fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads .slide#1

fads: a FAst Detector Simulation
toolkit

GdR Terascale, 2014/12/13

Sebastien Binet
CNRS/IN2P3

(a brief) History of software in HEP

1 of 25 12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads slide#1

50's-90's: FORTRAN77

c == hello.f ==
program main
implicit none
write (*, '(a)') 'Hello from FORTRAN'
stop
end

$ gfortran -c hello.f &% gfortran -o hello hello.o
$./hello
Hello from FORTRAN

® FORTRAN77 is the king
1964: CERNLIB

REAP (paper tape measurements), THRESH (geometry reconstruction)

SUMX, HBOOK (statistical analysis chain)

ZEBRA (memory management, I/Q, ...)
GEANT3, PAW

90's-...: C++

#include <iostream>

int main(int, char **) {
std::cout << "Hello from C++" << std::endl;
return EXIT_SUCCESS;

}

$ c++ -0 hello hello.cxx && ./hello
Hello from C++

® object-oriented programming (OOP) is the cool kid on the block
e ROOT, POOL, LHC++, AIDA, Geant4

e C++takes roots in HEP

2 of 25 12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads slide#1

00's-...: python
print "Hello from python"

$ python ./hello.py
Hello from python

A

python becomes the de facto scripting language in HEP

framework data-cards

analysis glue, (whole) analyses in python

PyROOQOT, rootpy

numpy, scipy, IPython, matplotlib

Current software in a nutshell

e Generators: generation of true particles from fondamental physics first principles

Full Simulation: tracking of all stable particles in magnetic field through the detector
simulating interaction, recording energy deposition (CPU intensive)

Reconstruction: from real data, or from Monte-Carlo simulation data as above

Fast Simulation: parametric simulation, faster, coarser

Analysis: daily work of physicists, running on output of reconstruction to derive
analysis specific information (/0 intensive)

everything in the same C++ offline control framework (except analysis)

HepMC)—)I Simulation I—)(GA4Hits)—)I Digitization I
Fast Simulatio ¢
(AtIFast)
ESD >(—| Reconstructionl(—‘ G4Digits)

30f25 12/12/14 11:59 PM

Analysis
Preparation

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads slide#1

e (C++:slow (very slow?) to compile/develop, fast to execute

e python: fast development cycle (no compilation), slow to execute

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

HEY! GET BACK
TOWORK!

Are those our only options ?

Moore's law

10,000,000
Dual-Core Itanium 2 . /
1,000,000 <
| |
Intel CPU Trends /
(sources: Intel, Wikipedia, K. Olukotun) Y
100,000
[Pentium 4 g
10,000
1,000 ame s,
100 = A
o, AM b :
am 2?0 A
o ‘ LA H al
10 | a4
‘/g oo ‘ A ‘ AA‘ e
a A A)
LY A Ab
1 f ! Y > | Transistors (000) [
'./. / o @ Clock Speed (MHz)
PR 4 A Power (W)
® Perf/Clock (ILP)
0 I I

1970 1975 1980 1985 1990 1995 2000 2005 2010

4 of 25 12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads .slide#1

Moore's law

e Moore's law still observed at the hardware level

e However the effective perceived computing power is mitigated
"Easy life" during the last 20-30 years:

e Moore's law transleted into doubling compute capacity every ~18 months (via clock
frequency)

e Concurrency and parallelism necessary to efficiently harness the compute power
of our new multi-core CPU architectures.

But our current software isn't prepared for parallel/concurrent environments.

Interlude: concurrency & parallelism

5of 25 12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads slide#1

Interlude: concurrency & parallelism
e Concurrency is about dealing with lots of things at once.
e Parallelism is about doing lots of things at once.
e Not the same, but related.

e Concurrency is about structure, parallelism is about execution.

’ TASK 1 ‘ ‘ TASK 2 ‘

CONCURRENCY

—|__ | - —
_ || | | |,

PARALLELISM

Concurrency is a way to structure a program by breaking it into pieces that can be
executed independently.
Communication is the means to coordinate the independent executions.

Concurrency in HEP software

Event Event- Event- Event-
specific specific specific specific
data data data data
Global
data
Physics
processes Single copy

of all data
that can be
shared

6 of 25 12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit

7 of 25

Concurrency in HEP software - I

Various levels of concurrency can be exposed in current HEP applications:

@ event-level concurrency
» the framework allows to properly and safely process multiple events at a given time
@ algorithm-level concurrency, task- and/or data- oriented concurrency

» the framework allows to partition the processing of an event into various sub-tasks
(calorimetry, tracking, Rols, ...)

» task/functional oriented concurrency: split according to “logical” tasks

» data oriented concurrency: partition the data domain

@ subalgorithm-level concurrency

» each algorithm can itself exposes concurrent sub-sub-tasks
» leverage co-processors, vector units, ...

TS ~—

CPU = multi-cores
@ each CPU may hold multiple (2 —~ 64) cores
@ each core is individually slower than the “old” CPUs
@ available memory per core decreases

http://127.0.0.1:3999/go-fads slide#1

1 number of CPU cores = 1 concurrency + parallelism

@ analysis & reconstruction applications:

» parallelism at event level
» embarassingly parallel

@ parallelism at algorithm level

» potentially more scalable
» more difficult too (code redesign/rewrite)

1

Amdahl’s law: Rspeedup = 7 _c._ S
=5+ wgpy

harness parallelism via:
® multi-processing (eg: AthenaMP, GaudiMP, CMSSW, ...)
@ multi-threading (eg: AthenaMT, GaudiHive, Geant4-MT, CMSSW,

12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads .slide#1

Multi-processing
Launch N instances of an application on a node with N cores
® re-use pre-existing code
e q priori no required modification of pre-existing code
e satisfactory scalability with the number of cores
But:
® resource requirements increase with the number of processes

e memory footprint increases

e as do other O/S (limited) resources (file descriptors, network sockets, ...)

e scalability of I/0 debatable when number of cores >~100

Multi-threading

@ parallel programming in C++ is doable:
» C/C++ locks + threads (pthread, WinThreads)
* great performances

* good generality
* rather low productivity

» multithreaded applications

* hard to get right
* hard to keep right
* hard to keep efficient and optimized across releases

Parallel programming in c++ is doable,
but is no panacea

C++11/14 libraries do help a bit:
-std: :lambda, std: : thread, std: :promise
- (Intel) Threading Building Blocks

8 of 25

12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit

9 of 25

Time for a new language ?

“Successful new languages build on existing languages and where
possible, support legacy software. C++ grew our of C. java grew out of C++.
To the programmer, they are all one continuous family of C languages.”

(T. Mattson)

@ notable exception (which confirms the rule): python

.
Can we have a language:

@ as easy (to learn and use) as python,

@ as fast (or nearly as fast) as C/C++/FORTRAN,
@ with none of the deficiencies of C++,

@ and is multicore/manycore friendly ?

Candidates

* python/pypy
e FORTRAN-2008

e Vala
e Swift
® Rust

e GO

Chapel

Scala
Haskell

Clojure

http://127.0.0.1:3999/go-fads .slide#1

12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads .slide#1

Why not Go ?

package main
import "fmt"
func main() {

lang := "Go"
fmt.Printf("Hello from %s\n", lang)

$ go run hello.go
Hello from Go

A nice language with a nice mascot.

Go in a nutshell

GO pepsuoangorn IS @ NEW, general-purpose programming language.

e Compiled

e Statically typed
e Concurrent

e Simple

e Productive

"Go is a wise, clean, insightful, fresh thinking approach to the greatest-hits subset of the
well understood."
- Michael T. Jones

10 of 25 12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads .slide#1

History
® Project starts at Google in 2007 (by Griesemer, Pike, Thompson)
® Open source release in November 2009
e More than 250 contributors join the project
e Version 1.0 release in March 2012
e Version 1.1 release in May 2013
e Version 1.2 release in December 2013
e Version 1.3 releasein June 2014

e Version 1.4 release in December 2014 (last Thursday)

Elements of Go

e Founding fathers: Russ Cox, Robert Griesemer, lan Lance Taylor, Rob Pike, Ken
Thompson

e Concurrent, garbage-collected
e An Open-source general progamming language (BSD-3)

e feel of a dynamic language: limited verbosity thanks to the type inference system,
map, slices

e safety of a static type system

e compiled down to machine language (so it is fast, goal is ~10% of C)
e object-oriented but w/o classes, builtin reflection

e first-class functions with closures

e implicitly satisfied interfaces

11 of 25 12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads .slide#1

Elements of Go - Il
e available on MacOSX, Linux, Windows,... x86, x64, ARM.

® available on Ixplus:

$ ssh Ixplus

[...]

* LXPLUS Public Login Service

* 2014-09-23 - expect installed

* 2014-10-02 - golang (Go Language) installed

E I o e

$ /usr/bin/go version
go version go1.2.2 linux/amd64

$. /afs/cern.ch/sw/1lcg/contrib/go/1.3/1inux_amd64/setup.sh
$ go version
go version gol.3 linux/amd64

Concurrency

12 of 25 12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads .slide#1

Goroutines

e The go statement launches a function call as a goroutine

go ()
go f(x, vy, ...)

e A goroutine runs concurrently (but not necessarily in parallel)

e Agoroutine has its own (growable/shrinkable) stack

A simple example

func f(msg string, delay time.Duration) {
for {

fmt.Println(msg)
time.Sleep(delay)

}

Function fis launched as 3 different goroutines, all running concurrently:

func main() {
go f("A--", 300*time.Millisecond)
go f("-B-", 500*time.Millisecond)
go f("--C", 1100*time.Millisecond)
time.Sleep(20 * time.Second)

13 of 25 12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads .slide#1

Communication via channels

A channel type specifies a channel value type (and possibly a communication direction):

chan int
chan<- string // send-only channel
<-chan T // receive-only channel

A channel is a variable of channel type:

var ch chan int
ch := make(chan int) // declare and initialize with newly made channel

A channel permits sending and receiving values:

ch <- 1 // send value 1 on channel ch
x = <-ch // receive a value from channel ch (and assign to x)

Channel operations synchronize the communicating goroutines.

Communicating goroutines
Each goroutine sends its results via channel ch:

func f(msg string, delay time.Duration, ch chan string) {
for {
ch <- msg
time.Sleep(delay)

}

The main goroutine receives (and prints) all results from the same channel:

func main() {
ch := make(chan string)
go f("A--", 300*time.Millisecond, ch)
go f("-B-", 500*time.Millisecond, ch)
go f("--C", 1100*time.Millisecond, ch)

for i :=0; 1 < 100; i++ {
fmt.Println(i, <-ch)
}

14 of 25 12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads slide#1

fads

fads

fads is a "FAst Detector Simulation" toolkit.

e morally a translation of C++-Delphes spsscpsimp.udacoeproecsiepnes iINtO GO

® uses g0-hep/fwK ppssgnun omeoneino O €XPOSE, Manage and harness concurrency into
the usual HEP event loop (initialize | process-events | finalize)

® uses g0-hep/hbook pepssginubomgonemon fOr histogramming, go-hep/hepmc ppssginubeomgohe
nesrofOr HepMC input/output

Code is on github (BSD-3):
github.com/go-hep/fWK tpssgthub.comvgohepri
github.com/go-hep/fads spssgtnubcomgoheptads

Documentation is served by godoc.orgepssgodocors :

gOd 0C.0 rg/ glth u b .CO m/ gO' h e p/ f\/\/k (https://godoc.org/github.com/go-hep/fwk)

15 of 25 12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit

go-hep/fads - Installation
As easy as:

$ export GOPATH=$HOME/dev/gocode
$ export PATH=$GOPATH/bin:$PATH

$ go get github.com/go-hep/fads/...

Yes, with the ellipsis at the end, to also install sub-packages.

http://127.0.0.1:3999/go-fads .slide#1

e go get will recursively download and install all the packages that go-hep/fads

(https#/githubAcom/go—hep/fads)depends on. (nO Ma keflle needed)

go-hep/fwk - Examples

$ fwk-ex-tuto-1 -help
Usage: fwk-ex-tutol [options]

ex:
$ fwk-ex-tuto-1 -1=INFO -evtmax=-1

options:
-evtmax=10: number of events to process
-1="INFO": message level (DEBUG|INFO|WARN|ERROR)
-nprocs=0: number of events to process concurrently

Runs 2 tasks.

tl-ints 1-massaged

16 of 25

12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit

17 of 25

go-hep/fwk - Examples

$ fwk-ex-tuto-1
oo fwk-ex-tuto-1...

t2
t2
t1
t1
t2
t1
app
t1
t2

[...

app
t1
t2
t2
t1
app
app
app
app
app
app

1o fwk-ex-tuto-1...

INFO configure...

INFO configure... [done]

INFO configure ...

INFO configure ... [done]

INFO start...

INFO start...

INFO >>> running evt=0...

INFO proc... (id=0|0) => [10, 20]
INFO proc... (id=0|0) => [10 -> 100]

INFO >>> running evt=9...
INFO proc... (id=9|0) => [10, 20]
INFO proc... (id=9|0) => [10 -> 100]

INFO stop...

INFO stop...

INFO cpu: 654.064us

INFO mem: alloc: 62 kB
INFO mem: tot-alloc: 74 kB
INFO mem: n-mallocs: 407
INFO mem: n-frees: 60
INFO mem: gc-pauses: 0 ms

[done] (cpu=788.578us)

go-hep/fwk - Concurrency

ﬁ/\/ k (https://github.com/go-hep/fwk) ena b I es.

- event-level concurrency
- tasks-level concurrency

fWK (epssginuncomgonepmio relies 0N GO epssgozngorg'S runtime to properly schedule goroutines.

For sub-task concurrency, users are by construction required to use GO pssgorgon 'S

http://127.0.0.1:3999/go-fads .slide#1

constructs (goroutines and channels) so everything is consistent and the runtime has the
complete picture.

® Note: GOnmpsreoingon's runtime isn't yet NUMA-aware. A proposal for Go-1.5 (June-2015)

IS 1IN the WO rkS (https://docs.google.com/document/d/1d3il2QWURgDISSR6G2275vMeQ_X7w-axM2Vp7iGwwulM/pub) «

12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads .slide#1

go-hep/fads - real world use case
o translated C++-Delphes puwsimaimpudactepoeasaepnes' ATLAS data-card into Go
o go-hep/fads-app wpsginbcomigohepadsiionmastercmdsiads appimaingo)
e installation:

$ go get github.com/go-hep/fads/cmd/fads-app
$ fads-app -help
Usage: fads-app [options] <hepmc-input-file>

ex:
$ fads-app -1=INFO -evtmax=-1 ./testdata/hepmc.data

options:
-cpu-prof=false: enable CPU profiling
-evtmax=-1: number of events to process
-1="INFO": log level (DEBUG|INFO|WARN|ERROR)
-nprocs=0: number of concurrent events to process

go-hep/fads - components

® a HepMC converter

particle propagator

calorimeter simulator

® energy rescaler, momentum smearer

isolation

b-tagging, tau-tagging

jet-finder (reimplementation of FastJet in Go: go-hep/fastjetnupssginbcomgoheprasien)
® hIStOgl’am SeI’VICE‘ (from gO'hep/fVVk(https://g\'thub.com/gohep/fwk))
Caveats:

® no real persistency to speak of (i.e.: JSON, ASCII and Gob)

e jet clustering limited to NA3 (slowest and dumbest scheme of C++-FastJet)

18 of 25

12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads slide#1

Results - testbenches

e Linux: Intel(R) Core(TM)2 Duo CPU @ 2.53GHz, 4GB RAM, 2 cores
® MacOSX-10.6: Intel(R) Xeon(R) CPU @ 2.27GHz, 172GB RAM, 16 cores
e Linux: Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz, 40 cores

19 of 25 12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit

Linux (40 cores) testbench: memory

linux - 10000 events

http://127.0.0.1:3999/go-fads .slide#1

500 —
400 —
2 300 —
S
> 4
%!
100 —
1 fads —=—
0— | : I , : dlelphes ‘
0 20 40 60
nbr of procs
Linux (40 cores) testbench: CPU
linux - 10000 events
800 delphes
fads —=—

CPU time (s)

naive-scaling —

! |
40
nbr of procs

20 of 25

60

12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads .slide#1

Linux (40 cores) testbench: event throughput

linux - 10000 events

240 — fads —&—
delphes
naive-scaling ——
N 160 —
<
2
g 4
=
o
>
m
80 —
O p—
| ! I ' [' I ‘
0 20 40 60
nbr of procs
Results & Conclusions

e good RSS scaling
e good CPU scaling

e bit-by-bit matching physics results wrt Delphes (up to calorimetry)
Also addresses C++ and python deficiencies:

e code distribution

e code installation

e compilation/development speed

® runtime speed

e simple language

21 of 25 12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads slide#1

Prospects
® proper persistency package (in the works: go-hep/rio nepssgius comgoneprio)
e histograms (persistency) + n-tuples (interactivity): go0-hep/hbook ppsgitubcomgonepmbosk
e performance improvements (cpu-profiling via go tool pprof)

e implement more of go-fastjet combination schemes and strategies

® more end-user oriented documentation

J (0] | n th e fU n: gO' h e p fO rum (https://groups.google.com/d/forum/go-hep)

Acknowledgements / resources

talks.golang.org/2012/tutorial.slide spsmaksgoangorgr20n2ruroriaside)
talks.golang.org/2014/taste.slide npsraksgoang orgraotanaste sice)

tour.golang.org npsrourgoangor

22 of 25 12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads .slide#1

That's all !

Backup

23 of 25 12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads .slide#1

go-hep/fwk - configuration & steering
® use regular Go psgomngonto configure and steer.
e still on the fence on a DSL-based configuration language (YAML, HCL, Toml, ...)
e probably not Python though

// job is the scripting interface to 'fwk'
import "github.com/go-hep/fwk/job"

func main() {
// create a default fwk application, with some properties
app := job.New(job.P{

"EvtMax": 10,
"NProcs": 2,
1))
// ... cont'd on next page...

go-hep/fwk - configuration & steering

// create a task that reads integers from some location
// and publish the square of these integers under some other location
app.Create(job.C{

Type: "github.com/go-hep/fwk/testdata.task2",

Name: "t2",
Props: job.P{
"Input": "t1-ints1",

"Output": "t1-ints1-massaged",
I
9
// create a task that publish integers to some location(s)
// create after the consummer task to exercize the automatic data-flow scheduling.
app.Create(job.C{
Type: "github.com/go-hep/fwk/testdata.task1",
Name: "t1",
Props: job.P{
"Ints1": "t1-ints1",
"Ints2": "t2-ints2",
"Int1": 1int64(10), // initial value for the Ints1
"Int2": int64(20), // initial value for the Ints2
b
b
app.Run()

24 of 25 12/12/14 11:59 PM

fads: a FAst Detector Simulation toolkit http://127.0.0.1:3999/go-fads .slide#1

Thank you

Sebastien Binet
CNRS/IN2P3

25 of 25 12/12/14 11:59 PM

