
Vacuum Stability  
in the Standard Model

Michael M. Scherer 
Institute for Theoretical Physics, University of Heidelberg

December 13, 2014 @ Meeting of the GDR Terascale, Heidelberg

in collaboration with 

Astrid Eichhorn, Holger Gies, Joerg Jaeckel, Tilman Plehn and René Sondenheimer



The Standard Model and the Higgs

Discovery of the Higgs – success of QFT
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• Discovery of the Higgs@LHC:  

MH ≈ 125 GeV 

• Range of validity of SM? 

‣ Gravity effects:  

‣ Landau pole in U(1)hypercharge: 

‣ Higgs potential…

• Standard model: 

‣ effective theory 

‣ physical cutoff  

‣ “new physics” beyond 

⇤

⇤

⇤ ⇠ MPl =
p
~c/G ⇡ 1019GeV

⇤ > MPl



Hambye & Riesselmann (1997)

• Higgs mass is related to Higgs coupling and vev:

• Upper bound related to Landau pole
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Schrempp, Wimmer (1996) …

Higgs Mass Bounds

Figure 2: Summary of the uncertainties connected to the bounds on MH . The upper

solid area indicates the sum of theoretical uncertainties in the MH upper bound for

mt = 175 GeV [12]. The upper edge corresponds to Higgs masses for which the

SM Higgs sector ceases to be meaningful at scale Λ (see text), and the lower edge

indicates a value of MH for which perturbation theory is certainly expected to be

reliable at scale Λ. The lower solid area represents the theoretical uncertaintites in

the MH lower bounds derived from stability requirements [9, 10, 11] using mt = 175

GeV and αs = 0.118.

Looking at Fig. 2 we conclude that a SM Higgs mass in the range of 160 to

170 GeV results in a SM renormalisation-group behavior which is perturbative and

well-behaved up to the Planck scale ΛP l ≃ 1019 GeV.

The remaining experimental uncertainty due to the top quark mass is not rep-

resented here and can be found in [9, 10, 11] and [12] for lower and upper bound,

respectively. In particular, the result mt = 175 ± 6 GeV leads to an upper bound

MH < 180 ± 4 ± 5 GeV if Λ = 1019 GeV, (4)

the first error indicating the theoretical uncertainty, the second error reflecting the

residual mt dependence [12].
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Standard Model Running Couplings

‣ Standard model running couplings:
5
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Figure 1: Renormalisation of the SM gauge couplings g1 =
�

5/3gY , g2, g3, of the top, bottom
and � couplings (yt, yb, y�), of the Higgs quartic coupling � and of the Higgs mass parameter m.
All parameters are defined in the ms scheme. We include two-loop thresholds at the weak scale
and three-loop RG equations. The thickness indicates the ±1� uncertainties in Mt, Mh, �3.

Planck mass, we find the following values of the SM parameters:

g1(MPl) = 0.6168 (56a)

g2(MPl) = 0.5057 (56b)

g3(MPl) = 0.4873 + 0.0002
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All Yukawa couplings, other than the one of the top quark, are very small. This is the well-
known flavour problem of the SM, which will not be investigated in this paper.

The three gauge couplings and the top Yukawa coupling remain perturbative and are fairly
weak at high energy, becoming roughly equal in the vicinity of the Planck mass. The near
equality of the gauge couplings may be viewed as an indicator of an underlying grand unification
even within the simple SM, once we allow for threshold corrections of the order of 10% around
a scale of about 1016 GeV (of course, in the spirit of this paper, we are disregarding the acute
naturalness problem). It is amusing to note that the ordering of the coupling constants at
low energy is completely overturned at high energy. The (properly normalised) hypercharge
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Figure 1: Upper left: running of SM couplings, figure taken from Ref. [8]. Upper right to lower right: running of our toy
model couplings after including the running strong coupling and electroweak coupling e↵ects. Dashed lines indicate the
regime where �

4

(k) < 0, which in the perturbative approach defines the loss of vacuum stability.

gauge couplings give a significant positive contribution to ��4 , balancing the negative top Yukawa terms for small
values of �

4

; second, they slow down the growing top Yukawa and thereby a↵ect the increase of �
4

toward large
field values. Since the variation of the weak coupling at large energy scales is modest, we account for its e↵ects
by including a finite contribution in the beta functions for �

4

and y, parametrized by a fiducial coupling gF and
numerical constants c�, cy.
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The scalar mass is given by m2

' = 2�
4

v2 and the top mass by y =
p
2mt/v. To approximate the Standard Model

we choose nf = 6 to account for the contribution of all flavors to the running of the gauge coupling. As long as we
only keep the top quark contribution to the running of the Higgs quartic coupling, we set ny = 1. The expressions
in Eq.(8) reproduce the standard one-loop � functions for our model [23].
In principle, we should also account for the electroweak U(1) and SU(2) couplings a↵ecting the running of

the higher-dimensional coupling �
6

. On the other hand, the main e↵ect of �
6

on the Higgs potential at large
energies will be its contribution to the running of �

4

[15], so a detailed modelling of the running of �
6

itself is not
necessary. Here, we will assume that the leading contribution to the running of �

6

is given by contributions of the
Higgs scalar itself and the top. Further, the main e↵ect of �

6

on the Higgs mass is through its contribution to the
running of �

4

, so corrections to the running of �
6

constitute subleading e↵ects on the value of the Higgs mass.

Buttazzo et al. (2013)

‣ Running strong coupling αS:

threshold matching at the heavy quark pole masses Mc = 1.5 GeV and Mb = 4.7 GeV. Results from
data in ranges of energies are only given for Q = MZ0 . Where available, the table also contains the
contributions of experimental and theoretical uncertainties to the total errors in αs(MZ0).

Finally, in the last two columns of table 1, the underlying theoretical calculation for each mea-
surement and a reference to this result are given, where NLO stands for next-to-leading order, NNLO
for next-next-to-leading-order of perturbation theory, “resum” stands for resummend NLO calculations
which include NLO plus resummation of all leading und next-to-leading logarithms to all orders (see
[39] and [32]), and “LGT” indicates lattice gauge theory.

Figure 17: . Summary of measurements of αs(Q) as a function of the respective energy scale Q, from
table 1. Open symbols indicate (resummed) NLO, and filled symbols NNLO QCD calculations used in
the respective analysis. The curves are the QCD predictions for the combined world average value of
αs(MZ0), in 4-loop approximation and using 3-loop threshold matching at the heavy quark pole masses
Mc = 1.5 GeV and Mb = 4.7 GeV.

In figure 17, all results of αs(Q) given in table 1 are graphically displayed, as a function of the
energy scale Q. Those results obtained in ranges of Q and given, in table 1, as αs(MZ0) only, are not
included in this figure - with one exception: the results from jet production in deep inelastic scattering
are represented in table 1 by one line, averaging over a range in Q from 6 to 100 GeV, while in figure 17
combined results for fixed values of Q as presented in [67] are displayed.

28

Bethke (2007)

Energy scale

running of couplings described by renormalization group β functions



Mechanism for Lower Higgs Mass Bound

+- +  gauge contributions

top loop Higgs loop

��4 =

• Running Higgs self-coupling:

• Choose            at          : 

➡ minimal value of Higgs mass

⇤UV� = 0
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top loop
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II. GAUGED HIGGS–TOP MODEL

The aim of this paper is to investigate the question of mass bounds and vacuum stability in the presence of
higher dimensional operators and a finite UV cuto↵. To that end we use modern functional renormalization group
(FRG) methods. In this context the FRG method mainly equips us with a technical tool to compute � functions,
in agreement with the Wilsonian perspective. We will set up a toy model that allows us to study the essential
features of the Standard Model in the context of vacuum stability.
As a starting point, we briefly recapitulate the main features of the Standard Model at one-loop level. In the

introductory sections we use � for the Higgs doublet and H for the actual Higgs scalar, while ' denotes a general
real scalar field which can play the role of the Higgs field H in our toy model. Once we convince ourselves that
the toy model quantitatively reproduces the Standard Model we will switch notation and again use H for the
corresponding scalar Higgs field with a measured mass of 125 GeV.

A. Standard Model running

The perturbative approach starts from the usual Higgs potential, generalized to an e↵ective potential by allowing
for a scale dependence of all parameters. For the Higgs field the potential including the dimension-6 operator
explicitly reads

V
e↵

(k) = µ(k)2 |�|2 + �
4

(k) |�|4 + �
6

(k)

M2

|�|6

=
µ(k)2v2

2

✓
1 +

H

v

◆
2

+
�
4

(k)v4

4

✓
1 +

H

v

◆
4

+
�
6

(k)v6

8M2

✓
1 +

H

v

◆
6

=

✓
µ(k)2

2
+

6�
4

(k)v2

4
+

15�
6

(k)v4

8M2

◆
H2 +

✓
�
4

(k)

4
+

15�
6

(k)v2

8M2

◆
H4 +

�
6

(k)

8M2

H6 + O(H3, H5) , (1)

with v = 246 GeV. Removing the odd powers in H corresponds to switching from a Higgs field expanded around
v to a scalar field expanded around zero [? by HG]. As long as we are interested in the ultraviolet behavior we
can also neglect the quadratic (mass) terms. Moreover, we can limit ourselves to the leading terms in v/M for
even powers of the Higgs field, giving us
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If we start from the first line of Eq.(1), it is not at all clear whether a slightly negative �
4

will lead to a metastable
vacuum. This depends on the higher-dimensional couplings �

6,8,... which, if su�ciently large, can obviously
stabilize the Higgs potential for all k < M

Pl

.

However, the usual assumption is that of perturbative renormalizability, requiring the absence of higher di-
mensional operators in the UV. With the so-defined Standard Model the corresponding Lagrangian consists of
all dimension-4 operators. In that case the question of stability is usually linked to the sign of �

4

defined in
Eq.(1). The beta function for any coupling g is defined as �g = dg/d log k. In these conventions the one-loop
renormalization group equations for the Higgs self-coupling �

4

, the top Yukawa y, and the strong coupling gs in
the Standard Model read
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The top Yukawa coupling is linked to the top mass as y =
p
2mt/v while the Higgs mass is given by m2

H = 2�
4

v2

plus contributions from dimension-6 operators. [Typically, these coupling parameters or the related running
masses, mt and mH , are evaluated at the scale of the top pole mass to be translated into the pole masses of
the Higgs and the top, according to the on-shell scheme.] The two gauge couplings are g

2

for SU(2)L and g
1

or
g
1

for U(1)Y . The number of fermions contributing to the running of the strong coupling is nf . In the present
setup no explicit higher dimensional operators are present. However, if they are generated by Standard Model
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Figure 1: Renormalisation of the SM gauge couplings g1 =
�

5/3gY , g2, g3, of the top, bottom
and � couplings (yt, yb, y�), of the Higgs quartic coupling � and of the Higgs mass parameter m.
All parameters are defined in the ms scheme. We include two-loop thresholds at the weak scale
and three-loop RG equations. The thickness indicates the ±1� uncertainties in Mt, Mh, �3.

Planck mass, we find the following values of the SM parameters:
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All Yukawa couplings, other than the one of the top quark, are very small. This is the well-
known flavour problem of the SM, which will not be investigated in this paper.

The three gauge couplings and the top Yukawa coupling remain perturbative and are fairly
weak at high energy, becoming roughly equal in the vicinity of the Planck mass. The near
equality of the gauge couplings may be viewed as an indicator of an underlying grand unification
even within the simple SM, once we allow for threshold corrections of the order of 10% around
a scale of about 1016 GeV (of course, in the spirit of this paper, we are disregarding the acute
naturalness problem). It is amusing to note that the ordering of the coupling constants at
low energy is completely overturned at high energy. The (properly normalised) hypercharge
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Figure 1: Upper left: running of SM couplings, figure taken from Ref. [8]. Upper right to lower right: running of our toy
model couplings after including the running strong coupling and electroweak coupling e↵ects. Dashed lines indicate the
regime where �

4

(k) < 0, which in the perturbative approach defines the loss of vacuum stability.

gauge couplings give a significant positive contribution to ��4 , balancing the negative top Yukawa terms for small
values of �

4

; second, they slow down the growing top Yukawa and thereby a↵ect the increase of �
4

toward large
field values. Since the variation of the weak coupling at large energy scales is modest, we account for its e↵ects
by including a finite contribution in the beta functions for �

4

and y, parametrized by a fiducial coupling gF and
numerical constants c�, cy.
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The scalar mass is given by m2

' = 2�
4

v2 and the top mass by y =
p
2mt/v. To approximate the Standard Model

we choose nf = 6 to account for the contribution of all flavors to the running of the gauge coupling. As long as we
only keep the top quark contribution to the running of the Higgs quartic coupling, we set ny = 1. The expressions
in Eq.(8) reproduce the standard one-loop � functions for our model [23].
In principle, we should also account for the electroweak U(1) and SU(2) couplings a↵ecting the running of

the higher-dimensional coupling �
6

. On the other hand, the main e↵ect of �
6

on the Higgs potential at large
energies will be its contribution to the running of �

4

[15], so a detailed modelling of the running of �
6

itself is not
necessary. Here, we will assume that the leading contribution to the running of �

6

is given by contributions of the
Higgs scalar itself and the top. Further, the main e↵ect of �

6

on the Higgs mass is through its contribution to the
running of �

4

, so corrections to the running of �
6

constitute subleading e↵ects on the value of the Higgs mass.

Buttazzo et al. (2013)

Lower Mass Bound in the Standard Model

Bezrukov et al. (2014)
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FIG. 3. Height of the potential barrer near the critical value ycrit
t .
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FIG. 4. Scale µ0 where the Higgs self-coupling � becoming
negative (possibly requiring new physics at lower energies)
depending on the top quark Yukawa yt.

In numbers, the criticality equations (4.3) give

ycritt = 0.9244 + 0.0012⇥ Mh/GeV � 125.7

0.4

+ 0.0012⇥ ↵s(MZ)� 0.1184

0.0007
, (4.4)

where ↵s is the QCD coupling at the Z-boson mass.
Though all the required components are present in the
works [21, 34–36] a comment is now in order of how
eq. (4.4) was obtained. First, instead of defining the criti-
cal Higgs boson massMh the critical value of the top pole
mass was defined, and then converted back to the value
of the top quark Yukawa, accounting for known QCD
and electroweak corrections. However, it is not immedi-
ate to read these numbers from the papers mentioned,
as far as the matching conditions relating the physical
masses and MS parameters are scattered over the pub-
lished works. The 3 loop beta functions can be found in

[37–42] and is given in a concise form in the code from
[34] or in [35]. The one loop contributions to the match-
ing conditions between theW , Z and Higgs boson masses
and the MS coupling constants at µ ⇠ mt of the order
O(↵) and O(↵s) are known for long time [43] and can
be read of [34, 35]. The two loop contribution of the
order O(↵↵s) to the Higgs coupling constant � was cal-
culated in [34, 35] and for the practical purposes can be
taken from eq. (34) of [35]. The two loop contribution
of the order O(↵2) to � was calculated in [35], with the
numerical approximation given by eq. (35). Recently an
independent evaluation at the order O(↵2) was obtained
in [36] which di↵ers slightly from [35], but the di↵erence
has a completely negligible impact on (4.4) (note that
even the whole O(↵2) contribution to � changes ycritt by
only 0.5⇥10�3). However, one should be careful in using
the final numerical values of the MS couplings from the
section 3 of [35], as far as the value of the strong cou-
pling at µ = Mt which was used there (eq. (60)) does not
correspond to the value obtained from the Particle Data
Group value at MZ by RG evolution.

Thanks to complete two-loop computations of [35, 36]
and three-loop beta functions for the SM couplings found
in [37–42] the formula (4.4) may have a very small the-
oretical error, 2 ⇥ 10�4, with the latter number coming
from an “educated guess” estimates of even higher or-
der terms—4 loop beta functions for the SM and 3 loop
matching conditions at the electroweak scale, which re-
late the physically measured parameters such as W, Z
and Higgs boson masses, etc with the MS parameters
(see the discussion in [34] and more recently in [44]). We
stress that the experimental value of the mass of the top
quark is not used in this computation, we will come to
this point later in Section IV.

Yet another interesting quantity which can be derived
from eq. (4.3) is the “criticality” scale µ0, where both
the scalar self-coupling and its �-function are equal to
zero. Fig. 5 contains its plot as a function of the top
quark Yukawa for several Higgs masses. It is amazing

�4

• Vacuum instability 

‣      crosses zero in  

➡ instability of Higgs vacuum 

‣ ‘scale of new physics’ ~ 1010 GeV 

‣ strongly depends on top Yukawa:

µ

2
H2 +

�4

4
H4

mh(MPl

) ⇡ 129GeV

mexp

h ⇡ 125GeV



On the ’Scale of New Physics’

@ ~ 1010 GeV several scenarios are possible:  

1. New degrees of freedom appear that render Higgs potential stable? 

2. Stable minimum might appear for large field values (no new d.o.f.) 

➡ Metastability of Higgs vacuum?  

➡ Small tunneling rates to stable minimum? 

3. Include higher powers in Higgs field (e.g. ~H6,H8,…) to render potential stable 

➡ Do not appear in perturbatively renormalizable Higgs Lagrangian 

➡ Appear in effective theories with finite ΛUV when approaching underlying theory 

➡ New physics appears at higher scales 10? GeV > 1010 GeV 

➡ Link to BSM particle physics models?



gauged Higgs-top model gauged Higgs-top model 

         + fiducial couplings

Gauged Higgs-Top Model
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g
2

(M
Pl

) = 0.5057 (56b)

g
3

(M
Pl

) = 0.4873 + 0.0002
�

3

(MZ) � 0.1184

0.0007
(56c)

yt(MPl

) = 0.3823 + 0.0051

✓
Mt

GeV
� 173.35

◆
� 0.0021

�
3

(MZ) � 0.1184

0.0007
(56d)

�(M
Pl

) = �0.0128 � 0.0065

✓
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GeV
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◆
+ (56e)

+0.0018
�

3

(MZ) � 0.1184

0.0007
+ 0.0029

✓
Mh

GeV
� 125.66

◆

m(M
Pl

) = 140.2 GeV + 1.6 GeV

✓
Mh

GeV
� 125.66

◆
+ (56 f )

�0.25 GeV

✓
Mt

GeV
� 173.35

◆
+ 0.05 GeV

�
3

(MZ) � 0.1184

0.0007

All Yukawa couplings, other than the one of the top quark, are very small. This is the well-
known flavour problem of the SM, which will not be investigated in this paper.

The three gauge couplings and the top Yukawa coupling remain perturbative and are fairly
weak at high energy, becoming roughly equal in the vicinity of the Planck mass. The near
equality of the gauge couplings may be viewed as an indicator of an underlying grand unification
even within the simple SM, once we allow for threshold corrections of the order of 10% around
a scale of about 1016 GeV (of course, in the spirit of this paper, we are disregarding the acute
naturalness problem). It is amusing to note that the ordering of the coupling constants at
low energy is completely overturned at high energy. The (properly normalised) hypercharge
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Figure 1: Upper left: running of SM couplings, figure taken from Ref. [7]. Upper right to lower right: running of our toy
model couplings after including the running strong coupling and electroweak coupling e↵ects. Dashed lines indicate the
regime where �

4

(k) < 0, which in the perturbative approach defines the loss of vacuum stability.

numerical constants c�, cy.
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3
Nc � 2

3
nf

�
. (7)

The scalar mass is given by m2

' = 2�
4

v2, and the top mass by y =
p
2mt/v. To approximate the Standard

Model we choose nf = 6 to account for the contribution of all flavors to the running of the gauge coupling. As
long as we only keep the top quark contribution to the running of the Higgs quartic coupling, we set ny = 1.
The expressions in Eq.(7) reproduce the standard one-loop beta functions for our model if higher-dimensional
operators are ignored [13].
In principle, we should also account for the electroweak U(1) and SU(2) couplings a↵ecting the running of the

higher-dimensional coupling �
6

. Here, we will assume that the leading contribution to the running of �
6

is given
by contributions of the Higgs scalar itself and the top.

The running of the strong coupling and the top Yukawa coupling in our model agree exactly with that of the
Standard Model given in Eq.(2). Only the running of the scalar quartic vs Higgs quartic coupling is di↵erent
because of di↵erent numbers of degrees of freedom. To compare our toy model with the Standard Model we also

4

term drives the Higgs self-coupling �
4

to small values and eventually through zero. Ignoring higher-dimensional
operators, the Higgs potential seems to become unstable at large energy scales, before the stabilizing e↵ect of the
weak gauge coupling sets in at very high scales. This is the usual stability issue in the perturbative setting. We
will give a more detailed interpretation in Sect. II C.
For the quantitative behavior of �

4

in Eq.(2) it is important that the top Yukawa coupling y also decreases toward
the ultraviolet under the influence of the strong coupling ↵s. Indeed, for the situation we want to investigate, �

4

and y both decrease toward the ultraviolet, and the loop contributions from those couplings to their running get
weaker and weaker. At some point the contributions from the weak couplings and y to the running of �

4

become
comparable in size. When their loop contributions almost cancel, the running of �

4

becomes flat, ��
4

⇡ 0. Finally,
in the deep ultraviolet the weak gauge couplings dominate and turn �

4

back to positive values. This behavior is
shown in the upper left panel of Fig. 1 [7].
Following this argument, the self-coupling �

4

in the Standard Model appears to first turn negative and finally
become positive again. From this behavior we would conclude that we live in a so-called metastable vacuum if
the Higgs potential, including only operators to dimension-4 is given by

V (H) ⇡ �
4

(H)
H4

4
with H � k

EW

, (4)

at high field values. Here, it is assumed that the e↵ective potential is well approximated by identifying the RG
scale with the field amplitude, �

4

(H) ⌘ �
4

(k = H). This potential features two minima, our electroweak minimum
and a global minimum at very large field values H � M

Pl

. The latter occurs far outside the region where the
renormalization group equations of Eq.(2) can be trusted. We therefore focus on stabilizing e↵ects that set in
below the Planck scale.

B. Toy model

In this section we set up a simple model that exhibits most of the essential features of the behavior of the
running Standard Model couplings without inheriting the full gauge structure. First, we replace the Higgs field H
as part of an SU(2) doublet by a general real scalar field ' featuring a discrete Z

2

chiral symmetry. This ensures
that no Goldstone modes alter the renormalization group flow in the symmetry-broken regime, just as in the
Standard Model with the full gauge structure. In a simple Yukawa system without gauge degrees of freedom we
already observe a similar perturbative flow toward negative �

4

at high scales [9]. The running of the top Yukawa
coupling to smaller values in the ultraviolet is included when we add an SU(3) gauge sector. Correspondingly, we
investigate the Euclidean action defined at the UV-cuto↵ scale ⇤

S
⇤

=

Z
d4x

2

41

4
Fµ⌫F

µ⌫ +
1

2
(@µ')

2 + V
e↵

(⇤) + i

nfX

j=1

 j /D j + i
yp
2

nyX

j=1

' j j

3

5 , (5)

with an SU(Nc) gauge field (Nc = 3), a real scalar ', Dirac fermions  j for nf flavors, the covariant derivative Dµ

including the strong coupling gs, and the e↵ective scalar potential V
e↵

. We assume that ny < nf of the fermion
species are heavy and shall have a degenerate large Yukawa coupling y. The remaining nf � ny flavors have
negligible Yukawa couplings. The e↵ective scalar potential is now expanded in terms of dimensionless couplings
�
2n as

V
e↵

(k) =
µ(k)2

2
'2 +

X

n=2

�
2n(k)

k2n�4

✓
'2

2

◆n

. (6)

This potential should be compared to the Standard Model potential shown in Eq.(1). As part of the potential we
study beta functions for the self-interaction �

4

and the '6-coupling �
6

. Here we restrict ourselves to the first in
an (infinite) series of possible higher-order couplings.

Because our toy model does not reflect the weak gauge structure of the Standard Model, the gauge couplings
g
1

and g
2

do not appear. However, we know that in the Standard Model they have significant e↵ects: first, the
gauge couplings give a significant positive contribution to ��

4

, balancing the negative top Yukawa terms for small
values of �

4

; second, they slow down the growing top Yukawa and thereby a↵ect the increase of �
4

toward large
field values. Since the variation of the weak coupling at large energy scales is modest, we account for its e↵ects
by including a finite contribution in the beta functions for �

4

and y, parametrized by a fiducial coupling gF and

Higgs-top model



• Potential at UV scale: all operators compatible with symmetries 
 

• Towards IR: irrelevant operators follow canonical scaling

Standard model as a low-energy effective theory
E↵ective field theory and higher-order couplings
induced potential at ⇤: all operators compatible with symmetries!
V⇤ = �4

4 �4 + �̄6
8 �6 + �̄8

16�
8 + ... with �i = �̄⇤i�4 ⇠ O(1)

in the IR: canonical scaling:
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) negligible for Mh(⇤)?
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becomes tiny very fast!  

‣ Nevertheless: impact on mass bounds 

‣ Or: impact on maximal UV extension
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Branchina & Messina (2013) 

Gies et al. (2013)
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without Φ6-coupling

VUV

�
with Φ6-coupling

VUV

• Mechanism to go below lower mass bound: 

1. Choose Higgs-self-coupling < 0 at UV scale 

2. Choose Φ6-coupling > 0 → potential is stable 

➡ Obtain smaller Higgs-self-coupling in the IR 

➡ Higgs mass lower than lower bound!

Main idea
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Gauged Higgs-Top Model - Higher-dimensional operators
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• Potential at UV scale: completely stable with minimum at H=0

‣ Potential completely stable during entire RG flow 

‣ Extend UV cutoff by orders of magnitude (~ 2) 

‣ Small shift in allowed Higgs masses towards 

smaller values

‣ Potential develops 2nd Minimum during RG flow 

‣ Min @ H=0 only metastable 

‣ Small λ6 sufficient to stabilize UV potential 

‣ Further RG studies required

mh = 125 GeVmh = 129 GeV� 0.4 GeV



Higgs Mass Bounds

conventional mass bound ~ 129 GeV
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Figure 4: Infrared value of the Higgs mass (left) and the relative shift �mh measuring the departure from the conventional
lower bound (right), as a function of the UV cuto↵ ⇤. We show di↵erent UV boundary conditions as indicated in the plot.

higher-dimensional couplings, we have thus constructed a scenario with a significantly increased cuto↵ scale, while
reaching the same values for the Higgs mass, quartic self-coupling, and top mass in the infrared.
In the second scenario, shown in the right panel of Fig. 3 we choose a somewhat smaller value of �

6

> 0.
Despite �

6

being smaller, the UV potential at ⇤ is still completely stable with a global minimum at H = 0. Due
to the smaller initial value of �

6

it becomes smaller than required by the stability condition Eq. (14) before �
4

reaches positive values. In this region, indicated by dashed lines, the scale dependent e↵ective potential develops
a second minimum and H = 0 is only a metastable minimum. This suggests the possibility that the e↵ective
potential is only metastable for H = 0. However, our polynomial expansion of the potential is not su�cient to
fully establish this feature and a more advanced investigation is needed (we further comment on the limitations
of our approximation below).

For parameter choices such as those used in Fig. 3, the potential runs into a regime regime where �
6

< 0 and
the potential is therefore not bounded from below. In the range from 1010 GeV to 1017 GeV �

4

and �
6

are both
negative. However, arguments similar to the ones given in Section IIC imply that for a stable UV-potential the
apparent unboundedness is an artifact of the chosen approximation [9]. In particular, the possible stabilization
by terms H8 etc is neglected in our approximation. One may then worry about the chosen approximation
but the mass term in this regime is still large and positive, guaranteeing that the approximate potential has a
minimum at H = 0 with a high and wide potential barrier isolating it from the e↵ects of the instability. Whether
the RG evolution of both minima remains essentially independent of each other cannot be studied within our
approximation. Still, we expect that even in this regime our approximation works reasonably well for field values
H close to the electroweak minimum.

Let us now examine the e↵ects of �
6

on the stability bounds for the Higgs mass. To derive Higgs mass bounds
we first focus on a stable UV-potential with a global minimum at vanishing field values. In the absence of higher-
dimensional couplings, the lower Higgs mass bound can be determined by requiring the quartic coupling to vanish
at the cuto↵ scale ⇤. Higher-dimensional couplings at the scale ⇤ can take values of O(1) in units of the cuto↵
scale. Indeed this is the generic situation that one would expect when examining an e↵ective field theory such as
the Standard Model close to its cuto↵ scale. As discussed in Sec. II C, stable potentials are then guaranteed by
Eq.(14). In the left panel of Fig. 4 we first confirm that the observed Higgs mass around 125 GeV corresponds to
the ultraviolet boundary condition �

4

= 0 at ⇤⇡1010 GeV. Shifting this boundary condition closer to the Planck
scale and hence allowing for a fully stable potential would require a Higgs mass close to 130 GeV with a fixed
top mass. We also show several choices of ultraviolet boundary conditions. Those which predict smaller physical
Higgs masses than the choice �i = 0 allow us to increase the ultraviolet cuto↵. According to Eq.(14) a viable
choice for a UV-stable potential including higher-dimensional operators is for example �

4

= �0.05 and �
6

= 0.5.
The corresponding Higgs mass stays below the conventional lower bound for all values of ⇤ and indeed gives a
stable potential at to the Planck scale, with a dip into a possible metastable phase on intermediate scales.

As described in detail in Sec. II B our calculation of the Higgs mass relies on a numerically convincing, but
nevertheless a toy model. Special care is required when translating the computed shift of the Higgs mass at fixed
cuto↵ to the Standard Model. We nevertheless conclude that shifts at the level of 1 � 5% seem viable. To see
this, we study the relative shift in the Higgs mass between the perturbative Standard Model and including the

Λ for observed Higgs mass

• Potential at UV scale: completely stable with minimum at H=0

dip into possible metastable phase

relax mass bounds/increase UV cutoff

‣ Take care when translating shifts from toy model to SM 

‣ Nevertheless: shifts at level of 1-5% seem viable

generalized UV potentials
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Figure 5: Running �
6

(k) along RG trajectories with �
6

(k
UV

) = 0 (black solid), �
6

(k
UV

) = 0.1 (red dashed), �
6

(k
UV

) = 0.5
(blue dotted), �

6

(k
UV

) = 2 (green dot-dashed) and the pseudo-fixed point (thin grey dashed).

III. MODELS FOR HIGH-SCALE PHYSICS

Starting with an e↵ective field theory at a finite scale ⇤, the corresponding action can depend on many additional
free parameters in the top-Higgs sector. An example is given by �

6

as studied in Sec. II B. These parameters can
have a sizeable influence on the stability of the Higgs potential at high energy scales. In Sec. IID we demonstrated
that the interplay of just the �

6

term with the Higgs quartic coupling shifts the limits on the measured Higgs
mass from naive stability arguments by several per-cent [? ]. Let us now address the key question as to whether
such an e↵ect can be generated in a particle physics model, by integrating out heavy states [40]. Depending on
the choice of cuto↵ scale, we would of course expect that the microscopic model could also contain gravitational
degrees of freedom. Here, we will focus on a much simpler toy model to demonstrate the presence of higher-order
coupling at ⇤.

A. Heavy scalars

As a first step, let us check if additional heavy scalars can provide a model for new physics above ⇤, which
induces stable potentials with �

6

> 0 and �
4

< 0. In the simplest scenario, the cuto↵ scale ⇤ corresponds to
the mass scale of additional states, which are coupled to the Standard Model. For scales k > ⇤ they contribute
to the renormalization group flow of the SM couplings shown in Eq.(7). To compute the allowed Higgs masses
in such a scenario, we do not need to consider a UV-complete theory for the heavy states beyond ⇤. Instead,
the model can come with an inherent cuto↵, ⇤

BSM

� ⇤. This corresponds to a hierarchy of e↵ective theories, in
which the Standard Model is superseded by a model containing heavy scalars, which again will be embedded in
a more fundamental model close to the Planck scale.

In our simple model we couple the additional scalar to the Standard Model through a Higgs portal [18] added
to the e↵ective potential of Eq.(6),

�V
e↵

= �HS
H2

2

S2

2
+m2

S

S2

2
+ �S

S4

4
. (22)

Due to the reflection symmetry S ! �S, the heavy scalar is stable and could constitute (a part of) the dark
matter relic density. This additional massive scalar field adds new loop terms to the beta functions for �

4

and
�
6

, contributing only for k > mS . To decouple the massive modes below mS we include threshold terms of the
form 1/(1 +m2

S/k
2)n with an appropriate power n. Including threshold e↵ects, the loop terms can be calculated

in the FRG scheme, as shown in App. C. If we allow for NS mass-degenerate scalar fields with the same Higgs
portal interaction, the one-loop beta functions of our toy model, Eq.(7), become
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� 108�3

4

+ 90�
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2(1 +m2

S/k
2)4

�
. (23)

Higgs portal:

• How to generate suitable higher-dimensional couplings from high-scale physics? 

• Induce potential with λ4<0 and λ6>0 

• simple model: introduce NS heavy scalars with inherent cutoff, e.g. @ΛBSM=MPl
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Figure 7: Running couplings in the presence of a Higgs portal coupling �HS . In the top row the boundary condition is
�
4

(⇤
BSM

) = 0, while in the second row it is replaced by a finite value. In the bottom row we illustrate a moderately big
�HS ⇠ 1 at the Planck scale, which is su�cient for an absolutely stable potential at all scales.

field values of H. In the following, we will restrict ourselves to �
4

and �
6

, but keep in mind that higher-dimensional
couplings will be generated with alternating signs. While truncating this series at finite order could suggest either
stability or instability, the contribution to the e↵ective potential generated by heavy scalars remains stable, and
features a minimum at vanishing field.

For approximately constant �HS(k) the value of �4

will depend on log(⇤
BSM

/⇤) and the Higgs quartic coupling
will decrease as a function of ⇤

BSM

/⇤. Furthermore, the bare value �
4

(⇤
BSM

) will determine �
4

(⇤). On the
other hand, higher-dimensional couplings such as �

6

reach values which are independent of ⇤
BSM

, as expected
from their canonical dimensionality. As in the case of the pure Standard Model, the infrared value of �

6

in the
presence of a heavy scalar is determined by a pseudo-fixed point. In Fig. 7 we demonstrate that the behavior
of �

6

is completely determined in terms of this strongly IR-attractive pseudo-fixed point, making the value of
�
6

(⇤
BSM

) irrelevant for weak-scale observables. All three scenarios shown yield the correct values mh = 125 GeV

and m
(pole)

t = 173 GeV. The value of �
6

(⇤) only depends on the relevant and marginal coupling at that scale. As
expected from universality arguments, �

6

forgets the dynamics between ⇤
BSM and ⇤, di↵erent from the marginally

relevant coupling �
4

, which does depend on the details of the dynamics at ⇤
BSM

.
Comparing the full solution to the pseudo-fixed point trajectory in and beyond the Standard Model we indeed

observe that setting �
6

(⇤) = �⇤
6 SM

(and correspondingly for all higher-dimensional operators) is too restrictive.
Instead, the value of �

6

is determined by an interplay of two pseudo-fixed points: As long as k > ⇤, �
6

is determined
by the pseudo-fixed point in the presence of new physics. Below the scale of new physics, �

6

undergoes a transition
to the pseudo-fixed point determined by the relevant and marginal Standard Model couplings. A caveat is that
this analysis applies only to situations with small anomalous dimensions, i.e. , in a perturbative regime.

We can now determine the conditions under which �
4

(⇤) and �
6

(⇤) assume values that according to Sec. IID
yield Higgs masses below the conventional lower bound. First, we re-iterate our earlier observation that seeming
instabilities in the potential in Fig. 7 are artifacts of our truncation to �

4

and �
6

. To fix �
4

and �
6

we set

‣ Generated λ6 at 1014 GeV: 

➡ Induce stable potential with λ4<0 and λ6>0: 

➡ For small number of new states need sizable portal coupling
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�
4

(⇤
BSM

) such that the Higgs mass comes out correctly. We then solve the pseudo-fixed point equation for �
6

,
which determines its value at ⇤. We obtain
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(⇤))
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A positive top Yukawa and a negative Higgs quartic coupling, which is the case of interest for the Higgs mass
bounds, each reduce the pseudo-fixed point value. As the top Yukawa coupling grows toward the infrared, this
negative contribution increases. Accordingly, a su�ciently large and positive value of �HS is needed for a positive
fixed-point value �⇤

6

, which is then depleted toward lower scales. In contrast, �
4

is driven to increasingly negative
values by the fluctuations of the heavy scalar. This implies that while the generated value of �

6

provides a potential
that is bounded from below, it is not always large enough to yield a potential with a minimum at vanishing field
values. The size of the quadratic Higgs coupling µ2 still decides whether the potential at the cuto↵ scale ⇤ is
metastable, or features a global minimum at vanishing Higgs field.
It is nevertheless possible to generate initial conditions corresponding to a stable bare potential with a minimum

at vanishing field values. As an example, we use ⇤ = 1014 GeV, where y(⇤) = 0.476 and �
4

(⇤) = �0.017 give
a physical Higgs mass of 125 GeV. This value of �

4

(⇤) can be reached by adjusting �
4

(⇤
BSM

). To obtain a
UV-stable potential with the measured Higgs mass value, we need

NS�
3

HS & 24 , (26)

for example corresponding to �HS ⇠ 2 and 3 additional scalars. This large value ofNS�
3

HS is needed to compensate
for the factor 216 in front of the �

4

term in Eq.(25), which arises from the combinatorics of the respective scalar
diagrams. Accordingly, a new physics scenario in which the new states are not combinatorically disfavored in
comparison to the Higgs can accommodate larger values of �

6

without needing a large numbers of new states
and/or large couplings.

In our example, the large value of the Higgs portal coupling implies that the heavy scalar sector will be driven
toward a Landau pole not far above ⇤

BSM

. In such simple models one could therefore conclude that a UV-stable
potential for the Higgs sector can be generated at the cost of a nonperturbative regime not far above ⇤

BSM

.

B. Heavy fermions

An obvious open question is the e↵ect of heavy fermions. If their mass is generated through symmetry breaking
at the electroweak scale, they will have a large Yukawa coupling. For example models featuring a heavy chiral
fourth generation show a significantly reduced value of the possible cuto↵ scale ⇤ since the extra fermions would
just add to the problematic e↵ect of the top-quark. Furthermore, such models are experimentally excluded through
the Higgs coupling measurements at the LHC.

We consider a model where the additional fermions are heavy, but their Yukawa coupling is small. In this
setting we rely on an unspecified symmetry breaking mechanism at a high scale, a↵ecting only the additional
fermions. In our simple model we include such a mass term without discussing its possible origin. While such
an inclusion is straightforward in the present Z

2

model – although the mass term sources an explicit breaking of
the Z

2

symmetry – an embedding of such a mechanism in the standard model is less clear owing to obstructions
imposed by SU(2)L gauge invariance. The relevant Lagrangian terms for N⌘ heavy fermions then take the form

L⌘ � y⌘H ⌘̄⌘ +m2

⌘ ⌘̄⌘ . (27)

Alternatively, we could consider a model where the additional fermions are singlets under the Standard Model
gauge groups. In that case they can have a mass even in the unbroken phase. Their Higgs couplings would
correspond to a dimension-5 operator of the form H2⌘̄⌘.

Let us again analyze the induced potential at ⇤ = m⌘ in terms of the pseudo-fixed point for �
6

, which instead
of Eq.(25) now gets the additional contribution
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� . (28)

The fermion ⌘ induces a negative contribution to �
6

. In general, its contribution to �n will be positive for n/2
even, and negative for n/2 odd. This means that heavy fermions will generically make it hard to reach sizeable
positive values of �

6

, but they might be of interest for cases where, e.g., �
8

> 0 stabilizes the potential.
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Summary & Outlook

• measured Higgs mass very close to lower bound Mh(Λ = MPl) 

• Perturbative analysis: Higgs potential loses stability around 1010 GeV 

• This statement can be relaxed: 

‣ higher-dimensional operators at UV scale Λ 

‣ non-perturbative treatment allows for more general values of higher-dim couplings 

✓ Higgs masses below lower bound are possible 

✓ With completely stable potential, we can extend UV cutoff by 2 orders of magnitude 

✤ Question: What type of physics can predict higher-dim operators of suitable size? 

‣We have investigated simple SM extension with heavy scalars 

‣ Required parameter choices in simple model are at border to non-perturbative


