

Tackling $\mathrm{ttH}, \mathrm{H} \rightarrow \mathrm{bb}$ final states

Tackling ttH, $\mathrm{H} \rightarrow \mathrm{bb}$ final states

Tackling $\mathrm{ttH}, \mathrm{H} \rightarrow \mathrm{bb}$ final states

- tt+bb background irreducible and plagued by large unc. ($\approx 35 \%$ @NLO)
- counting experiment not feasible
- extra handles: mbь spectrum
- separable using mass peak ?
- Not so easy: b's from top quarks complicate mass peak extraction
- combinatorial self-background \Rightarrow need for multidimensional analyses

A possible analysis strategy

Matrix Element Method (MEM) suited to the task

A possible analysis strategy

Matrix Element Method (MEM) suited to the task

Virtues of the MEM:

- combinatorial issue properly addressed:
- optimal usage of kinematics and dynamics for S / B separation (Neyman lemma)

 $\mathrm{d} \sigma_{\mathrm{H}} / \mathrm{d} \Omega$

Master formula

$$
\mathrm{d} \sigma_{\mathrm{S} / \mathrm{B}} / \mathrm{d} \overrightarrow{\mathbf{Y}}=\mathrm{w}_{\mathrm{S} / \mathrm{B}}(\overrightarrow{\mathbf{Y}})=
$$

$\int d \Phi_{\mathbf{X}} d x_{a} d x_{b} f\left(x_{a}, x_{b}\right) \delta^{4}\left(x_{a} P_{a}+x_{b} P_{b} \overrightarrow{\boldsymbol{X}}\right)\left|\mathscr{N}_{S / B}(\overrightarrow{\mathbf{X}})\right|^{2} \mathrm{~W}(\overrightarrow{\mathbf{Y}}, \overrightarrow{\boldsymbol{X}})$

Master formula

Master formula

$$
d \sigma_{S / B} / d \overrightarrow{\mathbf{Y}}=w_{S / B}(\overrightarrow{\mathbf{Y}})=
$$

$\int d \Phi_{\boldsymbol{X}} \mathrm{d} x_{a} \mathrm{dx} f\left(x_{a}, x_{b}\right) \delta^{4}\left(x_{a} P_{a}+x_{b} P_{b}-\overrightarrow{\boldsymbol{X}}\right)\left|M_{S / B}(\overrightarrow{\boldsymbol{X}})\right|^{2} \mathrm{~W}(\overrightarrow{\mathbf{Y}}, \overrightarrow{\boldsymbol{X}})$

generated particles; numerical integration (VEGAS)

Master formula

$$
d \sigma_{S / B} / d \overrightarrow{\mathbf{Y}}=w_{S / B}(\overrightarrow{\mathbf{Y}})=
$$

$\int d \Phi_{\mathbf{X}} \mathrm{d} x_{a} \mathrm{~d} x x_{\underline{f}\left(x_{a}, x_{b}\right)} \delta^{4}\left(x_{a} P_{a}+x_{b} P_{b}-\overrightarrow{\boldsymbol{X}}\right)\left|M_{S / B}(\overrightarrow{\mathbf{X}})\right|^{2} \mathrm{~W}(\overrightarrow{\mathbf{Y}}, \overrightarrow{\boldsymbol{X}})$

Master formula

$$
\begin{aligned}
& d \sigma_{S / B} / d \overrightarrow{\mathbf{Y}}=\mathrm{w}_{S / B}(\overrightarrow{\mathbf{Y}})= \\
& \left.\int d \Phi_{\boldsymbol{X}} \mathrm{d} x_{a} \mathrm{~d} x_{b} f\left(x_{a}, X_{b}\right) \delta^{4}\left(x_{a} P_{a}+x_{b} P_{b}-\overrightarrow{\boldsymbol{X}}\right) \cdot M_{S / B}(\overrightarrow{\mathbf{X}})\right|^{2} \mathrm{~W}(\overrightarrow{\mathbf{Y}}, \overrightarrow{\boldsymbol{X}}) \\
& \text { Momentum balancing } \\
& \text { N.B.: } \sum \vec{p} \mathrm{~T}=0 \text { @ LO } \\
& \text { Here: pt balance not imposed. } \\
& \sum \overrightarrow{\mathrm{P} T} \text { constrained to measured } \\
& \text { recoil }=-j \overrightarrow{\text { ets }}-\overrightarrow{\mathrm{ep}}-\overrightarrow{\mathrm{ET}^{m}} \text { miss }
\end{aligned}
$$

Master formula

$$
\mathrm{d} \sigma_{S / B} / \mathrm{d} \overrightarrow{\mathbf{Y}}=\mathrm{w}_{S / B}(\overrightarrow{\mathbf{Y}})=
$$

$\int d \Phi_{\boldsymbol{X}} \mathrm{d} x_{a} \mathrm{~d} x_{\mathrm{b}} \mathrm{f}\left(x_{a}, x_{b}\right) \delta^{4}\left(x_{a} P_{a}+x_{b} P_{b}-\overrightarrow{\boldsymbol{X}}\right)\left|\mathcal{U S I S}^{(\overrightarrow{\boldsymbol{X}})}\right|^{2} \mathrm{~W}(\overrightarrow{\mathbf{Y}}, \overrightarrow{\boldsymbol{X}})$

Master formula

$$
d \sigma_{s / \beta} / \overrightarrow{\mathbf{Y}}=w_{s / B}(\overrightarrow{\mathbf{Y}})=
$$

$\int d \Phi_{X} d x_{a} d X_{b} f\left(x_{a} x_{B}\right) \delta^{4}\left(x_{a} P_{a}+x_{b} P_{b}-\overrightarrow{\boldsymbol{X}}\right)\left|M_{S B}(\overrightarrow{\boldsymbol{X}})\right| \quad \mid \overrightarrow{\mathbf{W}(\overrightarrow{\mathbf{Y}}, \overrightarrow{\boldsymbol{X}})}$

Transfer function

13

CMS Simulation $\sqrt{\mathrm{S}}=8 \mathrm{TeV}$

Implementation

SL

Categorize events as to aid evaluation of ME at LO category \Leftrightarrow event interpretation

Implementation

Reduction of $\mathrm{V}+\mathrm{jets}$ and $\mathrm{tt}+\mathrm{jets}$ requires cut on number of jets, b tagging

$=$	tagged
- =- =- =-	untagged
extra jets	

assignment based on jet permutation w/ largest btag

SL Cat. I

 all top/H quarks reconstructed
SL Cat. 2

one W-quark missed; extra gluon(s) from ISR
\Rightarrow integrate over missing quark
assignment based on jet permutation w/ largest btag

\square	tagged
untagged	
$-=-=-=$	extra jets

Implementation

SL Cat. I

 all top/H quarks reconstructed
SL Cat. 2

one W-quark missed; extra gluon(s) from ISR
\Rightarrow integrate over missing quark

SL Cat. 3

one W-quark missed no extra-radiation
\Rightarrow integrate over missing quark
assignment based on jet permutation w/ largest btag

Implementation

SL Cat. I

all top/H quarks reconstructed

SL Cat. 2

one W-quark missed; extra gluon(s) from ISR
\Rightarrow integrate over missing quark

SL Cat. 3

one W-quark missed no extra-radiation
\Rightarrow integrate over missing quark

DL

all top/H quarks reconstructed

Shape comparison: $\mathrm{tt}+\mathrm{bb}$ vs ttH

In situ validation of shapes

- sidebands with low b tagging score
- in signal region, validate low-sensitivity version of $\mathrm{P}_{\mathrm{s} / \mathrm{b}}$
- one random permutation only
- testing different values of m_{H}

FAQ: is CPU time an issue ?

Not really; compromise between performance and timing:

- run only on the good "events"
- filter-out permutations using b tagging ($6!\rightarrow 4!$)
- test one background hypothesis only
- optimize separation against tt+bb
- parallelize (by event) as much as possible
- neglect spin/correlations
- JEC/JER systematics: bookkeep VEGAS grid result from "nominal" for faster evaluation

Number of variables	$4(+1)$	$6(+1)$	$5(+1)$
Number of iterations	5	5	5
Function calls	2000	4000	10000
Numerical precision (mode of $\left.\sigma_{w} / w\right)$	0.8%	1.2%	0.8%
CPU-time per integral (mean)	$0.5(1.5) \mathrm{s}$	$1.1(3.2) \mathrm{s}$	$2.3(6.2) \mathrm{s}$
Time budget for $\|\mathcal{M}\|_{\mathrm{ME}}^{2}$	$30 \%(80 \%)$	$30 \%(80 \%)$	$30 \%(80 \%)$

$S(B)$ integration

FAQ: is CPU time an issue ?

Not really; compromise between performance and timing:

- run only on the good "events"
- filter-out permutations using b tagging ($6!\rightarrow 4!$)
- test one background hypothesis only
- optimize separation against tt+bb
- parallelize (by event) as much as possible
- neglect spin/correlations
- JEC/JER systematics: bookkeep VEGAS grid result from "nominal" for faster evaluation

	Number of variables	4 (+1)	6 (+1)	5 (+1)	
	Numbar of itorat	5	5	5	
Nur	\Rightarrow complete analysis round in $\sim 10 \mathrm{~h}$ using the batch system of a T3				
	lime budget for \mid M $\left.\right\|_{\text {ME }} ^{*}$	30% (80\%)	30\% (80\%)	30\% (80	

Overview of systematic uncertainties

ttH modeling: PYTHIA tt+jets: MadGraph (≤ 3 partons)+PYTHIA
50% normalization uncertainty on $\mathrm{tt}+\mathrm{HF}$

α_{s} scale uncertainty	QCD scale	InN 17-3\%
	fact/renorm. scale	$\begin{gathered} \text { shapes } \\ (\mathrm{tt}+\mathrm{p} / 2 \mathrm{p} / 3 \mathrm{p} / \mathrm{b} / \mathrm{b} / \mathrm{j} / \mathrm{cc}) \end{gathered}$
	PDF	InN 3-9\%
JEC/JER, b tagging	JES	shape
	JER	shape
	btagging	8 shapes
top PT modeling statistical uncertainty	top PT model	shape
	MC stat.	shape (all bins)

InN = normalization uncertainty shape $=$ vertical morphing

nuisance	treatment
luminosity	$\operatorname{lnN} 2.6 \%$
$\mathrm{ID} /$ trigger	$\operatorname{lnN} 2-4 \%$
ttH	$\operatorname{lnN} 12 \%$
$\mathrm{tt}+\mathrm{bb}$	$\operatorname{lnN~50\% }$
$\mathrm{tt}+\mathrm{cc}$	$\operatorname{lnN~50\% }$
$\mathrm{tt}+\mathrm{b}$	$\operatorname{lnN~50\% }$
QCD scale	$\operatorname{lnN} 17-3 \%$
fact/renorm. scale	shapes
(tt $+\mathrm{Ip} / 2 \mathrm{p} / 3 \mathrm{p} / \mathrm{bb} / \mathrm{b} / \mathrm{jj} / \mathrm{cc})$	
PDF	$\operatorname{lnN} 3-9 \%$
JES	shape
JER	shape
btagging	8 shapes
top pt model	shape
MC stat.	shape (all bins)

Results $(8 \mathrm{TeV})$

Combined fit to ME discriminant:

Median Exp. $95 \% \mathrm{CL}$	Median Exp. (signal injected)	Obs.
$\mu<2.9$	$\mu<3.9$	<3.3

- Best-fit value $\mu_{\mathrm{ttH}}=0.7 \pm \mathrm{I} .4$

CMS-PAS-HIG-I4-010

Results (8 TeV)

Combined fit to ME discriminant:

Median Exp. $95 \% \mathrm{CL}$	Median Exp. (signal injected)	Obs.
$\mu<2.9$	$\mu<3.9$	<3.3

- Best-fit value $\mu_{\mathrm{ttH}}=0.7 \pm \mathrm{I} .4$

CMS-PAS-HIG-I4-010
5

Results $(8 \mathrm{TeV})$

Combined fit to ME discriminant:

Median Exp. $95 \% \mathrm{CL}$	Median Exp. (signal injected)	Obs.
$\mu<2.9$	$\mu<3.9$	<3.3

- Best-fit value $\mu_{\mathrm{ttH}}=0.7 \pm \mathrm{I} .4$

CMS-PAS-HIG-I4-010
26

Summary \& outlook

- First ttH search based on the MEM at a collider
- new algorithm developed and optimized for CMS
- 20-30\% better expected limit compared to previously published analysis
- CPU \& human-time sustainable
- Run I: results in agreement with SM expectation ($\Delta \mu / \mu \sim 1.4)$
- The 13 TeV challenge is behind the corner
- with more data, theoretical uncertainties will become relevant
- use of NLO programs will make analysis more solid
- definition proper sidebands for background estimation/calibration
- $\quad \mathrm{ttZ}(\rightarrow \mathrm{bb})$ as a standard candle?
- further improvements:
- spin-correlations as an extra handle (?)
- inclusion of more event topologies (?)
- inclusion of boosted top tagging variables (?)

Thanks for your attention

Back up

Motivation

Determination of top-quark Yukawa coupling $\left(\boldsymbol{y}_{\boldsymbol{t}}\right)$ is a major goal

- gather direct evidence of Higgs coupling to up-type fermions
- implication on EWSB

Cross sections of top+Higgs channels can unravel value/sign of $\boldsymbol{y}_{\boldsymbol{t}}$

$$
\sigma_{\mathrm{ttH}} \times\{B R(H \rightarrow X)\} \propto\left|y_{\mathrm{t}}\right|^{2}
$$

Motivation

Determination of top-quark Yukawa coupling $\left(\boldsymbol{y}_{\boldsymbol{t}}\right)$ is a major goal

- gather direct evidence of Higgs coupling to up-type fermions
- implication on EWSB

Cross sections of top+Higgs channels can unravel value/sign of $\boldsymbol{y}_{\boldsymbol{t}}$

H \rightarrow leptons:
Clean states.
Coupling to Z/W better known

Experimental challenge posed by:

- low signal cross section
- irreducible SM background
- often challenging at NLO
- e.g. $t t+b b, t t+\gamma \gamma, t t+Z / W$ complicated final states

Building bricks

$\vec{X}=$ (generated particles)
$\mathscr{M}(\vec{X})=$ scattering amplitude

$$
\Longrightarrow \quad \vec{Y}=\text { (reconstructed particles) }
$$

"metric" $\mathrm{W}(\overrightarrow{\mathbf{Y}}, \overrightarrow{\mathbf{X}})$

Dimensional reduction

- Factorize integration over final-state particles via $d \Phi_{n}\left(P ; p_{1}, \ldots, p_{n}\right)=d \Phi_{j}\left(q ; p_{1}, \ldots, p_{j}\right) \times d \Phi_{n-j+1}\left(P ; q, p_{j+1}, \ldots, p_{n}\right)(2 \pi)^{3} d q^{2}$
- Narrow-width approx: $\frac{1}{\left(t^{2}-M_{t}^{2}\right)+\Gamma_{t}^{2} M_{t}^{2}} \rightarrow \frac{1}{\left(M_{t} \Gamma_{t}\right)^{2}} \delta\left(t^{2}-M_{t}^{2}\right)$

- Assume lepton and jet direction perfectly measured

The Matrix Element Method (MEM)

Given event j, find its probability $w_{j}\left(\cdot \mid H_{i}\right)$ under hypothesized process H_{i}

- w_{j} is a function of detector-level observables \mathbf{Y} (technically, a differential prob. density on \mathbf{Y})
- can depend parametrically on unknown model parameters $\boldsymbol{\lambda}$
is the relative weight with which a MC generator of process H_{i} would generate ev. j
- for $N \gg \mid$ events, $\left(\sum^{N} W_{j} / N\right) \rightarrow I$
N.B.: a HEP process H_{i} is known (\Leftrightarrow can be simulated) fully differentially only to some approximation (typically not better than NLO). Conversely, nature is "to all orders" :
- a certain approximation is implicit in the method
- this does not invalidate the method per se', rather makes it not optimal

The algorithm: basic principles

- Factorize the reaction $\mathrm{pp} \rightarrow \mathrm{tt}+(\mathrm{bb}) \rightarrow \Omega$ as a 3 -steps process:
- $g g \rightarrow 3$ on-shell intermediate particles $\propto|\mathscr{M}(g g \rightarrow t t H)|^{2}$
- intermediate particles propagate: $\propto\left[\left(q^{2}-M^{2}\right)^{2}-M^{2} \Gamma^{2}\right]^{-1}$
- intermediate particles decay $\propto \Gamma^{-\mathrm{I}} \mathrm{d} \Gamma / \mathrm{d} \Omega$

- This way:
tno need to evaluate CPU-intensive $2 \rightarrow 8$ amplitudes [only $2 \rightarrow 3(4)$] spin-correlations and polarizations neglected
- cross-check with MadWeight

$P_{\text {T balance }}$

- Event-by-event constraint to the measured recoil $\boldsymbol{\rho}=-\Sigma \mathbf{p}_{\mathbf{T}}{ }^{\text {vis }}$ $\mathbf{E T}^{\text {miss }}$ via transfer function
\rightarrow for each phase-space point, boost so that $\mathbf{P}_{\mathbf{T}}=\mathbf{0}$, and evaluate $|\mathbb{M}|^{2}$
- N.B.: at present, we instead constrain V's $\mathbf{p}_{\mathbf{T}}$ to $\mathbf{E}_{\mathbf{T}}{ }^{\text {miss }}$ and the quark energy to jet energy
- not optimal because ET ${ }^{\text {miss }}$ correlated w/ jet energy.

95\% CL isocontour

$$
\mathrm{V}_{\mathrm{x}, \mathrm{y}}=\mathrm{E}_{\mathrm{T}}{ }^{\text {miss }} \text { cov. matrix }
$$

Comparing with MadWeight

Cross-section

Digression I: the Higgs mass

- ttbb events $w / M(b b) \approx 125$ indeed look like $t t H!$
- but not identical \Leftrightarrow the ME is sensitive also to the other variables
- $t t H$ events $w / M(b b) \neq 125$ (e.g. poor resolution) undistinguishable from ttbb

Digression II: wrong hypothesis

- If the event does not fulfill the tested ME hypo, the weight is broadly distributed
- yet, ttH remains slightly more "signal-like"

assignment based on jet permutation w/ largest btag

Categories

SL Cat. I

all top/H quarks reconstructed

SL Cat. 2

one W-quark missed; extra gluon(s) from ISR
\Rightarrow integrate over missing quark

SL Cat. 3

one W-quark missed no extra-radiation
\Rightarrow integrate over missing quark

DL
$\mathrm{N}_{\mathrm{i}} \geq 4$

Control plots

Control plots

$\mathcal{L}_{\mathrm{bbbb}}\left(\xi_{1}, \ldots, \xi_{6}\right) \equiv \sum_{\left\{\mathrm{i}_{1}, \ldots, \mathrm{i}_{6}\right\}} f_{\mathrm{b}}\left(\xi_{\mathrm{i}_{1}}\right) \cdot f_{\mathrm{b}}\left(\xi_{\mathrm{i}_{2}}\right) \cdot f_{\mathrm{b}}\left(\xi_{\mathrm{i}_{3}}\right) \cdot f_{\mathrm{b}}\left(\xi_{\mathrm{i}_{4}}\right) \cdot f_{\mathrm{u}}\left(\xi_{\mathrm{i}_{5}}\right) \cdot f_{\mathrm{u}}\left(\xi_{\mathrm{i}_{6}}\right)$

