
fads: a FAst Detector Simulation
toolkit
GdR Terascale, 2014/12/13

Sebastien Binet
CNRS/IN2P3

(a brief) History of software in HEP

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

1 of 25 12/12/14 11:59 PM

50's-90's: FORTRAN77

c == hello.f ==
 program main
 implicit none
 write (*, '(a)') 'Hello from FORTRAN'
 stop
 end

$ gfortran -c hello.f && gfortran -o hello hello.o
$./hello
Hello from FORTRAN

FORTRAN77 is the king

1964: CERNLIB

REAP (paper tape measurements), THRESH (geometry reconstruction)

SUMX, HBOOK (statistical analysis chain)

ZEBRA (memory management, I/O, ...)

GEANT3, PAW

90's-...: C++

#include <iostream>
int main(int, char **) {
 std::cout << "Hello from C++" << std::endl;
 return EXIT_SUCCESS;
}

$ c++ -o hello hello.cxx && ./hello
Hello from C++

object-oriented programming (OOP) is the cool kid on the block

ROOT, POOL, LHC++, AIDA, Geant4

C++ takes roots in HEP

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

2 of 25 12/12/14 11:59 PM

00's-...: python

print "Hello from python"

$ python ./hello.py
Hello from python

python becomes the de facto scripting language in HEP

framework data-cards

analysis glue, (whole) analyses in python

PyROOT, rootpy

numpy, scipy, IPython, matplotlib

Current software in a nutshell

Generators: generation of true particles from fondamental physics first principles

Full Simulation: tracking of all stable particles in magnetic field through the detector
simulating interaction, recording energy deposition (CPU intensive)

Reconstruction: from real data, or from Monte-Carlo simulation data as above

Fast Simulation: parametric simulation, faster, coarser

Analysis: daily work of physicists, running on output of reconstruction to derive
analysis specific information (I/O intensive)

everything in the same C++ offline control framework (except analysis)

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

3 of 25 12/12/14 11:59 PM

C++: slow (very slow?) to compile/develop, fast to execute

python: fast development cycle (no compilation), slow to execute

Are those our only options ?

Moore's law

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

4 of 25 12/12/14 11:59 PM

Moore's law

Moore's law still observed at the hardware level

However the effective perceived computing power is mitigated

"Easy life" during the last 20-30 years:

Moore's law transleted into doubling compute capacity every ~18 months (via clock
frequency)

Concurrency and parallelism necessary to efficiently harness the compute power
of our new multi-core CPU architectures.

But our current software isn't prepared for parallel/concurrent environments.

Interlude: concurrency & parallelism

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

5 of 25 12/12/14 11:59 PM

Interlude: concurrency & parallelism

Concurrency is about dealing with lots of things at once.

Parallelism is about doing lots of things at once.

Not the same, but related.

Concurrency is about structure, parallelism is about execution.

Concurrency is a way to structure a program by breaking it into pieces that can be
executed independently.
Communication is the means to coordinate the independent executions.

Concurrency in HEP software

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

6 of 25 12/12/14 11:59 PM

Concurrency in HEP software - II

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

7 of 25 12/12/14 11:59 PM

Multi-processing

Launch N instances of an application on a node with N cores

re-use pre-existing code

a priori no required modification of pre-existing code

satisfactory scalability with the number of cores

But:

resource requirements increase with the number of processes

memory footprint increases

as do other O/S (limited) resources (file descriptors, network sockets, ...)

scalability of I/O debatable when number of cores > ~100

Multi-threading

C++11/14 libraries do help a bit:
- std::lambda, std::thread, std::promise
- (Intel) Threading Building Blocks
- ...

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

8 of 25 12/12/14 11:59 PM

Time for a new language ?

Candidates

python/pypy

FORTRAN-2008

Vala

Swift

Rust

Go

Chapel

Scala

Haskell

Clojure

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

9 of 25 12/12/14 11:59 PM

Why not Go ?

package main

import "fmt"

func main() {
 lang := "Go"
 fmt.Printf("Hello from %s\n", lang)
}

$ go run hello.go
Hello from Go

A nice language with a nice mascot.

Go in a nutshell

Go (https://golang.org) is a new, general-purpose programming language.

Compiled

Statically typed

Concurrent

Simple

Productive

"Go is a wise, clean, insightful, fresh thinking approach to the greatest-hits subset of the
well understood."
- Michael T. Jones

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

10 of 25 12/12/14 11:59 PM

History

Project starts at Google in 2007 (by Griesemer, Pike, Thompson)

Open source release in November 2009

More than 250 contributors join the project

Version 1.0 release in March 2012

Version 1.1 release in May 2013

Version 1.2 release in December 2013

Version 1.3 release in June 2014

Version 1.4 release in December 2014 (last Thursday)

Elements of Go

Founding fathers: Russ Cox, Robert Griesemer, Ian Lance Taylor, Rob Pike, Ken
Thompson

Concurrent, garbage-collected

An Open-source general progamming language (BSD-3)

feel of a dynamic language: limited verbosity thanks to the type inference system,
map, slices

safety of a static type system

compiled down to machine language (so it is fast, goal is ~10% of C)

object-oriented but w/o classes, builtin reflection

first-class functions with closures

implicitly satisfied interfaces

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

11 of 25 12/12/14 11:59 PM

Elements of Go - II

available on MacOSX, Linux, Windows,... x86, x64, ARM.

available on lxplus:

$ ssh lxplus
[...]
* LXPLUS Public Login Service
* 2014-09-23 - expect installed
* 2014-10-02 - golang (Go Language) installed
* **

$ /usr/bin/go version
go version go1.2.2 linux/amd64

$. /afs/cern.ch/sw/lcg/contrib/go/1.3/linux_amd64/setup.sh
$ go version
go version go1.3 linux/amd64

Concurrency

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

12 of 25 12/12/14 11:59 PM

Goroutines

The go statement launches a function call as a goroutine

go f()
go f(x, y, ...)

A goroutine runs concurrently (but not necessarily in parallel)

A goroutine has its own (growable/shrinkable) stack

A simple example

func f(msg string, delay time.Duration) {
 for {
 fmt.Println(msg)
 time.Sleep(delay)
 }
}

Function f is launched as 3 different goroutines, all running concurrently:

func main() {
 go f("A--", 300*time.Millisecond)
 go f("-B-", 500*time.Millisecond)
 go f("--C", 1100*time.Millisecond)
 time.Sleep(20 * time.Second)
} Run

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

13 of 25 12/12/14 11:59 PM

Communication via channels

A channel type specifies a channel value type (and possibly a communication direction):

chan int
chan<- string // send-only channel
<-chan T // receive-only channel

A channel is a variable of channel type:

var ch chan int
ch := make(chan int) // declare and initialize with newly made channel

A channel permits sending and receiving values:

ch <- 1 // send value 1 on channel ch
x = <-ch // receive a value from channel ch (and assign to x)

Channel operations synchronize the communicating goroutines.

Communicating goroutines

Each goroutine sends its results via channel ch:

func f(msg string, delay time.Duration, ch chan string) {
 for {
 ch <- msg
 time.Sleep(delay)
 }
}

The main goroutine receives (and prints) all results from the same channel:

func main() {
 ch := make(chan string)
 go f("A--", 300*time.Millisecond, ch)
 go f("-B-", 500*time.Millisecond, ch)
 go f("--C", 1100*time.Millisecond, ch)

 for i := 0; i < 100; i++ {
 fmt.Println(i, <-ch)
 }
} Run

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

14 of 25 12/12/14 11:59 PM

fads

fads

fads is a "FAst Detector Simulation" toolkit.

morally a translation of C++-Delphes (https://cp3.irmp.ucl.ac.be/projects/delphes) into Go

uses go-hep/fwk (https://github.com/go-hep/fwk) to expose, manage and harness concurrency into
the usual HEP event loop (initialize | process-events | finalize)

uses go-hep/hbook (https://github.com/go-hep/hbook) for histogramming, go-hep/hepmc (htpps://github.com/go-hep

/hepmc) for HepMC input/output

Code is on github (BSD-3):

github.com/go-hep/fwk (https://github.com/go-hep/fwk)

github.com/go-hep/fads (https://github.com/go-hep/fads)

Documentation is served by godoc.org (https://godoc.org) :

godoc.org/github.com/go-hep/fwk (https://godoc.org/github.com/go-hep/fwk)

godoc.org/github.com/go-hep/fads

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

15 of 25 12/12/14 11:59 PM

go-hep/fads - Installation

As easy as:

$ export GOPATH=$HOME/dev/gocode
$ export PATH=$GOPATH/bin:$PATH

$ go get github.com/go-hep/fads/...

Yes, with the ellipsis at the end, to also install sub-packages.

go get will recursively download and install all the packages that go-hep/fads
(https://github.com/go-hep/fads) depends on. (no Makefile needed)

go-hep/fwk - Examples

$ fwk-ex-tuto-1 -help
Usage: fwk-ex-tuto1 [options]

ex:
 $ fwk-ex-tuto-1 -l=INFO -evtmax=-1

options:
 -evtmax=10: number of events to process
 -l="INFO": message level (DEBUG|INFO|WARN|ERROR)
 -nprocs=0: number of events to process concurrently

Runs 2 tasks.

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

16 of 25 12/12/14 11:59 PM

go-hep/fwk - Examples

$ fwk-ex-tuto-1
::: fwk-ex-tuto-1...
t2 INFO configure...
t2 INFO configure... [done]
t1 INFO configure ...
t1 INFO configure ... [done]
t2 INFO start...
t1 INFO start...
app INFO >>> running evt=0...
t1 INFO proc... (id=0|0) => [10, 20]
t2 INFO proc... (id=0|0) => [10 -> 100]
[...]
app INFO >>> running evt=9...
t1 INFO proc... (id=9|0) => [10, 20]
t2 INFO proc... (id=9|0) => [10 -> 100]
t2 INFO stop...
t1 INFO stop...
app INFO cpu: 654.064us
app INFO mem: alloc: 62 kB
app INFO mem: tot-alloc: 74 kB
app INFO mem: n-mallocs: 407
app INFO mem: n-frees: 60
app INFO mem: gc-pauses: 0 ms
::: fwk-ex-tuto-1... [done] (cpu=788.578us)

go-hep/fwk - Concurrency

fwk (https://github.com/go-hep/fwk) enables:
- event-level concurrency
- tasks-level concurrency

fwk (https://github.com/go-hep/fwk) relies on Go (https://golang.org) 's runtime to properly schedule goroutines.

For sub-task concurrency, users are by construction required to use Go (https://golang.org) 's
constructs (goroutines and channels) so everything is consistent and the runtime has the
complete picture.

Note: Go (https://golang.org) 's runtime isn't yet NUMA-aware. A proposal for Go-1.5 (June-2015)
is in the works (https://docs.google.com/document/d/1d3iI2QWURgDIsSR6G2275vMeQ_X7w-qxM2Vp7iGwwuM/pub) .

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

17 of 25 12/12/14 11:59 PM

go-hep/fads - real world use case

translated C++-Delphes (https://cp3.irmp.ucl.ac.be/projects/delphes) ' ATLAS data-card into Go

go-hep/fads-app (https://github.com/go-hep/fads/blob/master/cmd/fads-app/main.go)

installation:

$ go get github.com/go-hep/fads/cmd/fads-app
$ fads-app -help
Usage: fads-app [options] <hepmc-input-file>

ex:
 $ fads-app -l=INFO -evtmax=-1 ./testdata/hepmc.data

options:
 -cpu-prof=false: enable CPU profiling
 -evtmax=-1: number of events to process
 -l="INFO": log level (DEBUG|INFO|WARN|ERROR)
 -nprocs=0: number of concurrent events to process

go-hep/fads - components

a HepMC converter

particle propagator

calorimeter simulator

energy rescaler, momentum smearer

isolation

b-tagging, tau-tagging

jet-finder (reimplementation of FastJet in Go: go-hep/fastjet (https://github.com/go-hep/fastjet))

histogram service (from go-hep/fwk (https://github.com/go-hep/fwk))

Caveats:

no real persistency to speak of (i.e.: JSON, ASCII and Gob)

jet clustering limited to N^3 (slowest and dumbest scheme of C++-FastJet)

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

18 of 25 12/12/14 11:59 PM

Results - testbenches

Linux: Intel(R) Core(TM)2 Duo CPU @ 2.53GHz, 4GB RAM, 2 cores

MacOSX-10.6: Intel(R) Xeon(R) CPU @ 2.27GHz, 172GB RAM, 16 cores

Linux: Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz, 40 cores

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

19 of 25 12/12/14 11:59 PM

Linux (40 cores) testbench: memory

Linux (40 cores) testbench: CPU

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

20 of 25 12/12/14 11:59 PM

Linux (40 cores) testbench: event throughput

Results & Conclusions

good RSS scaling

good CPU scaling

bit-by-bit matching physics results wrt Delphes (up to calorimetry)

Also addresses C++ and python deficiencies:

code distribution

code installation

compilation/development speed

runtime speed

simple language

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

21 of 25 12/12/14 11:59 PM

Prospects

proper persistency package (in the works: go-hep/rio (https://github.com/go-hep/rio))

histograms (persistency) + n-tuples (interactivity): go-hep/hbook (https://github.com/go-hep/hbook)

performance improvements (cpu-profiling via go tool pprof)

implement more of go-fastjet combination schemes and strategies

more end-user oriented documentation

Join the fun: go-hep forum (https://groups.google.com/d/forum/go-hep)

Acknowledgements / resources

talks.golang.org/2012/tutorial.slide (http://talks.golang.org/2012/tutorial.slide)

talks.golang.org/2014/taste.slide (http://talks.golang.org/2014/taste.slide)

tour.golang.org (http://tour.golang.org)

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

22 of 25 12/12/14 11:59 PM

That's all !

Backup

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

23 of 25 12/12/14 11:59 PM

go-hep/fwk - configuration & steering

use regular Go (https://golang.org) to configure and steer.

still on the fence on a DSL-based configuration language (YAML, HCL, Toml, ...)

probably not Python though

// job is the scripting interface to 'fwk'
import "github.com/go-hep/fwk/job"

func main() {
 // create a default fwk application, with some properties
 app := job.New(job.P{
 "EvtMax": 10,
 "NProcs": 2,
 })

 // ... cont'd on next page...

go-hep/fwk - configuration & steering

// create a task that reads integers from some location
// and publish the square of these integers under some other location
app.Create(job.C{
 Type: "github.com/go-hep/fwk/testdata.task2",
 Name: "t2",
 Props: job.P{
 "Input": "t1-ints1",
 "Output": "t1-ints1-massaged",
 },
})
// create a task that publish integers to some location(s)
// create after the consummer task to exercize the automatic data-flow scheduling.
app.Create(job.C{
 Type: "github.com/go-hep/fwk/testdata.task1",
 Name: "t1",
 Props: job.P{
 "Ints1": "t1-ints1",
 "Ints2": "t2-ints2",
 "Int1": int64(10), // initial value for the Ints1
 "Int2": int64(20), // initial value for the Ints2
 },
})
app.Run()

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

24 of 25 12/12/14 11:59 PM

Thank you

Sebastien Binet
CNRS/IN2P3

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads.slide#1

25 of 25 12/12/14 11:59 PM

