

Université franco-allemande Deutsch-Französische Hochschule

Off-shell Higgs signal strength measurement in ATLAS ATLAS-CONF-2014-042

Alessandro Calandri <u>alessandro.calandri@cern.ch</u> CEA - Saclay, IRFU/SPP Heidelberg, I2th December 2014

GDR Terascale@Heidelberg

Off-peak Higgs signal strength

We used to search the Higgs as a new on-shell particle (peak on the final state invariant mass spectrum)

Recently, N. Kauer and G. Passarino explained the possible inadequacy of the zero-width approximation \rightarrow The Higgs has also contributions as a virtual particle (propagator) and can be therefore measured in the high mass region. 8 35 ATLAS Interna 0.05 fs - 8 TeV: Ldt - 20.3 tb 0.04 25SM 0.03 15 0.02 10 0.01 100 110 120 130 140 150 160 170 0.00 200 400 600 800 m., [GeV]

- In the 0-width approximation (no off-peak contribution), the integrated cross section is given by:
 - $\sigma_{on-peak} \sim g^2_{ggH} g^2_{HZZ} / \Gamma^2_{H}$
- In the off-shell regions (where the Higgs acts as a propagator), the cross section is:
 - $\sigma_{off-peak} \sim g^2_{ggH} g^2_{HZZ}$ (the cross-section is independent of the total Higgs width)
- The ratio of off-shell and on-shell production cross sections will lead to a direct measurement of the μ_offShell and consequently the Higgs width, as long as the product of the coupling to initial and final states remains constant

Limit on the off-shell couplings (μ _offshell) in the high mass region

We'll interpret this off-shell limit as a limit on FH (FH_SM=4.2 MeV) when combining with the on-shell (low mass) measurement

The analysis strategy (41)

- The analysis is performed in the off-shell ZZ region (m4l>220 GeV) keeping the same low mass kinematic selection
- We try to reject the qqZZ background using simple (cut-based) or shape-based methods (Matrix Element)
- For a given event, we evaluate |ME|² for process hypotheses
 - $P(H \rightarrow ZZ)$, $P(gg \rightarrow ZZ)$, $P(qq \rightarrow ZZ)$ and Pint.
 - To be combined to construct a kinematic discriminant against main background qqZZ

Key input variables to the ME discriminant (41)

Shape-based analysis (41)

- Unbinned maximum likelihood fit to extract the constraint on the off-shell Higgs couplings and the total width
- The PDFs are built from MC templates assuming SM Higgs hypothesis (μ _offshell =1).
 - $|P^{SM}_{gg \rightarrow H \rightarrow ZZ}|$ (gluon-gluon \rightarrow Higgs $\rightarrow ZZ$ contribution only)
 - $|\mathbf{P}^{cont}_{gg \to ZZ}|$ (ZZ continuum only)
 - $|P^{SM}_{gg \to H \to ZZ} + P^{cont}_{gg \to ZZ}| = P^{SM}_{gg \to ZZ}$ (including Higgs, interference and continuum)
 - defining $P^{SM}_{interference} = P^{SM}_{gg \rightarrow ZZ} P^{cont}_{gg \rightarrow ZZ} P^{SM}_{gg \rightarrow H \rightarrow ZZ}$
 - for $\mu_{\text{offShell}} \neq I \Rightarrow P_{gg \rightarrow ZZ} (\mu_{\text{offShell}}) = P^{\text{SM}}_{gg \rightarrow H \rightarrow ZZ} \cdot \mu_{\text{offShell}} + P_{\text{Interference}} \cdot \sqrt{(\mu_{\text{offShell}}) + P^{\text{cont}}_{gg \rightarrow ZZ}}$
 - $\frac{P_{gg \rightarrow ZZ} (\mu_{offShell}, x) = \sqrt{(\mu_{offShell}) \cdot P^{SM}_{gg \rightarrow ZZ}(x) + (\mu_{offShell} \sqrt{\mu_{offShell}}) \cdot P^{SM}_{gg \rightarrow H \rightarrow ZZ}(x) + (I \sqrt{\mu_{offShell}}) \cdot P^{cont}_{gg \rightarrow ZZ}(x)}$

• The 3 templates are extracted from MC

- Closure test performed between the MC distributions (generated at $\mu_{OffShell}=10$ and $\mu_{OffShell}=25$) and the PDFs extracted with the formula above
- Assuming the same on and off-shell couplings, the above-defined parametrizations can be fitted in μ and this gives a limit on the ratio Γ/Γ SM

Results (41)

- Use CLs method to extract 95% CL limit on µoffShell (4l)
 - We can interpret it as a limit on the width
 - Results presented as a function of K $(gg \rightarrow ZZ)/K(gg \rightarrow H \rightarrow ZZ).$
 - The systematic uncertainties are dominated by the QCD scale of gg→ZZ, qq→ZZ and gg→H→ZZ.

Cut-based analysis as a cross-check (41)

Process	$220 \text{ GeV} < m_{4\ell} < 1000 \text{ GeV}$	$400 \text{ GeV} < m_{4\ell} < 1000 \text{ GeV}$
$gg \to H^* \to ZZ(S)$	2.2 ± 0.5	1.1 ± 0.3
$gg \rightarrow ZZ(B)$	30.7 ± 7.0	2.7 ± 0.7
$gg \rightarrow (H^* \rightarrow)ZZ$	29.2 ± 6.7	2.3 ± 0.6
$gg \rightarrow (H^* \rightarrow)ZZ \ (\mu_{\text{off-shell}} = 10)$	40.2 ± 9.2	9.0 ± 2.5
$VBF H^* \rightarrow ZZ(S)$	0.2 ± 0.0	0.1 ± 0.0
VBF ZZ (B)	2.2 ± 0.1	0.7 ± 0.0
$VBF(H^* \rightarrow)ZZ$	2.0 ± 0.1	0.6 ± 0.0
VBF $(H^* \rightarrow)ZZ \ (\mu_{\text{off-shell}} = 10)$	3.0 ± 0.2	1.4 ± 0.1
$q\bar{q} \rightarrow ZZ$	168 ± 13	21.3 ± 2.1
Reducible backgrounds	1.4 ± 0.1	0.1 ± 0.0
Total Expected (SM)	200 ± 15	24.3 ± 2.2
Observed	182	18

		Observed	ł	Med	lian expe	ected
$R^B_{H^*}$	0.5	1.0	2.0	0.5	1.0	2.0
cut-based	10.8	12.2	14.9	13.6	15.6	19.9
ME-based discriminant analysis	6.1	7.2	9.9	8.7	10.2	14.0

The analysis strategy (llvv)

- Kinematic selection (off-peak region m^{7Z}>350 GeV)
 - (76<mll<106) GeV, MET>150 GeV
 - Veto on the 3rd lepton to reject WZ, b-jet veto to reject top
 - $|pt(Z)-MET|/pt(Z) < 0.3, \Delta \Phi$ (MET, ptMiss)<0.5 to reject top and Z+jets background

Background estimation:

- WZ: estimated in MC and validated with data in a 3-lepton CR
- ZZ: extracted from MC (<u>NLO EW corrections applied to ZZ and WZ it reduces the yield of 8% and 6% for ZZ and WZ</u>)
- WW, tt, Wt, $Z \rightarrow \tau \tau$: calculated in data using the flavour simmetry in a eµ control region
- $Z \rightarrow ee, Z \rightarrow \mu\mu$: computed in data using 2D sidebands (fractional pt difference and $\Delta\Phi$ cuts are reversed)
- W+jets, multijet: estimated in data using fake factors methods

Combined results (41+11vv)

- Simultaneous binned maximum likelihood fit to extract µ(Off-Shell)
- Assuming identical on and off shell couplings, likelihood fit extended to include the low mass H4lep
 - Simultaneously measuring μ off-shell and on-shell \rightarrow Interpretation of the measurement of the off-shell coupling as a limit on the Higgs width
 - Experimental sys uncertainties are treated as correlated between on and off-shell H4lep
 - QCD scale uncertainties on signal and qq →ZZ are treated as correlated between on and offshell H4lep, whereas the PDF-related systematics are not

Combined results (41+11vv) - 2

12

Combined results (41+11vv) - 2

12

Treatment of the systematic uncertainties

- The largest systematic arises from theoretical uncertainties on $gg \rightarrow H \rightarrow ZZ$ and $gg \rightarrow ZZ$
- The experimental uncertainties are negligible both in 4lep and llvv
- Uncertainty on the signal contribution:
 - <u>missing higher order QCD and EW</u>: k-factor as a function of mZZ. The uncertainty is ~ 20-30%
- Treatment of the $gg \rightarrow ZZ$ continuum background uncertainty
 - NLO and NNLO QCD calculations are not available
 - results are given as a function of the ratio of the K-factors for signal and background (K-factor of the signal is applied to the gluon-induced background)
- The interference uncertainty has been taken into account as well

Treatment of the acceptance systematics

- <u>4lep analysis is inclusive in QCD observables no further acceptance uncertainties are assigned</u>
- <u>Ilvv does not apply explicit jet categorization, yet the selection has an indirect influence on jet emissions and pt (ZZ) spectra</u>
- gg2VV is a LO MC \rightarrow <u>Approach: comparing several parton showers and hadronization options</u>:
 - Pythia8 "power" and "wimpy" showers (with and w/o a ME correction on the 1st jet emission)
 - Jimmy+Herwig

14

...compared to Powheg NLO signal (m_H=380 GeV) and Sherpa+OpenLoops background (LO+ 0 and 1j merged ME calculation)

Wrapping-up and conclusions

- Determination of the off-shell signal strength in the high mass $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow ZZ^* \rightarrow 2I2v$ performed
- The analysis in the 4I channel employs a likelihood fit on the ME discriminant while the 2I2v channel exploits a cut-based approach in an enriched signal region
- Results are presented as a function of the ratio of background (gg \rightarrow ZZ) and signal (gg \rightarrow H \rightarrow ZZ) k-factors as no NLO QCD calculation is available for gg \rightarrow ZZ
- Assuming identical coupling strength for on and off-shell:
 - interpreting this off-shell limit as a constraint on the total Higgs width when combining with the on-shell measurement
- Assuming identical k-factors for signal and background:
 - 95% CL observed (expected) limit on $\mu_{OffShell} < 6.7$ (7.9)
 - under the same assumptions: ΓΗ/ΓSM < 5.7 (8.5).
- <u>Currently working on the paper (will be most likely released by the beginning of 2015)</u>

Additional Stides

GDR Terascale @Heidelberg

17 Breakdown of the systematic uncertainties

Source of systematic uncertainties	95% CL on $\mu_{\text{off-shell}}$
QCD scale for $gg \rightarrow ZZ$	9.5
QCD scale for the $gg \rightarrow (H^* \rightarrow)ZZ$ interference	9.2
QCD scale for $q\bar{q} \rightarrow ZZ$	8.8
PDF for $pp \rightarrow ZZ$	8.7
EW for $q\bar{q} \rightarrow ZZ$	8.7
Luminosity	8.8
electron efficiency	8.7
μ efficiency	8.7
All systematic	10.2
No systematic	8.7

Breakdown of the systematic uncertainties

Source of systematic uncertainties	95% CL on $\mu_{off-shell}$
QCD scale for $gg \rightarrow ZZ$	7.9
QCD scale for the $gg \rightarrow (H^* \rightarrow)ZZ$ interference	7.7
QCD scale for $q\bar{q} \rightarrow ZZ$	7.6
PDF for $pp \rightarrow ZZ$	7.2
EW for $q\bar{q} \rightarrow ZZ$	7.1
Parton showering	7.1
Z BG systematic	7.4
Luminosity	7.3
Electron energy scale	7.1
Electron ID efficiency	7.1
Muon reconstruction efficiency	7.1
Jet energy scale	7.1
Sum of remaining systematic uncertainties	7.1
All systematic	9.9
No systematic	7.1

Breakdown of the systematic uncertainties

19

4l + llvv

Source of systematic uncertainties	95% CL on $\mu_{\text{off-shell}}$
QCD scale for $gg \rightarrow ZZ$	6.7
QCD scale for the $gg \rightarrow (H^* \rightarrow)ZZ$ interference	6.7
QCD scale for $q\bar{q} \rightarrow ZZ$	6.4
Z BG systematic	6.2
Luminosity	6.2
PDF for $pp \rightarrow ZZ$	6.1
Sum of remaining systematic uncertainties	6.2
No systematic	6.0
All systematic	7.9