/14

The pulsar population

Kinetic energy loss rate:	

!
!
!

⇒ Pulsars spin down.	


!
Most MSPs are in binary 

systems.	

!

~2300 known today 
(mostly from radio 

observations)	

!

Fermi LAT: 147 pulsars (85 
normal, 62 MSPs)
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!

Massive stars (> 5 M⨀) explode as supernovae.	


Elements heavier than iron dispersed into space.	


➡ Supernova remnants, pulsars and their nebulae.	




Millisecond pulsar recycling

1 & 2: Starting with a binary system, a pulsar is formed after the supernova 
explosion of the more massive star.	


!
3: After evolution of the secondary star and Roche lobe overflow, 
transfer of matter and angular momentum to the pulsar (spin up!).	


!
4: An MSP is formed, with a white dwarf companion.
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Sky distribution
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A large variety of applications

• Plasma physics and electrodynamics (e.g., eclipses, 
magnetospheres)	


• Astrophysics (stellar evolution, binary evolution)	

• Gravity tests in the strong field regime	

• Gravitational wave searches	

• Solid state physics (NS equations of state)	

• Magnetic field in the Galaxy and interstellar medium	

• Astrometry, planetary ephemerides	


!
Non-exhaustive list…	


!
Numerous applications in a wide range of 

astrophysics and fundamental physics!	
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Figure 4. Phase-averaged gamma-ray spectrum of PSR B1821−24 with the
off-peak source included in the model. The black line shows the best-fit model
from the likelihood fit over the full energy range; dashed lines show the 1σ
confidence region. The pulsar was assumed to have a power-law spectrum in
each energy band and required to be found with a TS of at least 9, or else a 95%
confidence-level upper limit was calculated.

range φ ∈ [0.36, 0.56], where the quoted ranges correspond to
the peak positions plus and minus twice the best-fit widths.

Romani & Johnston (2001) and Knight et al. (2006) reported
that the first X-ray peak was consistent with the phase at which
giant pulses were observed in the radio (∼0.02 in phase after the
first radio peak). While the phases of the first X-ray and gamma-
ray peaks are not consistent with 0.02 within uncertainties, we
note that 0.02 is only an estimate and thus confirm that the first
X-ray peak and now the first gamma-ray peak are consistent with
the phase of giant pulses. Knight et al. (2006) also observed a
single giant pulse occurring 0.55 in phase after the bulk of the
giant pulses, which they contend represents a second population
of giant pulses from PSR B1821−24 based on the fact that this
pulse had 21 times the mean pulse energy and that Romani
& Johnston (2001) detected pulses at a similar phase. With
our phase convention, this corresponds to phase 0.57, which is
consistent with the phase of the second X-ray peak.

Given the very large spin-down luminosity of PSR
B1821−24, Venter (2008) proposed this MSP as a potential very
high energy target for H.E.S.S. (see also Frackowiak & Rudak
2005). The expected spectrum was very geometry dependent,
but some flux above 100 GeV would have been expected in
a screened polar cap model for an optimistic geometry. The
measured EC and the gamma-ray light-curve shape presented in
Figure 5 disfavor this model for PSR B1821−24.

5. DISCUSSION

5.1. Multi-wavelength Light Curves

The relative phasing of the multi-wavelength light-curve
components in Figure 5 presents a challenge to pulsar emission
models. Our preliminary attempts to explain the gamma-ray and
radio light curves of PSR B1821−24 using geometric models
yielded the following general conclusions.

It is extremely difficult, if at all possible, to obtain three radio
peaks of the correct shape and position in phase by invoking
only a single radio cone per magnetic pole (e.g., Story et al.
2007). If instead one attempts to model the first and third
radio peaks as originating from opposite magnetic poles, an
interpretation supported by the 0.35 GHz profile, the chosen
value of the observer angle (ζ ) must be within ∼4◦ of 90◦

Figure 5. Folded light curves of PSR B1821−24, from top to bottom:
!100 MeV, 3–16 keV, and 1.4 GHz. The light curves are shown over two
rotations for clarity; the solid (blue in the online version) lines over the second
rotation in the top two panels are the best-fit light-curve shapes. The dashed (red
in the online version) vertical line indicates the approximate phase from which
giant pulses have been observed. The dot-dashed (green in the online version)
vertical line indicates the center of P3 in the radio profiles.
(A color version of this figure is available in the online journal.)

with a magnetic inclination angle (χ ) between 40◦ (required so
that both P1 and P3 would be visible) and 60◦ (to provide the
correct radio peak multiplicity). This geometry results in the
correct radio phase separation but cannot produce the correct
gamma-ray peak positions (and shapes in some cases) when
using standard, geometric realizations of outer-magnetospheric
emission models (e.g., Cheng et al. 1986; Dyks & Rudak 2003).
Stated in a different way, one may find reasonable gamma-ray
profile fits (e.g., at χ= 40◦ and ζ = 85◦, although the peak
separation is somewhat small and we have to choose a different
fiducial phase), but then the radio peak multiplicity and/or peak
positions are not correct. There is therefore a tension between
the gamma-ray and radio profiles in terms of the most preferred
fit.

It is also possible to model the first two radio peaks using
a radio cone above a single pole. This interpretation would
be consistent with polarization measurements indicating high
linear and low circular polarization, as well as a nearly constant
position angle in these peaks (indicative of non-caustic, conal
emission; Backer & Sallmen 1997; Stairs et al. 1999). The
third peak may arise from the opposite pole. However, this
is problematic when using the standard prescription for radio
emission height (e.g., Kijak & Gil 2003; Story et al. 2007). The
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Figure 2. Timing residuals as a function of time for the model given in Table 1
(upper panel), and after whitening of the residuals using eight harmonically
related sinusoids (lower panel). The arrow (red in the online version) indicates
the epoch of the glitch of PSR B1821−24, vertical lines (green in the online
version) denote the epochs of the X-ray observations considered in this article,
and the dashed horizontal line (blue in the online version) shows the Fermi LAT
observation interval described in Section 3.3.
(A color version of this figure is available in the online journal.)

of PSR B1821−24. The latest proper-motion measurement
for M28 (Casetti-Dinescu et al. 2013) agrees well with our
values, with a total difference of 21 km s−1 at a distance
of 5.1 kpc. This difference is less than the estimated escape
velocity of 63.8 km s−1 (Gnedin et al. 2002), suggesting that
PSR B1821−24 is, in fact, bound to the cluster.

3.2. X-ray Data

The RXTE observations we report on here were performed
by the Proportional Counter Array (PCA, which consists
of five individual proportional counter units, PCUs) from
1996 September 16 (MJD 50,342.261) to 2007 April 26
(MJD 54,216.252), accumulating a total integration time of
∼469 ks. These observations employed anywhere from one to
five PCUs in various combinations during each observation with
data recorded using GoodXenon or GoodXenonwithPropane
mode. The PCA data were analyzed using the HEASoft version
6.12 data analysis suite. We employed a variety of bit masks25

to select events from the PCUs in the 3–16 keV range that were
on during each individual observation. In addition, Ray et al.
(2008) reported that including events from the first and second
anode layer improved the signal-to-noise ratio of the pulsed
detection, and we followed that prescription here. We did not
apply a background correction.

The PCA is not an imaging instrument. Rather, it has a field
of view approximately represented by a Gaussian with FWHM
of 14′ (Jahoda et al. 2006). This means that other X-ray sources
known to be in M28 and that have significant flux above 3 keV
(e.g., Becker et al. 2003) will contribute to the total count rate
in each observation. Because the contribution from these addi-
tional sources will add incoherently to the pulsed signal from
PSR B1821−24 and we cannot know which events are from PSR
B1821−24, we do not attempt to account for these additional

25 http://heasarc.nasa.gov/docs/xte/recipes/cook_book.html

X-ray sources in our analysis or to estimate a resulting back-
ground level for the pulsed analysis in Section 4.2.

The events that satisfy our selection criteria were barycen-
tered with the faxbary tool using the DE405 solar system
ephemeris and including the RXTE fine clock corrections, yield-
ing an individual event timing accuracy of ∼6 µs (Rots et al.
1998; Jahoda et al. 2006). The proper motion of the pulsar was
incorporated into the position used to barycenter the data at
each epoch. Pulse phases were calculated utilizing the Photon
Events plugin26 for Tempo2 and the radio ephemeris described
in Section 3.1.

3.3. LAT DATA: P7REP

Pass 7 LAT data have been reprocessed27 using updated
calibration constants for the detector subsystems, most im-
portantly for the calorimeter (CAL) to more accurately de-
scribe the position-dependent response of each scintillator crys-
tal and the slight decrease in scintillation light yield with time
(∼1% yr−1) from radiation exposure on orbit.

This reprocessing affected the LAT data (P7REP, hereafter)
in several ways. First, the point-spread function (PSF) is
significantly improved above a few GeV, with a reduction in the
68% containment radius of 30% (40%) for events converting
in the front (back) of the tracker (Bregeon et al. 2013). At
these energies, the improved calibration constants result in
more accurately calculated centroids of energy deposition in
the CAL to constrain the incident event direction. Second, the
significance of detection and precision of measured photon
flux is increased slightly for most sources—more strongly for
sources with hard spectra than for those with cutoffs at a few
GeV, like pulsars. Third, spectral features such as cutoff energies
are shifted upward slightly in energy (∼few %) by the change
in energy scale.

We selected events from the P7REP data corresponding to the
SOURCE class recorded between 2008 August 4 and 2012 March
31 with reconstructed directions within 11.◦5 of the pulsar radio
position, allowing us to construct a 16◦ × 16◦ square region
with no blank corners for a binned likelihood analysis (see
Section 4.1); energies from 0.1 to 100 GeV, the lower limit
that is recommended for analysis of P7REP data and the upper
limit that adequately covers the range of known pulsar cutoff
energies; and zenith angles !100◦, to reduce contamination of
gamma rays from the limb of the Earth. Good time intervals
were then selected corresponding to when the instrument was
in nominal science operations mode, the rocking angle of the
spacecraft did not exceed 52◦, the limb of the Earth did not
infringe upon the region of interest, and the data were flagged
as good. All LAT analyses were performed using the Fermi
Science Tools v9r27p1.

The recommended instrument response functions (IRFs,
which include the PSF, effective area, and energy dispersion) for
analyzing P7REP data are P7REP_V15. These IRFs are derived
from detailed simulations of the instrument (Ackermann et al.
2012) with some modifications based on on-orbit performance
checks, which are detailed below.

The accuracy with which incoming event directions are
reconstructed is dependent on the energy (E), interaction point

26 Written by Anne Archibald, http://www.physics.mcgill.ca/∼aarchiba/
photons_plug.html.
27 For more information about the updated calibrations and P7REP data, see
Bregeon et al. (2013) and http://fermi.gsfc.nasa.gov/ssc/data/analysis/
documentation/Pass7REP_usage.html.
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Radio, X-ray, and gamma-ray observations of 
B1821-24A (Johnson et al. ApJ 2013)

Nançay timing
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A pulsar timing experiment

9

(Courtesy Duncan Lorimer)

4 Principles and Applications of Pulsar Timing

Pulsars are excellent celestial clocks. The period of the first pulsar [141] was found to be stable to
one part in 107 over a few months. Following the discovery of the millisecond pulsar B1937+21 [18]
it was demonstrated that its period could be measured to one part in 1013 or better [94]. This un-
rivaled stability leads to a host of applications including uses as time keepers, probes of relativistic
gravity and natural gravitational wave detectors.

4.1 Observing basics

Each pulsar is typically observed at least once or twice per month over the course of a year
to establish its basic properties. Figure 20 summarises the essential steps involved in a “time-of-
arrival” (TOA) measurement. Pulses from the neutron star traverse the interstellar medium before
being received at the radio telescope where they are dedispersed and added to form a mean pulse
profile.

Receiver

Mean Pulse Profile

TOA
Reference clock

Neutron star
Radio beam

Rotation axis

Telescope

De-dispersion &
On-line folding

Figure 20: Schematic showing the main stages involved in pulsar timing observations.

During the observation, the data regularly receive a time stamp, usually based on a caesium
time standard or hydrogen maser at the observatory plus a signal from the Global Positioning
System of satellites (GPS; see [93]). The TOA is defined as the arrival time of some fiducial point
on the integrated profile with respect to either the start or the midpoint of the observation. Since
the profile has a stable form at any given observing frequency (see Section 2.3), the TOA can
be accurately determined by cross-correlation of the observed profile with a high S/N “template”
profile obtained from the addition of many observations at the particular observing frequency.

Successful pulsar timing requires optimal TOA precision which largely depends on the signal-
to-noise ratio (S/N) of the pulse profile. Since the TOA uncertainty ϵTOA is roughly the pulse
width divided by the S/N, using Equation (3) we may write the fractional error as

ϵTOA

P
≃

(

Spsr

mJy

)−1 (

Trec + Tsky

K

) (

G

K Jy−1

)−1 (

∆ν

MHz

)−1/2 (

tint

s

)−1/2 (

W

P

)3/2

. (8)

Here, Spsr is the flux density of the pulsar, Trec and Tsky are the receiver and sky noise temperatures,
G is the antenna gain, ∆ν is the observing bandwidth, tint is the integration time, W is the pulse
width and P is the pulse period (we assume W ≪ P ). Optimal results are thus obtained for
observations of short period pulsars with large flux densities and small duty cycles (i.e. small
W/P ) using large telescopes with low-noise receivers and large observing bandwidths.

One of the main problems of employing large bandwidths is pulse dispersion. As discussed
in Section 2.4, pulses emitted at lower radio frequencies travel slower and arrive later than those

33

In a pulsar timing experiment:	

• a pulsar is observed a few times a month (typically) with a dedicated 

instrumentation.	

• pulses are « dedispersed » to correct for the interstellar dispersion, and added 

to form a mean pulse profile. 	

• data receive a time stamp, and the mean profiles are compared to a « template » 

profile to extract a « time of arrival » (TOA). 
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The Nançay Radio Telescope
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~94-m equivalent meridian telescope, located in Sologne, 180 km South of Paris.	

Minimum declination: -39°
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Pulsar observations at Nançay
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First observations in 1986. 	


1988-2004: dispersion with a swept local oscillator.	


2000: construction of a coherent dedispersion 
machine.	


2011 onwards: NUPPI backend.	


!
NUPPI: 512 MHz of bandwidth, realtime coherent 

dedispersion of the data (2 computers with 4 
GPUs, ~4 Gb/s). 	


Observations typically made a 1.4 and 2 GHz.	


!
Accuracy on individual TOAs can be as good as 30 

ns for the best pulsars!	


!
Pulsar observations make ~50% of the total 

telescope time (pulsar timing and searching). More 
than 200 pulsars are observed at Nançay.
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Interstellar dispersion
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The group velocity of radio pulses 
propagating through the ionized 

component of the interstellar medium is 
frequency dependent. 	


!
Pulses emitted at lower radio frequencies 
arrive later than those emitted at higher 

radio frequencies!	

!

It is therefore necessary to « dedisperse » 
the signal received from pulsars. 	


Dispersion delay:	

!
!

With:

�t = k
DM

f2

k =
e2

2⇡mec
DM =

Z
nedl
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Turbulence in the ISM
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90 Effects of the interstellar medium

presented below is sufficient to plan and understand observations of pul-
sars.

4.2.1 Interstellar scattering basics

For simplicity, let us assume first that the inhomogeneities distorting the
wave consist of variations in the electron density ne with a single typical
size, a, as shown in Figure 4.2. These distortions perturb the phases

θ 0

θd

PSRV

PSR

radiation
coherent
spatially

distorted
wavefronts

diffraction 
pattern

EarthV
 bulkV

turbulent
plasma

(ISM)

randomly

Fig. 4.2. Sketch showing inhomogeneities in the ISM that result in the ob-
served scattering and scintillation effects discussed in this chapter. The ini-
tially spatially coherent electromagnetic radiation from the pulsar is distorted
by a thin screen of irregularities of various scales. The resulting randomly
distorted waves are bent by an angle θ0 forming a scatter-broadened image of
radius θd (see text). Scintillation is produced as the randomly distorted wave-
fronts form an interference pattern at the location of a distant observer. Figure
adapted from an original version (Cordes 2002) provided by Jim Cordes.

of a propagating wave due to changes in the refractive index, ∆µ. After
propagation through an inhomogeneity of length a, a wave of frequency
f has experienced a phase shift δΦ = ∆k a. With k = (2π/c) µ f , using
Equations (4.1) and (4.2) we obtain

∆k =
2e2

c me f
∆ne. (4.15)

The corresponding phase shift is then

δΦ = ∆k a ≈ 2e2

mec

a∆ne

f
. (4.16)

(Cordes 2002)

Inhomogeneities in the ISM perturb the phase of propagating waves, due to the 
changing refractive index. 	


!
Has various consequences, such as scintillation in time & frequency.
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Example radio observation: integrated profile
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Frequency vs phase diagram
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Importance of large bandwidth!
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Time vs phase diagram
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Phase drift during the observation: the data need to be refolded with an 
improved timing model.
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J2017+0603 NUPPI observations
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High S/N reference profile
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Science from long term timing of MSPs
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Earth and satellite motion around the SSB: 
α, δ 

Pulsar rotation and spin-down: 
f0, f1, … 

Binary motion? 
Pb, a, e, T0, … 

�(t) = �0 +
X

n�1

fn�1

n!
(tpsr � T0)

n

Pulse « Times of Arrival » (ToAs) are fit to 
a model accounting for the pulsar’s spin, 

motion, and binary orbit. 	

!

Superb precision for « millisecond » 
pulsars (MSPs)!	


!
Examples: 15 years of EPTA observations 

of J1012+5307 yielded:	

P = 0.005255749014115410(15) s	


(Lazaridis et al. 2009)	

Validity of GR: 1.0000(5), with 

J0737-3039A (Kramer et al. in prep)	

Mass and Jupiter and moons: 

9.547921(2)e-4 M⨀ (Champion et al. 2010)	


!
⇒ Simple and clean experiment! 
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In practice

20(Cour tesy David Champion)

Time of 
Arrival (TOA)

TOA	

Residual

Fold Fold 
Folded 	

profile

Timing	

Model
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Times of arrival
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 nuppi_55832_2017+0603_156215.calibP.DFTp 1264.00000000 55832.81576973428558830 1.01100 ncyobs!
 nuppi_55834_2017+0603_156273.calibP.DFTp 1264.00000000 55834.81394112309136091 2.11100 ncyobs!
 nuppi_55835_2017+0603_156296.calibP.DFTp 1264.00000000 55835.80199852991921006 1.57600 ncyobs!
 nuppi_55871_2017+0603_157333.calibP.DFTp 1264.00000000 55871.72078272672535348 0.99000 ncyobs!
 nuppi_55879_2017+0603_157592.calibP.DFTp 1484.00000000 55879.69390751315181021 2.59900 ncyobs!
 nuppi_55924_2017+0603_159196.calibP.DFTp 1484.00000000 55924.57044618721751661 1.26600 ncyobs!
 nuppi_55935_2017+0603_159562.calibP.DFTp 1484.00000000 55935.54016766197301891 3.98900 ncyobs!
 nuppi_55937_2017+0603_159625.calibP.DFTp 1484.00000000 55937.54432314176097663 1.51400 ncyobs!
 nuppi_55958_2017+0603_160288.calibP.DFTp 1484.00000000 55958.47477715766045492 0.97200 ncyobs!
 nuppi_55975_2017+0603_160846.calibP.DFTp 1484.00000000 55975.43178149237387942 1.26000 ncyobs!
 nuppi_56025_2017+0603_162681.calibP.DFTp 1484.00000000 56025.29341946745196879 2.96300 ncyobs!
 nuppi_56028_2017+0603_162782.calibP.DFTp 1484.00000000 56028.28672266420056047 0.82300 ncyobs!
 nuppi_56050_2017+0603_163580.calibP.DFTp 1484.00000000 56050.22366108771390358 2.12200 ncyobs!
 nuppi_56054_2017+0603_163725.calibP.DFTp 1484.00000000 56054.21570098695444173 0.48700 ncyobs!
 nuppi_56057_2017+0603_163818.calibP.DFTp 1484.00000000 56057.20447536734480209 1.02000 ncyobs!
 nuppi_56080_2017+0603_164615.calibP.DFTp 1484.00000000 56080.13966968803277169 2.70800 ncyobs

File name Frequency (MHz) TOA (MJD) Uncertainty (µs) Observatory
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Timing solution (« ephemeris »)

22

PSRJ           J2017+0603!
RAJ             20:17:22.7050850         1  0.00000716047636445762!
DECJ           +06:03:05.56876           1  0.00023005672580914071!
F0             345.27813114331743324     1  0.00000000000296857177!
F1             -9.5273152703430764566e-16 1  2.6422517641347411217e-19!
PEPOCH         56300!
POSEPOCH       56300!
DMEPOCH        56300!
DM             23.923510257527913688        0.00045437151488037349!
DM1            -0.00089367159351270407894    0.00068356978100947874!
PMRA           2.4448580272467790298     1  0.17127183658713390768!
PMDEC          0.5634060021627185809     1  0.38542399666539695069!
BINARY         T2!
PB             2.1984811698446565084     1  0.00000000034895587934!
A1             2.1929228990167317643     1  0.00000029831020903501!
TASC           55202.532346352915109     1  0.00000018923531075229!
EPS1           1.2688228293799280817e-06 1  0.00000026237102674185!
EPS2           -6.69731487439931042e-06  1  0.00000022544146418619!
START          55832.814769734286529!
FINISH         56847.046762698686507!
TZRMJD         56336.444542103491653!
TZRFRQ         1484!
TZRSITE        ncyobs!
TRES           0.936!
EPHVER         5!
CLK            TT(BIPM2011)!
MODE 1!
EPHEM          DE421!
NITS           1!
NTOA           54!
CHI2R          0.9979 42

Equatorial coordinates

Rotational frequency and derivative

Dispersion measure and derivative

Proper motion

Binary parameters

Other useful parameters
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Timing residuals
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(a) good timing model; (b) overestimated period derivative; 	

(c) wrong coordinates; (d) wrong proper motion parameters.

Residuals: differences between measured and predicted TOAs.
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Nançay timing residuals for J1909-3744
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MSP J1909-3744 (P ~ 2.95 ms, Pb ~ 1.53 d) observed at the Nançay Radio Telescope, 
BON backend data. 	


!
Wrms < 100 ns!



(Cour tesy Michael Kramer)
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Tests of theories of gravity

J0737-3039: only known double pulsar 
system with both pulsars detected in radio.	


PA ~ 22.7 ms, PB ~ 2.77 s.	

Orbital period Porb ~ 147 min	


Orbital size ~ 2.93 lt-s	

!

6 post-Keplerian parameters measured! 	

Most precise tests of GR in the strong 

field regime: ~ 0.05%.	

!

System seen edge-on (i ~ 89°) + massive 
companion (pulsar B): strong Shapiro delay 
signature in the radio timing of pulsar A. 	

⇒ very accurate mass measurements: 	


mA = 1.3381(7) M⨀, mB = 1.2489(7) M⨀.

26

the semimajor axis of B’s orbit and i is the
orbital inclination angle—we also adopted A’s
Keplerian parameters (with 180- added to wA)
and kept these fixed. We also adopted the PK
parameter ẇ (the rate of periastron advance)
from the A fit because logically this must be
identical for the two pulsars; this equality
therefore does not implicitly make assumptions
about the validity of any particular theory of
gravity (see below). The same applies for the
orbital decay parameter Ṗb. In contrast, the PK
parameters g (the gravitational redshift and time
dilation parameter) and s and r (the Shapiro-
delay parameters) are asymmetric in the masses,
and their values and interpretations differ for A
and B. In practical terms, the relatively low
timing precision for B does not require the
inclusion of g, s, r, or Ṗb in the timing model.
We can, however, independently measure ẇwB,
obtaining a value of 16.96- T 0.05- yearj1,

consistent with the more accurately determined
value for A.

Because the overall precision of our tests of
GR is currently limited by our ability to measure
xB and hence the mass ratio R K mA/mB 0 xB/xA
(see below), we adopted the following strategy to
obtain the best possible accuracy for this param-
eter. We used the whole TOA data set for B in
order to measure B’s spin parameters P and Ṗ,
given in Table 1. These parameters were then kept
fixed for a separate analysis of the concentrated
5-day GBT observing sessions at 820 MHz. On
the time scale of the long-term profile evolution
of B, each 5-day session represents a single-
epoch experiment and hence requires only a
single set of profile templates. The value of xB
obtained from a fit of this parameter only to
the two 5-day sessions is presented in Table 1.

Because of the possible presence of unmod-
eled intrinsic pulsar timing noise and because

not all TOA uncertainties are well understood,
we adopt the common and conservative pulsar-
timing practice of reporting twice the parameter
uncertainties given by tempo as estimates of
the 1s uncertainties. Although we believe that
our real measurement uncertainties are actu-
ally somewhat smaller than quoted, this prac-
tice facilitates comparison with previous tests
of GR by pulsar observation. The timing model
also includes timing offsets between the data
sets for the different instruments represented by
the entries in table S1. The final weighted root
mean square post-fit residual is 54.2 ms. In
addition to the spin and astrometric parameters,
the Keplerian parameters of A’s orbit, and five
PK parameters, we also quote a tentative de-
tection of a timing annual parallax that is con-
sistent with the dispersion-derived distance.
Further details are given in (16).

Tests of general relativity. Previous obser-
vations of PSR J0737-3039A/B (8, 9) resulted
in the measurement of R and four PK param-
eters: ẇ , g, r, and s. Relative to these earlier
results, the measurement precision for these
parameters from PSR J0737-3039A/B has in-
creased by up to two orders of magnitude. Also,
we have now measured the orbital decay Ṗb. Its
value, measured at the 1.4% level after only 2.5
years of timing, corresponds to a shrinkage of
the pulsars’ separation at a rate of 7 mm per day.
Therefore, we have measured five PK parame-
ters for the system in total. Together with the
mass ratio R, we have six different relationships
that connect the two unknown masses for A and
B with the observations. Solving for the two
masses using R and one PK parameter, we can
then use each further PK parameter to compare
its observed value with that predicted by GR for
the given two masses, providing four indepen-
dent tests of GR. Equivalently, one can display
these tests elegantly in a ‘‘mass-mass’’ diagram
(Fig. 1). Measurement of the PK parameters
gives curves on this diagram that are, in general,
different for different theories of gravity but
should intersect in a single point (i.e., at a pair
of mass values) if the theory is valid (12).

As shown in Fig. 1, we find that all mea-
sured constraints are consistent with GR. The
most precisely measured PK parameter current-
ly available is the precession of the longitude of
periastron, ẇ . We can combine this with the
theory-independent mass ratio R to derive the
masses given by the intersection region of their
curves: mA 0 1.3381 T 0.0007 MR and mB 0
1.2489 T 0.0007 MR , where MR is the mass of
the Sun (20). Table 2 lists the resulting four
independent tests that are currently available.
All of them rely on comparison of our mea-
sured values of s, r, g, and Ṗb with predicted
values based on the masses defined by the
intersection of the allowed regions for ẇw and R
in the mA-mB plane. The calculation of the pre-
dicted values is somewhat complicated by the
fact that the orbit is nearly edge-on to the line
of sight, so that the formal intersection region

Fig. 1. Graphical summary of tests of GR parameters. Constraints on the masses of the two stars (A and
B) in the PSR J0737-3039A/B binary system are shown; the inset is an expanded view of the region of
principal interest. Shaded regions are forbidden by the individual mass functions of A and B because sin
i must be e1. Other constraining parameters are shown as pairs of lines, where the separation of the
lines indicates the measurement uncertainty. For the diagonal pair of lines labeled as R, representing
the mass ratio derived from the measured semimajor axes of the A and B orbits, the measurement
precision is so good that the line separation becomes apparent only in the inset. The other constraints
shown are based on the measured PK parameters interpreted within the framework of general relativity.
The PK parameter ẇw describes the relativistic precession of the orbit, g combines gravitational redshift
and time dilation, and ṖPb represents the measured decrease in orbital period due to the emission of
gravitational waves. The two PK parameters s and r reflect the observed Shapiro delay, describing a
delay that is added to the pulse arrival times when propagating through the curved space-time near the
companion. The intersection of all line pairs is consistent with a single point that corresponds to the
masses of A and B. The current uncertainties in the observed parameters determine the size of this
intersection area, which is marked in blue and reflects the achieved precision of this test of GR and the
mass determination for A and B.
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actually includes parts of the plane disallowed
by the Keplerian mass functions of both pulsars
(see Fig. 1). To derive legitimate predictions for
the various parameters, we used the following
Monte Carlo method. A pair of trial values for
ẇ and xB (and hence R and the B mass func-
tion) is selected from Gaussian distributions
based on the measured central values and un-
certainties. (The uncertainty on xA is very small
and is neglected in this procedure.) This pair of
trial values is used to derive trial masses mA

and mB, using the GR equation ẇ 0 3(Pb/2p)j5/3

(TRM)
2/3 (1j e2)j1, where e is the orbital eccen-

tricity and M 0 mA þ mB and TR K GMR/c
3 0

4.925490947 ms, and the mass-ratio equation
mA/mB 0 xB/xA. If this trial mass pair falls in

either of the two disallowed regions (based on
the trial mass function for B), it is discarded.
This procedure allows for the substantial uncer-
tainty in the B mass function. Allowed mass
pairs are then used to compute the other PK
parameters, assuming GR. This procedure is
repeated until large numbers of successful trials
have accumulated. Histograms of the PK pre-
dictions are used to compute the expectation
value and 68% confidence ranges for each of
the parameters. These are the values given in
Table 2.

The Shapiro delay shape illustrated in Fig. 2
gives the most precise test, with sobserved/spredicted 0
0.99987 T 0.00050 (21). This is by far the best
available test of GR in the strong-field limit,

having a higher precision than the test based on
the observed orbit decay in the PSR B1913þ16
system with a 30-year data span (22). As for the
PSR B1534þ12 system (6), the PSR J0737-
3039A/B Shapiro-delay test is complementary
to that of B1913þ16 because it is not based on
predictions relating to emission of gravitational
radiation from the system (23). Most important,
the four tests of GR presented here are qual-
itatively different from all previous tests be-
cause they include one constraint (R) that is
independent of the assumed theory of gravity at
the 1PN order. As a result, for any theory of
gravity, the intersection point is expected to lie
on the mass ratio line in Fig. 1. GR also passes
this additional constraint.

In estimating the final uncertainty of xB and
hence of R, we have considered that geodetic
precession will lead to changes to the system
geometry and hence changes to the aberration of
the rotating pulsar beam. The effects of aber-
ration on pulsar timing are usually not separately
measurable but are absorbed into a redefinition
of the Keplerian parameters. As a result, the ob-
served projected sizes of the semimajor axes,
xobsA,B, differ from the intrinsic sizes, xintA,B, by
a factor (1 þ eA

A,B). The quantity eA depends
for each pulsar A and B on the orbital period, the
spin frequency, the orientation of the pulsar spin,
and the system geometry (12). Although aberra-
tion should eventually become detectable in the
timing, allowing the determination of a further
PK parameter, at present it leads to an undeter-
mined deviation of xobs from xint, where the latter
is the relevant quantity for the mass ratio. The
parameter eAA,B scales with pulse period and is
therefore expected to be two orders of magnitude
smaller for A than for B. However, because of
the high precision of the A timing parameters,
the derived value xobsA may already be signifi-
cantly affected by aberration. This has (as yet) no
consequences for the mass ratio R 0 xobsB/x

obs
A,

as the uncertainty in R is dominated by the much
less precise xobsB. We can explore the likely
aberration corrections to xobsB for various pos-
sible geometries. Using a range of values given
by studies of the double pulsar’s emission
properties (24), we estimate eAA È 10j6 and
eAB È 10j4. The contribution of aberration
therefore is at least one order of magnitude
smaller than our current timing precision. In the
future this effect may become important, pos-
sibly limiting the usefulness of R for tests of
GR. If the geometry cannot be independently
determined, we could use the observed devia-
tions of R from the value expected within GR
to determine eAB and hence the geometry of B.

Space motion and inclination of the orbit.
Because the measured uncertainty in Ṗb de-
creases approximately as Tj2.5, where T is the
data span, we expect to improve our test of the
radiative aspect of the system to the 0.1% level
or better in about 5 years’ time. For the PSR
B1913þ16 and PSR B1534þ12 systems, the
precision of the GR test based on the orbit-

Table 2. Four independent tests of GR provided by the double pulsar. Observed PK parameters
were obtained by fitting a DDS timing model to the data. Values expected from GR take into
account the masses determined from the intersection point of the mass ratio R and the periastron
advance ẇw. Uncertainties refer to the last significant digits and were determined using Monte Carlo
methods.

PK parameter Observed value Expected value from GR
Ratio of observed
to expected value

ṖPb 1.252(17) 1.24787(13) 1.003(14)
g (ms) 0.3856(26) 0.38418(22) 1.0036(68)
s 0.99974(j39,þ16) 0.99987(j48,þ13) 0.99987(50)
r (ms) 6.21(33) 6.153(26) 1.009(55)
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Fig. 2. Measurement of a Shapiro delay demonstrating the curvature of space-time. Timing residuals
(differences between observed and predicted pulse arrival times) are plotted as a function of orbital
longitude and illustrate the Shapiro delay for PSR J0737-3039A. (A) Observed timing residuals after a
fit of all model parameters given in Table 1 except the Shapiro-delay terms r and s, which were set to
zero and are not included in the fit. Although a portion of the delay is absorbed in an adjustment of the
Keplerian parameters, a strong peak at 90- orbital longitude remains clearly visible. This is the orbital
phase of A’s superior conjunction (i.e., when it is positioned behind B as viewed from Earth), so that its
pulses experience a delay when moving through the curved space-time near B. The clear detection of
structure in the residuals over the whole orbit confirms the detection of the Shapiro delay, which is
isolated in (B) by holding all parameters to their best-fit values given in Table 1, except the Shapiro
delay terms (which were set to zero). The red line shows the predicted delay at the center of the data
span. In both cases, residuals were averaged in 1- bins of longitude.

RESEARCH ARTICLES

6 OCTOBER 2006 VOL 314 SCIENCE www.sciencemag.org100

 o
n 

Ap
ril

 2
3,

 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

Shapiro delay signature

Kramer et al., Science 2006



L. Guillemot, 27/01/14

A pulsar in a stellar triple system

See Ransom et al., Nature 2014.	


!
J0337+1715: 2.73 ms pulsar discovered at the 
Green Bank Telescope (USA). Timing at GBT, 

Arecibo and WSRT (Netherlands).	


!
Only known MSP in a stellar triple system!	


!
Strong gravitational interactions are observed. 
Masses and inclinations measured with great 

accuracy. 	


!
Ideal laboratory to test the strong equivalence 

principle of General Relativity!	


!
(are the two inner stars falling in the field of the 

outer star in the same way?)

27

expected values and error estimates directly from the parameter pos-
terior distributions. We plot the results in Fig. 1 and list best-fit para-
meters and several derived quantities in Table 1. Component masses
and relative inclinations are determined at the 0.1%–0.01% level,
which is one to two orders of magnitude more precisely than from
other MSP timing experiments, by a method that is effectively inde-
pendent of the gravitational theory used. A detailed description of the
three-body model and fitting procedure is under way (A.M.A. et al.,
manuscript in preparation).

Using an early radio position, we identified an object with unusually
blue colours in the Sloan Digital Sky Survey16 (SDSS; Fig. 3). The optical
and archival ultraviolet photometry, combined with new near- and mid-
infrared photometry, are consistent (Methods) with a single white dwarf
of temperature ,15,000 K, which optical spectroscopy confirmed is the
inner white dwarf in the system (D.L.K. et al., manuscript in prepara-
tion). When combined with the known white dwarf mass from timing
observations, white dwarf models provide a radius from which we infer
a photometric distance to the system of 1,300 6 80 pc. The photometry
and timing masses also exclude the possibility that the outer companion
is a main-sequence star.

The pulsar in this system seems to be a typical radio MSP, but it is
unique in having two white dwarf companions in hierarchical orbits.
Although more than 300 MSPs are known in the Galaxy and in globu-
lar clusters, J033711715 is the first MSP stellar triple system found.
Because there are no significant observational selection effects discrim-
inating against the discovery of pulsar triple (as opposed to binary)
systems, this implies that=1% of the MSP population resides in stellar
triples and that =100 such systems exist in the Galaxy.

Predictions for the population of MSP stellar triples have suggested
that most have highly eccentric outer orbits owing to dynamical inter-
actions between the stars during stellar evolution17. Such models could
also produce eccentric binaries such as MSP J190310327 (ref. 18), if
the inner white dwarf, which had previously recycled the pulsar (that is,
turned it into an MSP through the transfer of matter and angular
momentum), were destroyed or ejected from the system dynamically19.
In such situations, however, the coplanarity and circularity of the orbits
of J033711715 would be very surprising. Those orbital characteristics,
and their highly hierarchical nature (Pb,O/Pb,I < 200, where Pb,O and
Pb,I are the orbital periods for the outer and inner binaries, respect-
ively), imply that the current configuration is stable on long time-
scales20, greatly increasing the odds of observing a triple system such
as J033711715. Secular changes to the various orbital parameters will
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Figure 2 | Geometry of the PSR J033711715 system at the reference epoch.
a, Orbital shape and velocity of the outer white dwarf (red), and the orbital
shape and velocity of the centre of mass of the inner binary (grey). b, Orbital
shapes and velocities of the inner white dwarf (orange) and the pulsar (blue).
Dotted red and orange lines indicate the directions of periastron for the inner

and outer white dwarf orbits, respectively. The white dwarf positions when the
pulsar or inner orbit centre of mass crosses the ascending nodes are indicated.
Vertical lines show length scales in the system in astronomical units (AU; a) or
the Earth–Moon distance (dEM) and the Solar radius (R[; b). c, Inclination of
the basically coplanar orbits with respect to the Earth–pulsar direction.
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Figure 1 | Timing residuals and delays from the PSR J033711715 system.
a, b, Geometric light-travel time delays (that is, Rømer delays), in both time and
pulse periods, across the inner (a) and outer (b) orbits, and modified Julian
dates (MJD) of radio timing observations from the GBT, the WSRT and the
Arecibo telescope. Arrival time errors in these panels are approximately a
million times too small to see. c, Newtonian three-body perturbations
compared with the modified two-Keplerian-orbit model used for folding our
data at the observed pulse period. d, Post-fit timing residuals from our full
Markov chain Monte Carlo (MCMC)-derived three-body timing solution
described in Table 1. The weighted root mean squared value of the 26,280
residuals is 1.34ms.
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L. Guillemot, 27/01/14

Constraints on NS equations of state

Pulsar timing measurements: 
mass constraints! 	


!
Can rule out (or severely 

constrain) NS equations of 
state.	

!

Highest measured today: 
J0348+0432, 2.01 +/- 0.04 M⨀ 

(Antoniadis et al. 2013)	

!

Continued timing of 
J0737-3039A might also allow a 

direct measurement of its 
moment of inertia (spin-orbit 

coupling).

28

Non-rotating mass vs physical radius for different equations of 
state.	


J1614-2230: Demorest et al. 2010 (1.97 +/- 0.04 M⨀)	


J0348+0432: Antoniadis et al. 2013 (2.01 +/- 0.04 M⨀)	


Other constraints: see Lattimer & Prakash 2007, in particular 
« rotation » = J1748-2446ad (716 Hz), Hessels et al. 2006



L. Guillemot, 11/09/14

A cosmic-scale GW detector

29

In a « Pulsar Timing Array » (PTA), pulsars 
act as the arms of a cosmic GW detector.	


!
Sources: supermassive black hole binaries, 

cosmic strings, stochastic background. 	

!

Current efforts: EPTA (Europe), PPTA 
(Australia), NANOGrav (North Am.), 

IPTA (International).	

!

Need 5 to 10 years of timing of 20 
pulsars with <100 ns accuracy. 	


!
Current best limits:	


• van Haasteren et al. 2011 (EPTA)	

• Shannon et al. 2013 (PPTA)	

• Demorest et al. 2013 (NANOGrav)	


Very similar and close to expected 
detection limit!

Gravitational Wave Detection with a Pulsar

Timing Array
● Need good MSPs

● Significance scales 
directly with the number 
of MSPs being timed.  
Lack of good MSPs is 
currently the biggest 
limitation

● Must time the pulsars for 
5-10 years at a precision 
of ~100 nano-seconds!

N. America Australia Europe
Cf. Hellings & Downs (1983)



L. Guillemot, 11/09/14

Complementary experiments

30  

Pulsar Timing Array GW complementarity:

For PTAs, sensitivity h ~ dt / T --> requires 10s of ns over years!

See Demorest et al., ApJ 762, 94 (2013)



L. Guillemot, 11/09/14

GW detection is within reach

31

e.g., Sesana et al., MNRAS Lett. 433, 1 (2013)

4 A. Sesana

fbulge = 1. Furthermore, we correlate the masses of the merging
SMBHs either to the properties of the two merging galaxies or to
those of the merger remnant, following the scheme described in
Section 2.2 of Sesana et al. (2009). This gives us three slightly dif-
ferent mass estimations for the SMBHs forming the binary for each
adopted scaling relation.

We combine the 9 × 3 = 27 different ways to populate
the merging galaxies with SMBHs together with the 216 galaxy
merger rates to obtain 5832 different SMBH binary merger rates
d3n/dzdM•,1dq•, consistent with current observations of the evo-
lution of the galaxy mass function and pair fractions at z < 1.3
and M > 1010M⊙ and with the empirical SMBH-host relations
published in the literature. We give equal credit to each model,
and we generate 5832 GW signals, sufficient to place reasonable
confidence levels for the expected amplitude according to current
observational constraints. Our approach is modular in nature, and
it is straightforward to expand the range of model to include new
estimates of all the quantities involved.

2.3 Validation of the models

Although the evolution of the SMBH masses is not followed self–
consistently in our models, in figure 1 we validate them by com-
paring the local SMBH mass function and the redshift evolution
of the total SMBH density with several estimates found in the lit-
erature. We also checked that the predicted range of galaxy and
SMBH merger rates as a function of mass and redshift are broadly
consistent (though with a large scatter) with those derived from
our previous models constructed on top of the Millennium Simula-
tion (Sesana et al. 2009) or exploiting semianalytical merger trees
(Sesana et al. 2008). In the latter approach we evolve the SMBH
population self–consistently. In figure 1 we show the nominal 1σ
and 2σ confidence levels (i.e. the range in which 68% and 95%
of our models are contained) of the estimated local SMBH mass
function and mass density as a function of z. The agreement with
independent results published in the literature is excellent. We no-
tice that we allow for slightly larger values of both quantities with
respect to published results. This is because the McConnell & Ma
(2012) scaling relations, that include the recently measured ultra-
massive SMBHs in BCGs, predict SMBHmasses which are 0.2-to-
0.4dex larger than previous estimates at the high mass end. Those
models will result in larger amplitude of the GW signal, which
might be soon directly tested with PTA observations.

3 RESULTS

Our main result is shown in figure 2, where we plot confidence
levels on the GW characteristic amplitude given by our models.
When considering the whole set of models (upper left panel), the
68% confidence region lies in the range 3.3 × 10−16 < A <
1.3 × 10−15, corresponding to a factor of 4 uncertainty in the
GW signal. The 99.7% region extends much further, in the range
1.1 × 10−16 < A < 4.2 × 10−15, corresponding to a factor
≈ 40 uncertainty. Note that this latter upper bound is only a factor
1.5 below the best limit placed by van Haasteren et al. (2011). Our
’democratic’ approach to the problem gives the same weight to all
the models. One can argue that models featuring the best estimates
of the galaxy mass function and pair counts, should be considered
more robust than those constructed using the upper or lower limits
for the same quantities (see Section 2.2.1). If we restrict to ’fiducial
models only’, the scatter is mildly reduced, and the 68% and 99.7%

Figure 2. Characteristic amplitude of the GW signal. Shaded areas repre-
sent the 68%, 95% and 99.7% (nominally 1σ, 2σ, 3σ) confidence levels
given by our models. In each panel, the black asterisk marks the best cur-
rent limit from van Haasteren et al. (2011). Shaded areas in the upper left
panel refer to the 95% confidence level given by McWilliams et al. (2012)
(red) and the uncertainty range estimated by Sesana et al. (2008). See text
for discussion.

Figure 3.Normalized distributions of the expected GW amplitude A at f =
1yr−1. Black solid line, all models; green dot–dashed line, fiducial models
only; red short–dashed line, models antecedent SMBH measurements in
BCGs; blue long–dashed, models including SMBHmeasurements in BCGs.
The shaded area marks the region excluded by current PTA limits, whereas
the solid dotted line represent what can be achieved by timing 20 pulsars at
100ns rms precision for 10 years.

confidence levels are set in the range 3.8 × 10−16 < A < 1.1 ×
10−15 and 1.7 × 10−16 < A < 2.2 × 10−15 respectively (upper
right panel). Things become much more interesting if we consider
only the SMBH-host relations updated to include the recent mea-
surements of ultra-massive black hole in BCGs (McConnell & Ma
2012). As expected, the signal is boosted-up, bringing the 68% and
99.7% confidence intervals to 5.6 × 10−16 < A < 2.0 × 10−15

and 2.4 × 10−16 < A < 5.7 × 10−15 respectively (lower right
panel), a factor≈ 2 larger then models featuring previous estimates
of the SMBH-host relations (lower left panel). Although obtained
with a completely different procedure, our confidence intervals
are generally consistent with the estimated signal range given by
(Sesana et al. 2008), whereas recent results by McWilliams et al.

c⃝ 2010 RAS, MNRAS 000, 1–6
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Pulsars as probes of the interstellar medium

32
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Figure 3: Rotation Measure (RM) synthesis analysis for the radio polarization of PSR J1745−2900. The red points,

with one-sigma error bars given by the off-pulse baseline r.m.s of the polarization profile, present the observed po-

larized flux density in the Stokes parameters Q and U. Note polarization measurements were not possible at all fre-

quencies due to hardware limitations. The RM is measured by a two-step method. Firstly, we perform the Fourier

transformation of the polarization intensity to get the RM Faraday spectrum, of which the peak is used to find a

rough estimation of the RM. Using such initial values, we then perform a least-squares fit to the Q and U curves to

get the RM and its error. The black curves in this figure are the model values based on the best fit RM. The sinu-

soidal variation of Q and U due to Faraday rotation is clearly seen across the frequency bands centred at 4.85 (panels

a. and b.) and 8.35 GHz (panels c. and d.). At 2.5 GHz the variation is so severe this signature is better seen in

the RM spectrum not shown here. RM values derived at each frequency band are independently consistent: At 2.5

GHz RM = (−6.70 ± 0.01) × 104 rad m−2, at 4.85 GHz RM = (−6.694 ± 0.006) × 104 rad m−2 and at 8.35

GHz RM = (−6.68 ± 0.04) × 104 rad m−2. The RM has also been measured with the VLA at 8.67 GHz giving

(−6.70±0.04)×104 rad m−2. The combined and appropriatelyweighted average is (−6.696±0.005)×104 rad m−2.
15

Eatough et al., Nature (2013). Rotation synthesis 
analysis for J1745-2900. RM ~ -6.7 104 rad m-2 !

LOFAR 	


(30-240 MHz)	


+ NenuFAR project 
at Nançay	


(10-80 MHz)

MSPs are stable rotators, generally unaffected by 
intrinsic timing irregularities. 	


!
Turbulence in the ionized ISM can cause dispersive 

delay variations! Importance of monitoring DM 
changes for precision timing.	


!
Dispersive delay:	


!
!

DM measurements allow us to probe the density of 
free electrons in the ISM!	


!
DM measurements more precise at low 

frequencies.	

!

Also: magnetic field constraints from Rotation 
Measure (RM) measurements (Faraday rotation).

2 M. J. Keith et al.

software (Hobbs et al. 2006). Since the timing model is al-
ways incomplete at some level, we always see some level
of post-fit residuals, which are typically a combination of
‘white’ noise due to the uncertainty in the ToA measurement
and ‘red’ (i.e., time-correlated) signal. For the majority of
known pulsars the dominant red signal is caused by the in-
trinsic instability of the pulsar, and termed ‘timing noise’
(e.g., Hobbs et al. 2010). However, the subset of millisecond
pulsars are stable enough that other red signals are poten-
tially measurable (Verbiest et al. 2009). Pulsar timing array
projects, such as the Parkes Pulsar Timing Array (PPTA;
Manchester et al. 2012), aim to use millisecond pulsars to
detect red signals such as: errors in the atomic time standard
(Hobbs et al. 2012); errors in the Solar System ephemeris
(Champion et al. 2010); or the effect of gravitational waves
(Yardley et al. 2010, 2011; van Haasteren et al. 2011). Each
of these signals can be distinguished by the spatial corre-
lation, i.e., how pulsars in different directions on the sky
are affected. However, at typical observing wavelengths and
time-spans, the variation of the dispersive delay due to tur-
bulence in the ionised interstellar medium (ISM) dominates
such signals (You et al. 2007). Fortunately for pulsar timing
experiments, these delays can be measured and corrected
using observations at multiple wavelengths.

The dispersive group delay is given by

tDM = λ2

[

e2

2πmec3

∫

path

ne(l)dl

]

, (1)

where λ is the barycentric radio wavelength1. The path in-
tegral of electron density is the time-variable quantity. In
pulsar experiments this is termed ‘dispersion measure’, DM,
and given in units of cm−3pc. In principle, the instantaneous
DM can be computed from the difference of two arrival times
from simultaneous observations at different wavelengths, or
more generally by fitting to any number of observations at
more than one wavelength.

The question of estimation and correction of DM(t) has
previously been considered by You et al. (2007). They chose
a ‘best’ pair of wavelengths from those available and esti-
mated the DM at every group of observations. These ob-
servation groups were selected by hand, as was the choice
of wavelengths. Regardless of how the analysis is done, the
estimated DM always contains white noise from differenc-
ing two observations, and correcting the group delay al-
ways adds that white noise to the arrival times. However
the DM(t) variations are red, so they only need to be cor-
rected at frequencies below the ‘corner frequency’ at which
the power spectrum of the DM-caused fluctuations in group
delay is equal to the power spectrum of the white noise in
the DM(t) estimate. To minimise the additional white noise,
they smoothed the DM(t) estimates over a time Ts to cre-
ate a low-pass filter which cuts off the DM variations, and
the associated white noise, at frequencies above the corner
frequency. In this way, they avoided adding white noise at
high frequencies where the DM-correction was unnecessary.
Of course the added ‘white’ noise is no longer white; it is

1 To avoid confusion, in this paper we will use wavelength for
the radio wavelength and frequency to describe the fluctuation of
time variable processes.

white below the corner frequency, but zero above the corner
frequency.

Here we update this algorithm in two ways. We use
all the observed wavelengths to estimate DM(t) and we in-
tegrate the smoothing into the estimation algorithm auto-
matically. Thus, the algorithm can easily be put in a data
‘pipeline’. We show the results of applying this new algo-
rithm to the PPTA data set, which is now about twice
as long as when it was analysed by You et al. (2007). Ad-
ditionally, we demonstrate that our algorithm is unbiased
in the presence of wavelength-independent red signals, e.g.,
from timing noise, clock error, or gravitational waves; and
we show that failure to include wavelength-independent red
signals in the estimation algorithm will significantly reduce
their estimated amplitude.

2 THEORY OF DISPERSION REMOVAL

We assume that an observed timing residual is given by
tOBS = tCM + tDM(λ/λREF)2 where tCM is the common-
mode, i.e., wavelength-independent delay and tDM is the dis-
persive delay at some reference wavelength λREF. Then with
observations at two wavelengths we can solve for both tCM

and tDM.

t̃DM = (tOBS,1 − tOBS,2)λ
2
REF/(λ

2
1 − λ2

2), (2)

t̃CM = (tOBS,2λ
2
1 − tOBS,1λ

2
2)/(λ

2
1 − λ2

2). (3)

In a pulsar timing array, tCM would represent a signal of
interest, such as a clock error, an ephemeris error, or the ef-
fect of a gravitational wave. The dispersive component tDM

would be of interest as a measure of the turbulence in the
ISM, but is a noise component for other purposes. It is im-
portant to note that t̃DM is independent of tCM so one can
estimate and correct for the effects of dispersion regardless
of any common-mode signal present. In particular, common-
mode red signals do not cause any error in t̃DM.

If more than two wavelengths are observed, solving for
tCM and tDM becomes a weighted least-squares problem, and
the standard deviation of the independent white noise on
each observation is needed to determine the weighting fac-
tors. For wavelength i, we will denote the white noise by
tW,i and its standard deviation by σi so the observed timing
residual is modelled as

tOBS,i = tCM + tDM(λi/λREF)
2 + tW,i. (4)

The weighted least-squares solutions, which are minimum
variance unbiased estimators, are

t̃DM = λ2
REF

(

∑

i

1/σ2
i

∑

i

tOBS,iλ
2
i /σ

2
i −

∑

i

λ2
i /σ

2
i

∑

i

tOBS,i/σ
2
i

)

/∆ (5)

t̃CM =
(

∑

i

λ4
i /σ

2
i

∑

i

tOBS,i/σ
2
i −

∑

i

λ2
i /σ

2
i

∑

i

tOBS,iλ
2
i /σ

2
i

)

/∆. (6)

Here ∆ is the determinant of the system of equations,

∆ =
∑

i

1/σ2
i

∑

i

λ4
i /σ

2
i −

(

∑

i

λ2
i /σ

2
i

)2
.
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The future: SKA
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Credit: MPIfR, Kramer	


SKAI construction: 2018-2023, early science: 2020. 	

SKA2 construction: 2023-2030.	


Full SKA: frequency coverage from 70 MHz to 30 GHz.	

!

Expect:	

• 14000 « normal pulsars »	

• 6000 MSPs	

• hundreds of highly relativistic binary systems	

• pulsar orbiting the Galactic center?	

• extragalactic pulsars?	


!
Many more rare and interesting systems! 	


(i.e.: pulsar orbiting a black hole?)	

!

Also, follow-up timing studies greatly enhanced: 	

!

�TOA ⇠ wTsys

SPSRA
p
BT
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Characterizing the central black hole

See Liu et al. 2012.	

!

Timing of a pulsar orbiting Sgr A* at 100 µs: detailed 
investigation of the space-time around it, new tests of GR. 	


!
Mass measurement for Sgr A* with <0.01% precision.	


!
Spin with <0.1% precision: cosmic censorship.	


!
!

Quadrupole moment with 1% precision: no-hair theorem.	

!
!
!

Bottom: residuals from quadrupole moment vs orbital phase.	


Top: Fractional precision for the mass determination of Sgr A* from three 
different effects (e = 0.5, i = 60°, 5 years of timing with 100 µs unc)
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contains two separately measurable PK parameters, the mass
of the black hole MBH and sin i. The signal is usually only
sufficiently strong for edge-on systems (e.g., Kramer et al.
2006), but in our case even for a face-on orbit (i = 0) the
effect will be significant due to the large mass of Sgr A*, if the
orbit is eccentric. Using the equation of Blandford & Teukolsky
(1976)

∆S ≃ 2GMBH

c3
ln

(
1 + e cos ϕ

1 − sin i sin(ω + ϕ)

)

≃ (39.4 s)
(

MBH

4 × 106 M⊙

)
ln

(
1 + e cos ϕ

1 − sin i sin(ω + ϕ)

)

(7)

as a first-order estimation, one can see that for an eccentricity
of 0.5 the Shapiro delay for i = 0 amounts to about 40 s. This
already indicates that the Shapiro delay allows a precise mass
determination, even for a pulsar with poor timing precision.
Apart from containing MBH directly, the Shapiro delay gives a
second, though indirect, access to the Sgr A* mass via sin i and
the mass function. One finds

GMBH ≃
( cx

sin i

)3
(

2π

Pb

)2

, (8)

where x is the projected semimajor axis of the pulsar orbit (in
light seconds), which is an observable Keplerian parameter. It
depends on the orbital eccentricity and inclination, of which the
latter is more constraining.

In addition, there are significant contributions to the signal
propagation caused by frame dragging. A first-order analytic
equation for this effect can be found in Wex & Kopeikin (1999).
From this it is clear that the frame dragging can have a significant
contribution to the propagation delay, but in most cases will have
a distinct signature that can be fitted for, leading at the same
time to a precise mass measurement and a lower limit on the
spin parameter χ . Contributions from higher-order multipole
moments and light bending effects can easily be accounted for
in an analytic way (see, e.g., Kopeikin 1997).

The inclination of the pulsar orbit with respect to the line-of-
sight i (modulo a π − i ambiguity; see Figure 4) can be obtained
either directly from the Shapiro delay, as explained above, or
via Equation (8) by using the mass, MBH, derived from any
other PK parameter. Therefore, in Sections 4 and 5 where the
determination of spin and quadrupole is presented, we can treat
the inclination angle as a parameter that is known with sufficient
precision. A brief discussion on the π−i ambiguity can be found
in Section 4.1.

3.2. Simulations

The simulations performed in this paper mainly contain two
steps: creating TOAs and determining parameters together with
their measurement uncertainties. First, the TOAs are created
regularly with regard to solar system barycentric time and then
combined with the three time delays (Roemer, Einstein, and
Shapiro; see the above subsection) to account for the changes
in the signal arrival time due to the orbital motion of the
pulsar around Sgr A*. Next the simulated TOAs are passed
to the TEMPO software package. Based on a timing model,
TEMPO performs a least-squares fit to yield a phase-connected
solution of the TOAs and determines the model parameters. The
measurement uncertainties of these parameters are calculated
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Figure 3. Simulated fractional precision for the mass determination of Sgr A*
as a function of the orbital period Pb obtained from three different relativistic
effects: precession of the orbit (ω̇), Einstein delay (γE), and Shapiro delay (∆S).
The mass determinations are based on simulated data, assuming weekly TOAs
with an uncertainty of 100 µs over a time span of five years. We used an orbital
eccentricity e of 0.5 and an orbital inclination i, relevant for the Shapiro delay,
of 60◦. The simulations were done for a non-rotating black hole. Note that for
various practical reasons (such as the uncertainty in the pulsar mass), a precision
below 10−7 seems unrealistic. Also, as explained in the text, for a rotating black
hole ω̇ cannot be used directly for a high-precision mass determination due to
the large contribution of frame dragging.
(A color version of this figure is available in the online journal.)

via a covariance matrix. This is the standard procedure for
pulsar timing observations and is explained in great detail in
Taylor (1994), Lorimer & Kramer (2005), Hobbs et al. (2006),
and Edwards et al. (2006). Most of the timing models used in this
paper are part of the TEMPO standard implementation available
as a download from the sources given in these references.
Whenever we use an extension to these well-tested models, to
account for specific effects which are not covered by the standard
software, we will mention this explicitly in the corresponding
section.

In this subsection, we present the simulations for the mass
determination. For this we assumed five years of observations
with weekly TOAs which contain white Gaussian noise with a
standard deviation of 100 µs. Figure 3 shows the results of our
simulations for a typical system configuration. If this is not the
case then, as outlined above, ω̇ cannot a priori be used for a high-
precision mass measurement due to an unknown contribution
from the frame dragging, as we will show later.

In practice, not just one single relativistic effect will be
used to determine the mass of Sgr A*, but a consistent model,
accounting simultaneously for frame dragging effects in the
orbital motion and the signal propagation, will be used to
determine the mass and spin at the best level. How the spin
of Sgr A* affects the timing observations and how it can be
extracted from the timing data are the subject of the next section.

4. FRAME DRAGGING, SPIN MEASUREMENT, AND
GR’s COSMIC CENSORSHIP CONJECTURE

Although there is clear indication that Sgr A* rotates, its
actual rate of rotation is still not well determined. Investiga-
tions of flares from accreting gas in the near-infrared and in
X-rays yield a range of χ ≈ 0.22 to 0.99 (Genzel et al. 2003;
Aschenbach et al. 2004; Bélanger et al. 2006; Aschenbach
2010). The rather large range in the estimates of χ is also a
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Figure 9. Residuals caused by the quadrupole moment of Sgr A* plotted for
two orbital phases. We have used the same orbital and black hole parameters as
in Figure 5.
(A color version of this figure is available in the online journal.)

in this section, these periodic features of the quadrupole can be
used to fit for the quadrupole moment of Sgr A*.

5.1. Extracting the Quadrupole from the Timing Data

The deviations in the motion of the pulsar caused by the
quadrupole moment lead to a variation in the Roemer delay,
which we describe by a change in the coordinate position of the
pulsar according to

r′ = (r + δr (q))(n̂ + δn̂(q)) . (24)

The vector δn̂ is calculated from the changes in the angles

Φ′ = Φ + δΦ(q) , Ψ′ = Φ + δΨ(q) , θ ′ = θ + δθ (q) , (25)

according to δn̂ = n̂′−n̂. To first order in ϵ ≡ −3Q/a2(1−e2)2,
the detailed equations for the δ-quantities can be taken from
Garfinkel (1959), with slight modifications that account for the
dominating precession of the pericenter caused by the mass
monopole: the term (5y2 − 1) in the auxiliary constants m and
γ has to be replaced by 2ω̇Pb/πϵ, where ω̇ is the total advance
of the pericenter. Based on this, we have developed a timing
model that includes the contribution of the quadrupole moment
of Sgr A* to first order in ϵ. Figure 9 illustrates the unique
periodic timing residuals caused by the quadrupole moment of
Sgr A*.

This periodic signal will not only allow the determination of
the quadrupole moment of Sgr A* with high precision, but also
provide a clear identification of the quadrupolar nature of the
gravitational field. Moreover, due to the large advance of the
pericenter the quadrupolar signal will change in a characteristic
way from one orbit to the next. This clearly helps to identify
any external “contamination” of the orbital motion of the pulsar,
and, as in the spin determination, provides high confidence in
the reliability of a no-hair theorem test with a pulsar around
Sgr A*.

5.2. Simulations

We have tested the procedure outlined above in a number
of mock data simulations for various orbital configurations.
Again following the procedures described in Section 3.2, we
assume weekly TOAs with a precision of 100 µs for a time span
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Figure 10. Measurement precision for the quadrupole moment of Sgr A* as a
function of orbital period for three different eccentricities, in the absence of any
external perturbations. We have used the same orbital and black hole parameters
as in Figure 5. For the timing, we assumed the same time span and characteristics
of TOAs as in Figure 5. This time, however, the TOAs were equally distributed
with respect to the true anomaly in order to account for the fact that timing needs
to be done more frequently around the pericenter to optimize the measurement
of the quadrupolar signal in the TOAs.
(A color version of this figure is available in the online journal.)

of five years. This time we extended our simulations and the
timing model used in Section 4.2 to account for the periodic
effects due to the quadrupole moment of Sgr A* described
in Equation (24). Our results are summarized in Figure 10.
Note that the precision of the spin determination is at least one
order of magnitude better than the determination of q. Hence,
the uncertainty in the q-measurement is the limiting factor for
the no-hair theorem test. As a conclusion of our simulations,
if the external perturbations are negligible, for orbits with
Pb ! 0.5 yr the no-hair theorem can be tested with high
precision. If we adopt the precessional rates from the stellar
perturbation calculated in Figure 2, we conclude that the test
can be achieved with high precision for orbits with Pb ! 0.1 yr.
This range can be extended if the characteristic quadrupolar
features remain separable in the presence of perturbations. This,
however, depends on the details of the external mass distribution,
which we will not investigate further in this paper.

6. DISCUSSION

In this paper we have developed a method to determine the
mass, the spin, and the quadrupole moment of Sgr A* using
a pulsar in a compact orbit around this supermassive black
hole. Our investigation is based on a consistent timing model
that includes all the relativistic and precessional effects that
can be used to extract these parameters of Sgr A*. Based on
simulated timing data for a pulsar in orbit around Sgr A*,
we have shown in a consistent covariance analysis that, even
with a moderate timing precision (∼100 µs), one can expect
to be able to determine the mass, the spin, and the quadrupole
moment of Sgr A* with high precision, provided the orbital
period is well below one year. As a result of our simulations, for
a compact orbit (orbital period of a few months) one can expect
to measure the spin with a precision of 10−3 or even better.
We have shown how the method would allow the identification
of an object whose frame dragging exceeds that of an extreme
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Conclusions
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Pulsar timing has many applications from GW searches 
to NS equations of state or theories of gravity. 	


!
Not talked about today:	


emission physics (e.g. high energy with Fermi), pulsar 
searches, pulsar transients, etc.	


!
Thank you for your attention!


